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“I oppose this DCO as it is not in the national interest and is flawed” 

In the interest of brevity I will only write about a few facets of the arguments put forward by RSP.

“Night flights will be kept to a minimum” they say. This is a meaningless and casuist statement at
best. The customers will dictate when they buy flight time. The industry that produces perishable food
stuffs and cut flowers uses the day time hours to harvest their produce. The night time is ‘dead’ time
to them, so best used for transporting the goods. This aspect needs thorough investigation by the
inspectorate to identify exactly what RSPs plans are for night flights.

 

The promise of jobs holds no real details of job roles and where the will actually be, locally at
Manston or are they including jobs at other sites and undefined jobs in related industries. How many
will be full time and above the living wage? Please investigate this for full details from RSP.

 

I have lived on and off in Ramsgate since 1963 and if any real jobs were created at Manston airport in
the past they were in the dozens, and were generally low grade, zero hours and on call 24/7”.

 

I have lived under the flight path, when Manston was an airport, at various distances from the runway.
The pollution of chemical pollution was evident by the residue of aircraft fuel floating on pond
surfaces. We could smell it on the washing that was hung outside to dry. Then there was the noise
pollution. You could not continue a conversation either with another person or on the telephone. It
was a nightmare being woken suddenly at night when there were breaches of the previous no night
flight restrictions. The aircraft were very old, noisy types that were not maintained to the point where
they even appeared very dirty and unkempt. Humanitarian and emergency night flight are never an
issue. However, night flights would cause sleep disturbance, which would affect our quality of life
negatively. This is well researched. See attached.

Project paper attached: Modelling Aircraft Noise- Induced Sleep Disturbance 2013 concludes on page
294, paragraph 1:

9. SUMMARY, OUTCOMES AND RECOMMENDATIONS FOR FUTURE

WORK

‘Night time aircraft noise can disturb sleep in communities, causing a decrease in rapid

eye movement and slow wave sleep and an increase in the number of awakenings and

time spent awake. These changes in sleep may lead to both next day and long term

health effects’.

The Nethercourt estate and many surrounding properties are made up of many bungalows, housing a
high proportion of elderly residents. To be faced with the prospect that we may face our last years
under the blight of a 24-hour freight airport that is not even required and of national need, will be a
devastating blow for myself and thousands of others.

Please ensure RSP stick to their consultation mantra that night flights are not needed. I request that
the night flights are therefore removed from their documentation. Their consultation document
indicates a 24hr freight services including freight vehicle movements 24hrs a day.
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GLOSSARY


Actigraph A device worn on the wrist. It contains an accelerom-
eter and is used for measuring motility during the
night.


Adaptation Decrease in response, occurs at the level of the sensory
organ.


Alpha Activity Activity in the EEG signal between 8-12 Hz.


Arousal Consists of EEG activity in the 8 to 12 Hz range.
There will also be an increase in muscle activity. They
last for at least 3 seconds but not more than 15 sec-
onds.


A-weighting Frequency weighting. It was derived from the 40-phon
equal loudness curve. It’s use was meant for sounds of
low levels.


Autonomic Arousal Elevation in the sympathetic tone. May occur with
or without a cortical arousal. It is associated with
elevations in blood pressure and heart rate.


Behavioral Awakening An individual must perform a task when awakened
such as pressing a button.


Beta Activity Activity in the EEG signal between 15-25 Hz.


Blood Pressure Dipping The nighttime blood pressure level decreases below
10% of its average daytime level.


Circadian Rhythm 24 hour variation in biological rhythms such as body
temperature.


Day Night Average
Sound Level (DNL)


An average A-weighted sound pressure level which has
a 10 dB penalty for noise events occurring between the
hours of 10:00 pm and 7:00 am. (See Appendix A)


ECG Artifact Artifact in the EEG signal, heart activity is picked up
due to the electrode being positioned close to a vein
or artery.


Electrocardiogram
(ECG)


Measurement of electrical activity of the heart.


Electroencephalogram
(EEG)


Measurement of electrical activity in the brain.


Electromyogram
(EMG)


Measurement of muscle activity.
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Electrooculogram
(EOG)


Measurement of eye movement.


EOG Artifact Artifact in the EEG signal caused by eye movements.


Gamma 1 Activity Activity in the EEG signal between 25-35 Hz.


Gamma 2 Activity Activity in the EEG signal between 35-45 Hz.


Ghrelin A hormone for regulating appetite. An increased level
leads to an increase in appetite.


Glucose Tolerance Rate of decline of glucose levels in the body. Those
with impaired glucose tolerance would have a slower
rate of decline.


Habituation Decrease in response, happens at the central nervous
system.


Homeostatic Sleep
Process


Indicator of an individual’s need for sleep. Increases
when an individual is awake, decreases while asleep.


Hypertension High blood pressure.


K-complex A characteristic feature of Stage 2 sleep. They last for
at least half a second and consist of a sharp decrease
in EEG activity followed by a longer increase in level.
Usually a sleep spindle will occur before, after, or dur-
ing a K-complex.


LAeq Average A-weighted sound pressure level of a sound.


LAmax Maximum A-weighted sound pressure level of a
sound.


Leptin A hormone for regulating appetite. An increased level
leads to a decrease in appetite.


Lnight Average A-weighted sound pressure level between
11:00 pm and 7:00 am.


Motility A measurement of body movement.


Multiple Sleep Latency
Test


An objective measure of sleepiness. The time it takes
for an individual to fall asleep is measured 4 to 5 times
throughout the day.


Noise Sensitivity How bothered someone is by noise in general, not just
aircraft noise. It is typically measured using a multi-
item questionnaire.


Obstructive Sleep
Apnea


A sleep disorder in which the airflow and respiratory
effort either completely stops for a few seconds or is
reduced.


Odds Ratio Ratio of an exposed population having a certain con-
dition to a non-exposed population having a certain
condition.
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Phasic Rapid Eye
Movement Sleep


Rapid eye movement sleep in which there is irregular
occurrence of events such as rapid eye movement.


Polysomnography The simultaneous measurement of the electroen-
cephalogram (EEG), electromyogram (EMG), and
electrooculogram (EOG).


Pupillographic
Sleepiness Test (PST)


A measurement of the oscillation in pupil size. A
change less then 0.3 mm indicates a subject is alert.


Rapid Eye Movement
Sleep (REM)


A sleep stage which is characterized by theta activity
in the EEG signal, and the lowest amount of muscle
activity during the night. Also there will be rapid
oscillations in the EOG signal.


Sawtooth Waves Sawtooth shaped waves that occur in the EEG sig-
nals during Stage REM. The fundamental frequency
is between 2 to 6 Hz.


Sigma Activity Activity in the EEG signal between 12-15 Hz.


Sleep Efficiency Total sleep time divided by the total time in bed.


Sleepiness Indicated by difficulty remaining awake and falling
asleep.


Sleep Latency Time from lights out to the first occurrence of Stage
2.


Sleep Spindles Fast oscillations, between 12 to 14 Hz, in the EEG
signal. They are a characteristic feature of Stage 2
sleep.


Slow Wave Activity Power in the spectrum of the electroencephalogram
(EEG) signal in the frequency range of 0.5-4.5 Hz.


Sound Exposure Level
(SELA)


A measure derived from the A-weighted sound level
time history of a noise event. SELA is determined by
considering only the portion of the noise event 10 dB
down from the maximum A-weighted sound pressure
level. (See Appendix A)


Spontaneous
Awakening


An awakening that is not associated with a noise (or
other external stimulus) event.


Stage Wake In this stage the activity in the EEG signal will be
primarily between 8 and 12 Hz (alpha activity). The
level of EMG activity will be high and if the individual
is relaxed, there will be slow eye rolling.


Stage 1 This stage is primarily a transition stage. Most of the
EEG activity is between 4 to 8 Hz. The muscle tone
decreases from Stage Wake.


Stage 2 The background activity in Stage 2 is theta activ-
ity, however there are two characteristic features sleep
spindles and K-complexes.
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Stage 3 This stage is considered deep sleep. Twenty to 50% of
the epoch contains slow waves of less than 2 Hz with
a peak to peak amplitude greater then 75 microvolts.


Stage 4 This is the deepest stage of sleep. At least 50% of the
epoch contains slow waves of less than 2 Hz with a
peak to peak amplitude greater than 75 microvolts.


Stage REM This stage consists of theta activity in the EEG signal.
The muscle activity reaches a minimum in this stage
and there are rapid eye movements. Also sawtooth
waves may occur.


Theta Activity Activity in the EEG signal between 4-8 Hz.


Tiredness Lack of energy, fatigue.


Tonic Rapid Eye
Movement Sleep


Rapid eye movement sleep in which there are no rapid
eye movements however, the low mixed frequency
EEG activity and the low EMG activity means the
sleep stage is still classified as Stage REM.


Ultradian Cycle Cyclic variations in sleep between NREM and REM
sleep.


Vertex Wave Sharp transient increase in EEG activity during sleep
Stage 1.


Vigilance Task A task that involves sustained attention. An individ-
ual has to detect stimuli that occur at random inter-
vals. The reaction time is measured.
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ABSTRACT


McGuire, Sarah M. Ph.D., Purdue University, August 2012. Modeling Aircraft Noise
Induced Sleep Disturbance. Major Professor: Patricia Davies, School of Mechanical
Engineering.


One of the primary impacts of aircraft noise on a community is its disruption of


sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and


decreases the amount of rapid eye movement and slow wave sleep. Understanding


these changes in sleep may be important as they could increase the risk for developing


next-day effects such as sleepiness and reduced performance and long-term health


effects such as cardiovascular disease. There are models that have been developed


to predict the effect of aircraft noise on sleep. However, most of these models only


predict the percentage of the population that is awakened. Markov and nonlinear


dynamic models have been developed to predict an individual’s sleep structure during


the night. However, both of these models have limitations. The Markov model only


accounts for whether an aircraft event occurred not the noise level or other sound


characteristics of the event that may affect the degree of disturbance. The nonlinear


dynamic models were developed to describe normal sleep regulation and do not have


a noise effects component. In addition, the nonlinear dynamic models have slow


dynamics which make it difficult to predict short duration awakenings which occur


both spontaneously and as a result of nighttime noise exposure. The purpose of this


research was to examine these sleep structure models to determine how they could be


altered to predict the effect of aircraft noise on sleep. Different approaches for adding


a noise level dependence to the Markov Model was explored and the modified model


was validated by comparing predictions to behavioral awakening data. In order to
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determine how to add faster dynamics to the nonlinear dynamic sleep models it was


necessary to have a more detailed sleep stage classification than was available from


visual scoring of sleep data. An automatic sleep stage classification algorithm was


developed which extracts different features of polysomnography data including the


occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these


features an approach for classifying sleep stages every one second during the night


was developed. From observation of the results of the sleep stage classification, it was


determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast


REM activity are modeled separately and the activity in the gamma frequency band


of the EEG signal is used to model both spontaneous and noise-induced awakenings.


The nonlinear model predicts changes in sleep structure similar to those found by


other researchers and reported in the sleep literature and similar to those found


in obtained survey data. To compare sleep disturbance model predictions, flight


operations data from US airports were obtained and sleep disturbance in communities


was predicted for different operations scenarios using the modified Markov model, the


nonlinear dynamic model, and other aircraft noise awakening models. Similarities


and differences in model predictions were evaluated in order to determine if the use


of the developed sleep structure model leads to improved predictions of the impact


of nighttime noise on communities.







1


1. INTRODUCTION


Currently in the United States the Day Night Average Sound Level (DNL) is used


to quantify aircraft noise around an airport. This metric is based on the average


A-weighted sound pressure level of the aircraft noise events for an entire day and has


a 10 dB penalty which is applied to nighttime events occurring between 10:00 pm and


7:00 am. This 10 dB penalty is applied to account for the adverse affects of nighttime


noise. The Federal Aviation Administration’s (FAA) noise policy is based on DNL.


The FAA considers communities within the 65 dB(A) DNL contour to be adversely


affected by aircraft noise and eligible for noise insulation. They adopted the use of


DNL because they felt it provided a reliable relationship between noise exposure and


the reactions of people to noise (FICON, 1992).


Research on the use of DNL as a metric for predicting community impact has


primarily focused on examining its relationship to annoyance. Many dose-response


models, which relate the percent highly annoyed to DNL, have been developed using


social survey data. One of the most widely used models was developed by Schultz


(1978) who combined responses to road, rail, and aircraft noise to generate the model.


According to the model a DNL level of 65 dB(A) corresponds to about 15% of the


population being highly annoyed. A more recent model, in which response to aircraft


noise was modeled seperately, has been developed by Miedema and Oudshoorn (2001).


This model is used in the European Union. However, there have been arguments


made against the use ofDNL to predict impacts other than annoyance. The results of


studies on sleep disturbance support the hypothesis that DNL is not a good predictor


of noise induced awakenings, and that awakenings are better estimated when using
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the level of each individual noise event (Fidell, Pearsons, Tabachnick, Howe, Silvati,


and Barber, 1995). It also should be noted that awakenings are just one of many


possible characteristics of sleep disturbance.


1.1 Motivation


The results of numerous field and laboratory studies have provided evidence that


aircraft noise causes an increase in the number of awakenings and a reduction in the


amount of rapid eye movement and slow wave sleep (Griefahn, Robens, Bröde, and


Basner, 2008b). Noise-induced sleep disturbance may lead to next day effects includ-


ing an increase in annoyance (Quehl and Basner, 2006) and sleepiness (Basner, 2008),


and a decrease in performance (Elmenhorst and Basner, 2008). Also there is evidence


presented in the sleep literature that fragmented sleep may lead to long term health


effects by causing an increase in blood pressure (Haralabidis, Dimakopoulou, Vigna-


Taglianti, Giampaolo, Borgini, Dudley, Pershagen, Bluhm, Houthuijs, Babisch, Velon-


akis, Katsouyanni, and Jarup, 2008), impairing glucose tolerance (Tasali, Leproult,


Ehrmann, and Van Cauter, 2008), and affecting appetite (Spiegel, Tasali, Penev, and


Van Cauter, 2004) and stress hormone levels (Ekstedt, Åkerstedt, and Söderström,


2004).


Several models have been developed in order to predict the impact of noise on


sleep. Most of the models are simplistic dose-response relationships relating the indoor


noise level of a single event to the percent awakened (e.g. FICAN (1997); Finegold


and Elias (2002)). The majority of these models are based on behavioral awakening


data, where an individual is instructed to press a button when they are awakened by


noise. Behavioral awakenings are not a sensitive measure of sleep as it requires that


an individual regain full consciousness. Behavioral awakenings are also a subjective


measure of sleep because individuals can decide whether or not to press the button.
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Therefore, models based on behavioral awakening data may under-predict the amount


of sleep disturbance in communities. Only one dose-response relationship has been


developed based on awakenings measured using electroencephalography (EEG) in the


field. EEG is a more sensitive measure by which to determine sleep state (Basner,


Samel, and Isermann, 2006) because it measures brain wave activity. EEG measured


awakenings are as brief as 15 seconds in duration. Models based on awakenings


measured with EEG do predict a higher degree of disturbance than those based on


behavioral awakenings. To predict the percent awakened at least once for an entire


night of aircraft events, an ANSI standard (2008) has also been developed. However,


a limitation of this standard is that it is based on the behavioral awakenings dose-


response models.


One limitation of all of these models is that they only predict awakenings, but


aircraft noise also changes the structure of sleep. A Markov model has been developed


which can be used to predict the effect of noise on sleep structure (Basner, 2006)


however, it is not without limitations. The model only accounts for whether an


aircraft event occurs, not the noise level. This model also has many parameters


making it difficult to fully validate because a large amount of data is needed to


produce low variance estimates of the parameters. Also it is not intuitive in terms of


how to change the model coefficients in order to predict sleep disturbance for different


age groups, or other sub-populations of interest. Another limitation of Markov models


is that they do not provide information on the physical processes behind sleep.


There are nonlinear dynamic sleep models which are based on a more physical un-


derstanding of the sleep process (Achermann and Borbély, 1990; Massaquoi and Mc-


Carley, 1992). The nonlinear dynamic models predict the interactions that have been


found between rapid eye movement (REM) sleep promoting neurons and REM sleep


inhibiting neurons which cause the ultradian oscillation between non-REM (NREM)







4


and REM sleep during the night. Also the change in slow wave activity (power in


the EEG signal between 0.5 and 4.5 Hz) during the night can be predicted with these


models. The amount of slow wave activity is related to the depth of sleep. One


limitation of the nonlinear dynamic models, in their current form, are that they only


predict normal non-noise disturbed sleep.


1.2 Objective


As noted above, there is evidence from studies that aircraft noise affects sleep and that


these changes in sleep may lead to health effects. Because the current community


impact metric DNL is not a measure of sleep disturbance even with the 10 dB


night penalty, and existing awakening and sleep structure models all have limitations,


there is a need to develop a new sleep model that could be used to create sleep and


health effect contours, which are maps indicating noise impact in communities. The


process involved in developing these contour maps involves several steps as outlined


in Figure 1.1. Sound propagation and transmission modeling is needed so that indoor


noise levels can be predicted. Different characteristics of the sound in addition to


maximum level such as the rise time and spectral balance may also affect the degree


of sleep disturbance and therefore should be predicted (Marks, Griefahn, and Basner,


2008). Also there needs to be an improved understanding of what changes in sleep


best relate to potential health effects. Developing useful sleep contours is a complex


problem involving research in many different areas. It would not be feasible to address


all of these issues within this research. This research has been focused on one step


involved in predicting the impact of nighttime noise on communities: developing a


more comprehensive aircraft noise induced sleep disturbance model which predicts


not only the increase in number of awakenings due to noise but also the change in


sleep structure.
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Figure 1.1. Diagram of the steps involved in assessing the effect of
nighttime aircraft noise on communities.
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1.3 Research Approach


The approach of this research was to modify the nonlinear dynamic sleep models in


order to predict noise induced sleep disturbance, specifically the model developed


by Massaquoi and McCarley (1992). This model is based on physiological sleep


processes and requires less parameters than Markov models. Although, the dynamics


of the Massaquoi and McCarley (1992) model accurately describes the slow 90 minute


ultradian cycling between NREM and REM sleep the model does not allow awakenings


during all stages of sleep to be predicted, yet from observing physiological data it is


known that this is possible. Basner (2006) found that the probability of transitioning


from REM to Wake when a noise event occurred was 0.14. In addition the model


only predicts normal sleep patterns, therefore a way of introducing the effects of being


exposed to different noise levels needs to be incorporated into the model so that the


observed increase in sleep disturbance with noise level can be predicted.


In order to develop and validate nonlinear sleep models, data from existing studies


in which sleep was measured using polysomnography have been obtained from other


researchers. A sleep stage classification algorithm was developed to define sleep stages


on a more refined scale in order to identify brief awakenings. The current standard


is to score sleep stages according to 30 second segments of sleep. The algorithm


developed defines a sleep stage for each 1 second of sleep. Different features of the


polysomnography data are extracted including rapid eye movements and slow wave


activity. The occurrence of these features were used to determine how to introduce


faster dynamics and a noise dependence into the nonlinear models, and the extracted


data was also used to estimate the parameters in the model.


By using various elements shown in Figure 1.1, and the developed sleep distur-


bance model, a prediction of sleep changes in a population around an airport can be


made. To do this, data from two US airports was obtained. Noise metrics were pre-
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dicted for single aircraft noise events. Different nighttime operation scenarios were


generated and sleep disturbance was predicted using the nonlinear models. Sleep


disturbance was also predicted using existing noise induced awakening models and


Markov models. These models were examined, and limitations of the models were


addressed such as adding a noise dependence to the Markov model, so that a fair com-


parison of model predictions could be made. The different model predictions were


examined to determine whether the nonlinear dynamic models may lead to improved


predictions of sleep disturbance. The steps involved in this research are shown in


Figure 1.2


1.4 Thesis Outline


The outline of this thesis is as follows: In Chapter 2 a literature review of the basics


of sleep and how it is measured is provided. Also auditory processing during sleep,


changes in sleep that occur due to noise exposure, and possible next day and longer


term health effects caused by sleep disturbance are described. The information in


Chapter 2 provides a rationale for why a model that predicts awakenings and the


effect of noise on an individuals sleep structure may be useful. A description of


the survey data that was obtained and used throughout the analysis is described in


Chapter 3. Chapter 3 also contains a review and evaluation of existing awakening


models by comparing predictions from those models to obtained survey data. In


Chapter 4 Basner’s Markov model (2006) is described. An approach to adding a


noise level dependence to the Markov model was examined and predictions using


the modified model are compared to survey data. Chapter 5 consists of a review on


nonlinear dynamic sleep models. The results of a parameter variation study performed


on the Massaquoi and McCarley (1992) model, that is used as the basis of the model


developed in this research, is described. In Chapter 6 an analysis of the obtained sleep
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Figure 1.2. Diagram of the steps involved in developing a nonlinear
dynamic sleep model and comparing its performance in predicting
community sleep disturbance with that of other models.
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physiological data is provided including an examination of artifact removal methods


and the development of a sleep stage classification algorithm. In Chapter 7 the


steps taken to develop the nonlinear dynamic sleep model is provided. Methods for


overcoming the limitations of the model and for estimating model parameters are


described. In Chapter 8 a comparison of sleep disturbance model predictions using


the awakening models, Markov models and the developed nonlinear dynamic model


are described for different airport noise scenarios. Chapter 9 consists of a review of


the research findings and a proposal for future work that should be done in the area


of noise-induced sleep disturbance modeling.
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2. NOISE INDUCED SLEEP DISTURBANCE AND THE POTENTIAL HEALTH


EFFECTS


This chapter consists of a literature review on noise induced sleep disturbance. A


description of normal sleep and how it is measured is provided. A review of studies on


how noise is processed during sleep, how it affects sleep structure, and the implications


of these disturbances on both short term and long term health will also be discussed.


2.1 Normal Sleep


For a normal healthy individual it will take between 10 to 20 minutes to fall asleep.


If an individual is tired this sleep onset latency will become shorter. A latency of


less than 5 minutes is considered to be pathologic sleepiness (Spriggs, 2008). A sleep


onset latency greater than 20 minutes indicates difficulty initiating sleep. Sleep is a


time varying process and periodic in nature. Periods of rapid eye movement (REM)


and non rapid eye movement (NREM or non-REM) sleep alternate throughout the


night in about 90 minute cycles, with the first REM period occurring about 80 min-


utes after an individual retires to bed. The duration of the first REM sleep period


is typically between 5-10 minutes in duration. The duration of REM sleep periods


increases throughout the night (Carskadon and Dement, 2005), with the largest in-


crease in duration occurring between the first and second REM periods (McCarley


and Massaquoi, 1986). NREM sleep consists of 4 different stages numbered 1 through


4. Sleep is considered to be deeper, more restorative, as the NREM sleep stage num-


ber increases. In the beginning of the night, slow wave sleep (SWS), Stages 3 and 4,


is more prevalent.
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An average young adult in their twenties, will spend less than 5% of the night


awake, 5% will be spent in Stage 1, 50-55% will be spent in Stage 2, 10% will


be spent in Stage 3, 10% in Stage 4, and 20 to 25% will be spent in REM sleep


(Kales and Kales, 1970). An example of a typical sleep pattern is shown in Figure


2.1. During the night a young adult will spontaneously awaken about 20 times and


will have approximately 80 arousals as measured with EEG (electroencephalogram –


measurement of electrical activity in the brain) (Bonnet and Arand, 2007). Arousals


and awakenings are characterized by higher frequencies of brain wave activity (alpha


activity 8-12 Hz) and there is often an increase in the muscle tone seen in the elec-


tromyogram (EMG – measurement of activation signals in muscles). The difference


between arousals and awakenings is primarily based on their duration: arousals last


at least 3 seconds but no more than 15 seconds, while awakenings are greater than


15 seconds in duration (Bonnet et al., 1992). Another type of arousal are autonomic


arousals; which are elevations in the sympathetic tone, which is the normal activity


level of the sympathetic nervous system. An autonomic arousal can occur with or


without an EEG arousal and includes a change in heart rate and an increase in blood


pressure (Griefahn, Bröde, Marks, and Basner, 2008a).


As individuals age, sleep lightens and there is a decrease in the amount of Stage


3 and 4 sleep and an increase in the number of awakenings and arousals. In Figure


2.2 the percent of time spent in each of the 6 different stages of sleep for different age


groups is shown (Williams, Karacan, and Hursch, 1974).


2.2 Sleep Stage Classification


Sleep stage classification rules were developed by Rechtschaffen and Kales (1968) and


became the standard for scoring sleep physiological data. Sleep stages are determined


by examining the signals of the EEG, EMG, and electroocculogram (EOG– measure-
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Figure 2.1. An example of a normal sleep pattern.
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Figure 2.2. The percent of time spent in each of the 6 sleep stages for
different age groups. Each bar represents a different age group. The
age groups are 3-5 yrs, 6-9 yrs, 10-12 yrs, 13-15 yrs, 16-19 yrs, 20-29
yrs, 30-39 yrs, 40-49 yrs, 50-59 yrs, 60-69 yrs, and 70-79 yrs. The
bars are shown in order of increasing age; 3-5 yrs (black) to 70-79 yrs
(light gray) (Williams, Karacan, and Hursch, 1974).
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ment of eye movements). EEG is measured by attaching electrodes to the scalp. A


diagram of the positions for placing electrodes is shown in Figure 2.3. There are sev-


eral different regions of measurement; Frontal (F), Central (C), Parietal (P), Occiptal


(O), and Temporal (T). Most of the aircraft noise studies have measured EEG at the


central locations, C3 and C4. These locations are referenced to A2 and A1, respec-


tively. EMG is usually measured with 3 electrodes. One electrode is placed in the


middle of the chin, and the other two are placed underneath the chin, approximately


2 cm from the top of the chin and 2 cm from the center line, one on the left of the


center line and one on the right (Spriggs, 2008). EOG is measured by having one


electrode placed about 1 cm out and 1 cm up from the corner of the right eye. The


electrode for the left eye is placed 1 cm out and 1 cm down from the corner of the eye.


Looking away from an electrode will result in a negative signal, while looking toward


the electrode will result in a positive signal (Spriggs, 2008). By having one electrode


above the eye and one electrode below the eye, the occurrence of eye movements can


be distinguished as the two channels of EOG will be negatively correlated.


Table 2.1. EEG frequency bands.


Frequency Bands Range
Delta 0-4 Hz
Theta 4-8 Hz
Alpha 8-12 Hz
Sigma 12-16 Hz
Beta 16-25 Hz
Gamma 1 25-35 Hz
Gamma 2 35-45 Hz


It is standard practice to assign a sleep stage to each 30 second segment of sleep.


Most sleep stages are related to EEG activity in a specific frequency band. The


frequency bands are listed in Table 2.1. For Stage Wake, when an individual is
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Figure 2.3. The standard placement of EEG electrodes, based on a
diagram in Spriggs (2008).
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relaxed there is often alpha activity in the EEG signal which is activity in the 8 to


12 Hz range (alpha activity). There is also high EMG activity and slow eye rolling.


An example of the EEG and EOG signals for Stage Wake are shown in Figure 2.4. If


an individual is moving when awake, high amplitude artifacts will appear in most of


the other physiological measurements.


Stage 1 appears in the EEG as a low voltage mixed frequency signal. Most of the


activity is in the 4 to 8 Hz range (theta activity). An example of the EEG and EOG


signals for Stage 1 is shown in Figure 2.5. Also sharp vertex waves can occur which


are sharp transient waves in the EEG signal which last less than 0.5 seconds and are


of a high amplitude typically greater than 100 μV , an example is shown in Figure


2.6. The amount of muscle activity will also decrease compared to Stage Wake.


Stage 2 also consists of theta activity but has two characteristic features, sleep


spindles and K-complexes. Sleep spindles last for one half second or more but not


longer than approximately two seconds and are bursts of activity between 12 to 14


Hz in the EEG signal, an example is shown in Figure 2.7. K-complexes are waves


which have a sharp negative followed by a slower positive component. K-complexes


also last for at least one half second and have sleep spindles occurring either before,


after, or during it (Fisher and Cordova, 2006). An example of a K-complex with a


sleep spindle is shown in Figure 2.8.


Stage 3 is classified by the amount of low frequency activity; at least 20% but not


more than 50% of the epoch consists of oscillations of 2 Hz or a lower frequency and


has a peak to peak voltage of 75 μV or more. Stage 4 is classified in a similar manner


as Stage 3, but the slow wave behavior must occur for more than 50% of the epoch.


Examples of EEG signals during Stage 3 and 4 is shown in Figure 2.9.


Rapid eye movement (REM) sleep has a similar EEG pattern as Stage 1 in that


it is a low voltage, mixed frequency signal. Therefore to catergorize an epoch as
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Figure 2.4. An example of the EEG and EOG signals for Stage Wake.
(a) C3-A2 EEG channel, (b) Right EOG channel, and (c) Left EOG
channel.
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Figure 2.5. An example of the EEG and EOG signals for Stage 1.
(a) C3-A2 EEG channel, (b) Right EOG channel, and (c) Left EOG
channel.
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Figure 2.6. An example of vertex waves, a characteristic feature of Stage 1 sleep.
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Figure 2.7. An example of sleep spindles, a characteristic feature of Stage 2 sleep.
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Figure 2.8. An example of a K-complex with sleep spindles, a char-
acteristic feature of Stage 2 sleep.


consisting of REM sleep, an examination of the EOG and the EMG signals is needed.


EMG, which is a measure of muscle activity, will be at its lowest level during REM


sleep. Also sawtooth waves may occur in the EEG signal which are sharp, triangular


waves between 2 and 6 Hz (Silber et al., 2007). An example of Stage REM is shown in


Figure 2.10. REM sleep in which there is low EMG activity and low mixed frequency


EEG activity, but no transient activity like sawtooth waves and rapid eye movements


are called Tonic REM sleep. REM sleep with rapid eye movements or other transient


activity is referred to as Phasic REM sleep. There is no standard method to classify
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Tonic and Phasic REM sleep. The characteristics for each of the 6 sleep stages are


summarized in Table 2.2.
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Figure 2.9. Examples of the EEG signals for (a) Stage 3 and (b) Stage 4 sleep.


A review of the sleep stage scoring rules developed by Rechtshaffen and Kales


began in 2004 and in 2007 a new manual for visual sleep scoring was published by


the American Academy of Sleep Medicine (Silber et al., 2007). The characteristics


of the sleep stages largely remain the same. One of the changes made is that Stage


3 and Stage 4 were combined. Also the rules for scoring the beginning and end of


Stage 2 and REM sleep were clarified. For example there used to be a 3-minute rule;


3 minutes of sleep between sleep spindles and K-complexes could be scored as Stage


2 as long as there were no movements, arousals, or transitions to other sleep stages.


After 3 minutes the stages were classified as Stage 1. This rule was changed and now


once Stage 2 begins, epochs can continue to be scored as Stage 2 as long as there is


not an apparent transition to another sleep stage. Also, in order to not confuse sleep
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Figure 2.10. An example of EEG, EMG, and EOG signals during
REM sleep. (a) C3-A2 EEG channel, (b) EMG, (c) Right EOG chan-
nel, and (d) Left EOG channel.







21


Table 2.2. Characteristics of sleep stages.


Sleep Stage EEG EMG EOG
Stage Wake Alpha activity Increase in activity Slow eye rolling
Stage 1 Theta activity Decrease in level Slow eye rolling


Vertex waves compared to Stage Wake
Stage 2 Theta activity Level varies Varies


Sleep Spindles
K-complexes


Stage 3 20-50% oscillations Level varies Small movement
below 2 Hz


peak to peak voltage
≥ 75 micro-volts


Stage 4 >50% oscillations Level varies Small movement
below 2 Hz


peak to peak voltage
≥ 75 micro-volts


REM Theta activity Lowest level Rapid oscillations
Sawtooth waves
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stage scoring using the old and new system, each stage has a new name. Stage 1 is


referred to as N1, Stage 2 is N2, and Stage 3 and 4 are now referred to as N3. Since


the results and models discussed use the former labeling of stages the new labeling


will not be used throughout this report.


2.3 Auditory Processing During Sleep


Auditory processing continues during sleep, however not at the same level as during


awake states. In the brain almost all sensory information passes through the thalamus


on its way to the cortex. During sleep, the transmission of information to the cortex


is reduced compared to the amount of information that reaches the thalamus. This


phenomenon has often been called “thalamic or sensory gating”(Coenen, 2010).


2.3.1 Auditory Awakening Thresholds


Several studies have evaluated the level of a sound needed to awaken an individual


during the night. The sleep stage that an individual is in affects whether they will be


awakened. Zeplin, McDonald, and Zammit (1984) determined the auditory awakening


thresholds of subjects of different ages. The three age groups that were studied was


18 to 25, 40 to 48, and 52 to 71 years. They played an 800 Hz tone of 5 seconds


duration during the night, the intensity of the tone was increased until an individual


awakened. The subjects had to press a buzzer to signal they were awakened. Auditory


awakening thresholds for Stage 2, 4, and REM sleep were measured. They found that


auditory awakening thresholds decreased with age. Also the sleep stage with the


highest threshold was Stage 4, which is considered the deepest stage of sleep. In


men, they found that the auditory awakening threshold for Stage REM was similar


to the threshold for Stage 2 sleep. However, in women, while similar results as men
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were found for the 18 to 25 age group, for the 40 to 48 and 52 to 71 age group, the


auditory awakening threshold for REM sleep was closer to the threshold for Stage


4. They stated this difference in response to sounds during REM sleep may be due


to the incorporation of the auditory stimuli in dreams or that the tones were played


during Phasic REM sleep when auditory awakening thresholds may be higher.


Rechtschaffen, Hauri, and Zeitlin (1966) also measured auditory awakening thresh-


olds. Seven subjects took part in the study and they were between 20 to 30 years in


age. The sound stimulus that was used was a 2000 Hz tone of 5 seconds duration. Af-


ter each sound stimuli was played a series of short repetitions of the tone were played.


The subjects had to verbally respond how many repetitions of the tone were played.


If their answer was correct they were considered to have awakened. Rechtschaffen,


Hauri, and Zeitlin (1966) used the method of constant stimuli; they calculated the


percent of trials that resulted in an awakening for different sleep stages. They found


that more awakenings occurred in REM and Stage 2 sleep than Stage 3 and 4 sleep


during the first three hours of the night. A similar number of awakenings occurred


in Stage 2 and REM sleep.


Through the night, the depth of sleep lightens, which means that the auditory


thresholds may decrease through the night. Basner (2010) reviewed the research of


Ernst Otto Heinrich Kohlschütter who over 150 years ago investigated the sound


intensity required to wake 6 students throughout the night. The sound was generated


by having a pendulum hammer strike a slate slab. The intensity of the sound was


varied by increasing the elevation of the hammer. The subjects gave some sort of


signal to indicate that they were awakened. The stimulus intensity needed to awaken


subjects increased for the first 90 minutes of sleep and then decreased throughout the


remaining part of the night. This follows trends that would be expected due to the


variation in sleep depth during the night.
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Brain activity response to noise, not just behaviorally indicated awakenings has


also been evaluated. Czisch, Wetter, Kaufmann, Pollmächer, Holsboer, and Auer


(2002) evaluated responses to noise during sleep using EEG and fMRI. The stimuli


used was an excerpt from a novel. They found using fMRI that a reduction in ac-


tivity in the primary and auditory cortices during NREM sleep occurred. Issa and


Wang (2011) collected neuron activity data from the auditory cortex in marmosets


monkeys. They also measured EEG activity in order to determine which sleep state


the marmosets were in. During the night tones and narrow-band noise of different


levels were played. The levels used were not high enough to cause an awakening.


They found that during slow wave sleep when quiet sounds below 40 dB were played


neuron firing rates were less than when subjects were awake. However, for louder


sounds, greater than 40 dB, neuron firing for the SWS and Wake states was similar.


2.3.2 Auditory Processing During Rapid Eye Movement Sleep


Awakening thresholds found in previous studies are not consistent; it is unclear from


these studies whether the auditory awakening threshold for REM sleep is more similar


to the awakening thresholds of Stage 2 or Stage 4. The contradictory findings may


be due to the fact that awakenings during the two different substates of REM sleep,


Phasic and Tonic, were not distinguished. During Tonic REM sleep muscle tone is


low and EEG amplitude is low and consists of mixed frequency activity primarily


in the theta band similar to Stage 1 sleep. During Phasic REM sleep there are


spikes in neuron activity which can be observed in the occipital cortex and are called


ponto-geniculo-occipital spikes, there is also rapid eye movement, contractions of the


muscles of the middle ear similar to the contractions that occur to protect against


loud noise, other muscle twitches and irregularity in respiration and heart rate (Seigl,
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2005). Also dreams may be more intense and emotional during Phasic REM sleep


(Sallinen, Kaartinen, and Lyytine, 1996).


Ermis, Krakow, and Voss (2010) examined whether the different auditory awak-


ening thresholds found in previous studies was due to the non differentiation between


the two types of REM sleep. They classified a state as being Tonic REM sleep if


rapid eye movements were absent for at least 15 seconds prior to a 30 second epoch.


The acoustic stimulus used was a 1000 Hz tone that began at 35 dB and the level


was increased until the subject pressed a switch taped to their palm to indicate that


they were awake. They measured behavioral awakening thresholds during Stage 2, 3,


4, and Phasic and Tonic REM sleep. During Phasic REM the sound stimuli began


being played when rapid eye movement activity was occurring. Ten subjects com-


pleted the study. They found that the awakening threshold or level of sound needed


to awaken a subject increased with NREM stages. The auditory awakening threshold


was lowest for Stage 2 sleep and highest for Stage 4 sleep. They also found that the


awakening threshold during Phasic REM sleep was similar to that for Stage 4 and


the awakening threshold during Tonic REM was similar to that for Stage 2. These


differences cannot be explained by the frequency spectrum of the EEG signal, as the


EEG activity level during both Tonic and Phasic REM sleep is similar to the EEG


activity levels during light NREM sleep.


Wehrle, Kaufmann, Wetter, Holsboer, Auer, Pollmächer, and Czisch (2007) used


functional magnetic resonance imaging (fMRI) and polysomnography to evaluate the


differences in processing of auditory stimuli during REM sleep. Data from 7 subjects


was used in the analysis. They used different stimuli including narrative text, a beep,


and piano music during the test. The purpose of this test was not to determine the


awakening threshold but to evaluate differences in auditory processing, so stimuli were


played at a non-arousing threshold. REM density was calculated by determining the
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presence of rapid eye movements in 3 second epochs. The regions of the brain that


were the focus of the imaging were the thalamus and the auditory cortex. They found


that activation of the auditory cortex was reduced in Tonic REM sleep compared to


that during wakefulness and at its lowest level in Phasic REM sleep. They also


found that auditory stimuli that began in Phasic REM sleep sometimes led to Tonic


REM sleep. They stated that their work supports that of Llinas and Pare (1991)


who argued that the thalamus is as excited by external stimuli during REM sleep


as during awake states but the information is ignored and not passed to the cortex


during Phasic REM sleep. They stated that the thalmacortical network must act as


a closed loop during Phasic REM sleep.


2.4 Measurement Methods


There is substantial evidence that sounds are processed during sleep and that they can


cause awakenings during the night. Therefore, there has been concern over whether


aircraft noise at night will lead to significant amounts of sleep disturbance in commu-


nities surrounding airports. In Appendix B are detailed lists of laboratory and field


studies that have been conducted to understand the effect of aircraft noise on sleep.


Twelve laboratory and 12 field studies have been identified. The reports for each


study were examined to determine what methods were used to measure awakenings


and what additional measurements were made; the results are summarized in Table


2.3. It can be seen that a wide range of methods have been used to measure awaken-


ings. Sleep has been measured by using polysomnography in few field studies, which


is considered the most sensitive measure of sleep. In addition, in most field studies


heart rate, blood pressure, or hormone levels have not been measured. Data collected


from these type of measurements could aid in understanding the relationship between


sleep and health.
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Table 2.3. The number of studies that used the listed measurement
techniques and measured the listed variables.


Laboratory Field
>than 20 subjects 3 11
Social Survey 0 5
am/pm Questionnaires 7 7
Behavioral Awakenings 3 4
Actimetry 3 6
Motility-Other 1 1
Polysomnography 12 3
ECG 7 2
Blood Pressure 1 1
Hormone Levels 3 1
Objective Sleepiness 2 0
Subjective Sleepiness 6 8
Performance 5 3


One method that has been used to quantify sleep disturbance is to use social


surveys or next day questionnaires. These surveys have included questions on the


number of awakenings, difficulty falling asleep, annoyance caused by nighttime noise,


window closing habits, etc. A correlation between objective measures of sleep and


subjective evaluations has been found. Ollerhead et al. (1992), for example, found


a strong inverse relationship between arousal rate (measured with actimetry) and


subjects’ evaluations of sleep quality, indicating that subjects with a higher number


of arousals did report poorer sleep. A problem with the use of social surveys or


questionnaires to evaluate sleep is that subjects will only remember awakenings in


which they regained full consciousness, which means the awakening lasted at least two


and a half minutes (Ollerhead et al., 1992). Shorter arousals will not be remembered


in the morning, but they may be an important factor in long or short term health


effects.
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One method used, particularly in US field studies on aircraft noise and sleep distur-


bance, is the measurement of signaled awakenings, also often referred to as behavioral


awakenings. In US studies subjects pressed a button when they were awakened. This


method is less intrusive than other measurements of sleep such as polysomnography


which involves many electrodes, and it can easily be implemented in the field. How-


ever, it is an insensitive measure of disturbance compared to measurements made


with EEG. A person has to be consciously awake to press the button. Also it is a


subjective measure as subjects can decide whether or not to press the button. The


result is a measurement of far fewer awakenings then might actually occur during the


night.


In a study by Fidell, Pearsons, Tabachnick, Howe, Silvati, and Barber (1995) it


was found, when measuring behavioral awakenings of subjects living around airports,


that on average two spontaneous awakenings and less than one noise induced awak-


ening occurred during the night. This is much less then the approximately 20 EEG


measured spontaneous awakenings that occur. In addition, behavioral awakenings


may underestimate sleep disturbance due to habituation. There is evidence that the


number of behavioral or signaled awakenings decreases over subsequent study nights


while other physiological measurements such as cardiac arousals do not (Griefahn,


Bröde, Marks, and Basner, 2008a). Thiessen (1978) conducted a laboratory study in


which subjects were exposed to noise from road vehicles. Seven truck passbys were


played during the first six hours of sleep. Ten subjects slept 24 consecutive nights


in the laboratory. There was clear habituation in signaled awakening responses, i.e.,


fewer occurred as the length of time in the study increased, however there was never


full habituation.


The measurement of motility has been used in several studies to evaluate sleep dis-


turbance. Movement is often measured using actimeters, which are devices worn on
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the wrist and contain an accelerometer. Different algorithms are used to determine


when awakenings occur making it difficult to compare results across studies (Luz,


Nykaza, Stewart, and Pater, 2008). As part of a study conducted by Ollerhead et al.


(1992), comparisons were made between arousals, determined by using actimeters and


EEG measured awakenings. It was found that 88% of all EEG awakenings coincided


with actimetric arousals. Another less intrusive method for evaluating movement


has been developed by Brink, Müller, and Schierz (2006). In this technique, called


seismosomnography, force sensors are placed underneath bed posts. Heart rate, res-


piration, and body movement can be estimated from these measurements. However,


this method has not been used often, and still needs further validation.


In order to evaluate the effect of noise on sleep stages and to determine the number


of smaller arousals polysomnography is used. This method involves the simultaneous


measurement of EEG, EOG, and EMG. Additional measurements such as electro-


cardiogram (ECG – measurement of electrical activity of the heart) and respiration


measurements are also often made. For polysomnography, the ECG usually involves


only two electrodes. The two electrodes can either be placed directly below the col-


larbone on both the left and right side, or one electrode is placed under the right


collarbone and the other electrode is placed on the left side of the ribcage. Res-


piration measurements are made with a strap around the lower abdomen (Spriggs,


2008).


While polysomnography provides detailed information about an individual’s sleep,


it is costly to perform. A trained individual is needed to apply the electrodes. Also


the standard practice is to visually score sleep stages, which is time consuming and


expensive. In addition, the number of electrodes that are used may affect the quality


of sleep, causing an individual’s sleep to be lighter and therefore more likely to be


awakened by noise.
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Less intrusive methods have been used to obtain information on changes in sleep


state. LeVere, Bartus, and Hart (1972) only used one EEG electrode (plus reference)


for their study. This meant that they could not distinguish sleep stages since EOG and


EMG are needed to define REM sleep; however they did perform a spectral analysis


of the EEG signal to quantify the effect of noise on sleep. The frequency bands they


analyzed were; Delta, Theta, Alpha and Beta. LeVere et al. (1972) defined 5 levels


of activation. Level 0 was the highest level of activation and, although not stated in


the paper, one would assume this corresponds to the waking state. Levels 1 and 2


were associated with 30% of the epoch containing theta and alpha activity and could


be thought of as light sleep such as Stage 1 and 2, Level 3 occured when the epoch


contained 20-50% delta activity which is Stage 3 sleep, and Level 4 was associated


with 50% delta activity which corresponds to Stage 4 sleep. The results of their study


were that the level of activation did increase when an aircraft sound occurred.


Another less invasive method for measuring sleep has been developed by Basner,


Müller, Elmenhorst, Kluge, and Griefahn (2008c). They have evaluated cardiac acti-


vations, measured with an electrocardiogram. It involves fewer electrodes and partic-


ipants in a study can be trained to apply their own electrodes. They found that very


similar dose-response relationships for EEG awakenings and ECG (cardiac) arousals


can be obtained. This method is less expensive to implement than polysomnography


and is a more sensitive measure of awakenings than other low cost options such as


actimetry or button pressing.


2.5 Noise Induced Sleep Disturbance


Regardless of the method used to evaluate sleep, overall an increase in sleep distur-


bance with noise level has been found in most studies designed to examine the effect


of aircraft noise on sleep. The differences in the results between studies is primarily
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the number of awakenings measured, which is important when trying to understand


potential health effects. For example, Ollerhead et al. (1992) found that 4.2% of


events caused an EEG awakening, while only 0.9% of events caused an actimetric


arousal.


Noise not only increases the number of awakenings but also the duration of the


awakening. Basner, Samel, and Isermann (2006) found that compared to spontaneous


awakenings, the duration of a noise induced awakening increases for sounds that


have a maximum noise level above 70 dB(A) (LAmax). Researchers who have used


polysomnography, have also evaluated the effect of noise on the amount of time spent


in specific sleep stages. Griefahn, Marks, and Robens (2006) found a significant


decrease in the amount of REM sleep and SWS for nights with noise compared to


nights without noise. The reduction in total minutes of REM sleep was found to be


6.4 minutes and 5.3 minutes for SWS. For an average young adult about 96 minutes


is spent in both Slow Wave and REM sleep (Kales and Kales, 1970). The result


of Griefahn et al. (2006) would suggest a 5-7% decrease in duration of these sleep


stages occured due to noise. Basner and Samel (2005) also found that noise exposure


resulted in a significant reduction in average time spent in SWS, although not for


REM sleep.


The overall effect of noise on awakenings and sleep structure was summarized by


Griefahn, Robens, Bröde, and Basner (2008b). Noise has been found to cause:


1. an increase in time to fall asleep


2. an increase in time until Stage 4 is reached


3. an increase in time spent awake


4. an increase in the number of awakenings which last longer than three minutes


(these would constitute conscious awakenings)
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5. an increase in time spent in Stage 1 sleep


6. a decrease in time spent in slow wave sleep (SWS, Stages 3 and 4)


7. a decrease in time spent in rapid eye movement sleep (REM).


Basner, Glatz, Griefahn, Penzel, and Samel (2008b) indicate it may be useful not


only to examine awakenings but also to examine the effect of noise on arousals. They


evaluated 3 nights of data from 10 subjects, two of the nights were noise exposure


nights. For one noise exposure night, 64 aircraft events were played with a maximum


noise level of (LAmax) 65 dB(A). For the second noise exposure night, 64 aircraft


events were played with a maximum noise level of (LAmax) 45 dB(A). One finding of


the study was that for louder sounds of 65 dB(A), awakenings were the best indicator


of the changes in sleep due to noise, while for quieter sounds of 45 dB(A) arousals


were the best indicator of the impact of noise on sleep.


The usefulness of measuring arousals is supported by the findings of Saremi,


Grenéche, Bonnefond, Rohmer, Eschenlauer, and Tassi (2008). In their test, there


were two experimental nights in which subjects were exposed to train noise. On


one night train noise with a LAeq,8hr (8-hour A-weighted equivalent noise level) of 40


dB(A) was presented and the other night train noise with a LAeq,8hr of 50 dB(A) was


presented. The only significant effects of noise on sleep that were found were an in-


crease in latency to SWS (the time from sleep onset until Stage 3 or Stage 4 occurs)


and an increase in the number of arousals. The increase in both latency and number


of arousals was found to increase with noise level.


There is still not a clear understanding of how different characteristics of noise


affect whether an individual will be disturbed. Currently models are based on the


assumption that single event indoor metrics LAmax or A-weighted Sound Exposure


Level (SELA) are the best predictors of the disturbance. There is, however evidence
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that sound characteristics in addition to the noise level affect whether an individual


awakens. Bruck, Ball, Thomas, and Rouillard (2009) examined awakening thresholds


for different types of signals including; square waves of different fundamental frequen-


cies, a sound consisting of three pure tones, white noise, and sounds that had a higher


noise level in a given frequency band. All sounds were presented 4 times during the


night when the participant was in Stage 4 sleep. To indicate an awakening, subjects


had to press a button three times. A 20 dB difference in mean awakening thresholds


was found across the different signals.


A study on low frequency noise and cortisol levels was conducted by Ising and


Ising (2002). In this study the levels of cortisol in children ages 7 to 13 years old


who were exposed to road noise were measured. Cortisol levels were determined from


urine samples, one sample was obtained 1 hour after falling asleep and another was


obtained after awakening at the end of the night. The maximum noise levels were


measured using both A-weighting and C-weighting (LAmax, LCmax). Fifty-six children


took part in the study. There was some correlation between the secretion of cortisol


in the first half of the night and the C-weighted noise levels.


In addition to low frequency content, the rise time of the noise affects the degree


of arousal. Levere, Davis, Mills, Berger, and Reiter (1976) investigated the effect


of rise time on arousal. The stimuli used were band-passed random noise, one-third


octave band centered at 125 Hz. The stimuli had a duration of 15 seconds and


80 dB peak intensity. For one sound the rise time was “instantaneous” and was


approximately 3.24 ms. The second stimuli had a linear rise time and approached the


maximum noise level after 7.5 seconds. The response to events of different rise times


was not found to be consistent throughout all stages of sleep. When the EEG was


occupied by fast wave activity, which would coincide with light sleep, both fast and


slow-rise time events produced similar levels of activation. During slow wave sleep the
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sounds with the faster rise time produced the greatest response. Marks, Griefahn, and


Basner (2008) found that for aircraft and railway noise, people were more likely to be


awakened by sounds with faster rise times. This finding is also supported by the work


of Brink, Lercher, Eisenmann, and Schierz (2008). The subjects in their experiment


were exposed to aircraft sounds reproduced by a loudspeaker. The aircraft events


occurred during a period of 90 minutes, either at the beginning or end of the night.


They found that the faster the rise time the greater the motility.


Related to noise metrics, two studies have been conducted in order to evaluate


the difference in sleep disturbance caused by aircraft, road, and rail noise. Basner,


Elmenhorst, Maass, Müller, Quehl, and Vejvoda (2008a) found that aircraft noise


caused fewer awakenings and changes to Stage 1 than the other types of transporta-


tion noise. Marks, Griefahn, and Basner (2008) also found that sleep disturbance


was dependent on the noise source. They found that train noise caused the most


awakenings, followed by aircraft, and then road noise. They stated that a possible


reason for these results is a difference in sound characteristics such as duration, rise


time and spectral balance. These characteristics should be considered along with the


maximum level as candidate terms in a more comprehensive sleep disturbance model.


LeVere, Bartus, Morlock, and Hart (1973) examined whether equal loudness or


equal sound pressure level dictated whether an individual would awaken to noise.


Acoustical stimuli used were three one-third octave band noise centered on the fre-


quencies of 125 Hz, 250 Hz, and 1000 Hz. The sounds were equated for equal loudness


of 80 dB measured with A-weighting. The actual sound pressure of the sounds was 93


dB for 125 Hz, 87 dB for the 250 Hz sound, and 80 dB for the 1000 Hz sound. During


high cortical activity response to all three stimulus was the same however, during


slow wave sleep the sound with the highest sound pressure and lowest frequency (125


Hz) caused the greatest degree of arousal. They suggest that certain neural centers
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which normally are involved in auditory processing are perhaps inhibited during sleep


resulting in a difference in processing during deep sleep.


LeVere, Morlock, Thomas, and Hart (1974) conducted a second study to further


examine processing of sounds of equal loudness during sleep. The sounds used were


band-passed random noise for one-third octave bands centered at 50, 250, and 1000


Hz. Subjects during the day used the method of adjustment to match the loudness


of the 50 and 250 Hz sound to the level of the 1000 Hz sound. The average SPL of


the 50 Hz sound was approximately 100 dB, the average SPL of the 250 Hz sound


judged to be equally loud as the 1000 Hz sound was 90 dB, and the reference 1000


Hz tone was played at 80 dB. Similar results to the 1973 study were found in that


the three stimuli produced almost equal amounts of arousal during fast activity while


the amount of response varied according to sound pressure level in slow wave sleep.


It has been shown that the meaning of sounds also affects whether an individual


will be awakened. Oswald, Taylor, and Treisman (1960) played a recording of 56


different names. This list included the names of the subjects involved in the study.


The subjects were told to awaken when they heard their name or a control name


and to clench their fist upon awakening. Oswald et al. (1960) found that subjects


moved their hand more when their name was presented, and they also had more


K-complexes than when other names were played. Portas, Karakow, Allen, Josephs,


Armony, and Frith (2000) used fMRI and EEG to examine sensory processing during


NREM sleep. The stimuli used were a pure tone beep and the subject’s name. More


awakenings occurred when the subject’s name was presented than when the tone was


presented. They stated that the pattern of activation of brain activity in both sleep


and waking was similar. However, there was reduced activity in different regions of


the brain including the left parietal, bilaterally in the prefrontal cortex, thalamus,


and part of the limbic system compared to the activity present in the awake state.
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During sleep when the subjects name was presented certain areas of the brain were


more responsive than when the tone was played.


2.6 Mediating Factors


There are several factors that may affect the level of sleep disturbance in addition to


the sound characteristics. Of particular interest in noise studies, is whether the testing


environment affects the level of disturbance. A person sleeping in a laboratory may be


more likely to be awakened because of an unfamiliar sleeping environment. Therefore,


results from a laboratory study may not be directly applicable to communities around


airports. There has also been interest in habituation and whether those living in


communities will become less likely to awaken over time. This could also be another


reason why results in the laboratory and in the field studies are different.


2.6.1 Laboratory vs Field


There have been several field and laboratory studies conducted to evaluate the effect


of noise on sleep. However, whether the results from the two environments can be


directly compared has been a subject of debate, particularly because the methods used


in the two studies are often different. Pearsons, Barber, Tabachnick, and Fidell (1995)


combined data from several existing studies and examined the difference in dose-


response relationships between the noise level and percent awakened in the laboratory


tests and in the field tests. It was found that for the same noise level, the percent


awakened was higher in the laboratory. For example, an A-weighted Sound Exposure


Level (SELA) of 80 dB(A) would cause 33% of people in a laboratory study to be


awakened while only 4% awakened in the field. However, one of the main problems


with their analysis is that they combined data from studies that used different noise
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sources including aircraft, railway, white noise, pure tones, and sonic booms. It has


been found in several studies that noise induced sleep disturbance is dependent on the


sound source. Therefore, if the sound sources used in the laboratory studies and in


the field studies are not the same, attributing differences in sleep disturbance to the


study environment alone is highly questionable. However, higher responses to noise


in the laboratory than in the field were also found by Basner et al. (2004). They even


found a higher degree of disturbance in the laboratory for the group of 20 people who


participated in both the laboratory and the field studies.


Iber et al. (2004) investigated the difference in sleep parameters for subjects under-


going unsupervised recording in the home and supervised recording in the laboratory.


In both circumstances the application of the sensors was performed by a trained indi-


vidual. Also, the same individuals were tested in both environments. The responses


in the home environment were compared to those in the laboratory and it was found


that in the laboratory test, sleep duration decreased by 38 minutes, sleep efficiency


(total sleep time divided by the total time in bed) decreased by 7.8%, the percent time


spent in REM sleep decreased by 2.6% and the amount of Stage 1 sleep increased by


1.2%, however,they did not find a significant difference in the arousal index (the num-


ber of arousals per hour of sleep) in the two environments. In other studies, such as


those by Flindell et al. (2000) and Sk̊anberg and Öhrström (2006), large differences in


sleep disturbance between the two testing environments (laboratory and field) were


not found. Sk̊anberg and Öhrström (2006) used actimeters to evaluate sleep and


found that in the laboratory there was an increase in sleep onset latency of 3.3 min


and a slight decrease in time awake of 1 minute. They also found a slight decrease in


sleep quality and increase in tiredness when subjects slept in the laboratory.
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2.6.2 Habituation


It has often been argued that the differences in results in the two testing environments


is due to habituation, i.e., that individuals living near airports have become accus-


tomed to the noise and therefore, are less likely to be awakened. Habituation within


a single night and over the course of many nights has been examined by researchers.


Brink, Lercher, Eisenmann, and Schierz (2008) found that motility in response to a


noise event decreased with the number of events. They found a decrease of approxi-


mately 20% between the motility for the first event and the motility for the sixteenth


event during a single night.


Basner and Samel (2004) also found a decrease in the probability of awakening


as the number of events increased in a laboratory study. This decrease began with


8 events and there seemed to be a threshold reached in which the probability of


awakening remained constant after 32 events. Öhrström (1995) measured movement


of subjects, with an accelerometer attached to the bed, when they were exposed to


noise from a passing truck. Different numbers of truck operations from 16 to 128 were


played. It was found that movements induced by noise decreased when subjects were


exposed to 64 and 128 noise events compared to when subjects were exposed to 16


and 32 events. Griefahn and Muzet (1978) in a review paper stated that for up to


35 stimuli a night the probability of awakening seems to increase with the number of


events, however after that the percent awakened either no longer increased or began to


decrease. Griefahn (1977) stated that a decrease in response with number of events is


not due to habituation, but is caused by adaptation. Adaptation can occur if stimuli


occur too close together as neurons may be in a refractory period, which means that


they are unable to respond to the next stimuli. In adaptation the neurons at the level


of the sensory organ cannot respond. However, for habituation the individual can
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fully sense it, the lack of response happens at the level of the central nervous system


(Domjan, Grau, and Krause, 2010).


Habituation over the course of several nights has also been examined. Kuroiwa,


Xin, Suzuki, Saszawa, and Kawada (2002) had 9 subjects undergo 17 nights of sleep


measurements. For 10 nights, subjects were exposed to road traffic noise. They used


polysomnography to evaluate sleep disturbance. They also had subjects complete


a questionnaire in which they rated sleepiness, sleep maintenance, worry, integrated


sleep feeling, and sleep initiation. Over the ten days it was found that polysomno-


graphic sleep parameters did not change, however, there was some evidence of ha-


bituation in the subjective sleep parameters. Thiessen (1978) also conducted tests


to evaluate habituation to noise from trucks. Sleep disturbance was evaluated using


both EEG and behavioral awakenings. In one test, 5 subjects slept for 12 nights in the


laboratory while in another test 10 subjects were tested for 24 nights. It was found


that behavioral awakenings did decrease over the number of nights. This decrease


though, could be due to a lack of motivation to press the button.


Vallet, Gagneux, Blanchet, Favre, and Labiale (1983) conducted a study with


subjects who had lived in the same house for at least four years. Sleep was evaluated


in the home of the subjects. They slept in their normal nighttime arrangement for


part of the study and they also moved their bed to a room on the quieter side of the


house for several nights. The subjects’ sleep did improve in the quieter setting, less


time was spent awake, and the amount of REM sleep and subjective sleep quality


increased. This provides evidence that even after living near a noise source for sev-


eral years sleep is still disturbed by noise. Therefore, while there is evidence from


awakenings and subjective evaluations of sleep that subjects do habituate to some


degree, no full habituation occurs. By reducing noise, an individual’s sleep can be


improved. Also it is important to note that lesser degrees of arousal have shown no
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habituation. Griefahn, Bröde, Marks, and Basner (2008a) found that the number


of cardiac arousals caused by noise both within a night and across nights did not


decrease with increased exposure.


2.6.3 Noise Sensitivity


Noise sensitivity has been found to explain part of the variation in annoyance due


to noise, and so the relationship between noise sensitivity and sleep has also been


investigated. Marks and Griefahn (2007) assessed noise sensitivity by using the Noise


Sensitivity Questionnaire (NoiSeQ) which is a list of 35 questions, seven questions


in each of 5 different categories related to work, sleep, communication, leisure, and


habituation. The scores for each question are averaged and the results can range from


0 to 3. The noise sensitivity for subjects in their study ranged from 0.37 to 1.77. They


found that noise sensitivity did not seem to relate to any physiological measures but


was related to subjective assessment of sleep. Specifically, it was related to reported


difficulty falling asleep, calmness, restoration, estimated body movements and sleep


quality.


Öhrström and Björkman (1988) evaluated responses to noise using an accelerom-


eter attached under the bed and also measured heart rate using ECG. For the test


they had 12 very noise-sensitive subjects and 12 non noise-sensitive subjects. This


was determined by using a sensitivity scale from 0 to 100. During the night subjects


were exposed to road noise. The difference in heart rate and body movements be-


tween sensitive and non-sensitive subjects was small. However, there was a difference


in self-reported sleep. Noise sensitive subjects reported a longer sleep onset latency


and a higher number of awakenings. Based on the results of these two studies it seems


that noise sensitivity affects subjective measures of disturbance but not physiological


measures.
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Dang-Vu, McKinney, Buxton, Solet, and Ellenbogen (2010) found that there is


possibly a biological marker that indicates whether a person will be more likely to


awaken to noise during the night than another person. They found that individuals


with a high number of sleep spindles were less likely to awaken due to noise (which


consisted of commonly heard sounds of road and air traffic, telephone ringing, and


hospital based sounds), than individuals who had less sleep spindles during the night.


The number of sleep spindles a person had during the night seemed to be a stable


characteristic over three nights of testing.


2.6.4 Inter-Individual Variability


When evaluating sleep disturbance it is important to keep in mind the large inter-


individual differences that occur. While the average change in the duration of sleep


stages or number of awakenings when exposed to noise may be small, there is often a


large spread in the data, with some individuals being affected significantly more than


others. Therefore, in order to understand how noise affects both short-term and long


term health, it may be useful to examine the data on an individual basis rather than on


a population average basis. This was advocated by Vallet, Gagneux, Blanchet, Favre,


and Labiale (1983). They evaluated the effect of road traffic noise on the sleep of


each person. They stated that “averaging the results gives only a mediocre indication


of these differences and it is more fruitful to follow the procedure of examining the


classification of pattern responses to noise (Vallet, Gagneux, Blanchet, Favre, and


Labiale, 1983).” When they state “classification of pattern response”, the authors are


referring to evaluating the change in sleep stage duration, sleep onset latency, and


number of awakenings for each subject.


It is also important to keep in mind that the subjects taking part in noise studies


are almost always in good health. They are not a representative population of those
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living in communities around airports. Therefore the amount of disturbance due to


noise could vary even more then what is observed in sleep studies on the effects of


aircraft noise. For example, subjects with high anxiety have poorer sleep. Fuller,


Waters, Binks, and Anderson (1997) found that subjects with high anxiety have a


longer sleep latency, decreased slow wave sleep, a greater amount of Stage 1 sleep,


lower REM density, and were more prone to arousal especially in the first half of the


night. Also health and weight problems could lead to increased disturbance. Dixon,


Schachter, and O’Brien (2005) conducted a sleep study in which the subjects under-


went laparoscopic gastric band surgery. Sleep was evaluated using polysomnography


both before surgery and on average about 17 months after surgery. It was found


that weight loss led to a lower Apnea-Hypopnea index and an increase in slow wave


sleep and REM sleep. In addition, it should be noted that 50 to 70 million people


have sleep problems (National Institute of Health, 2003). It is unknown how noise


interacts or compounds preexisting sleep issues.


2.7 Short Term Effects of Sleep Disturbance


Sleep disturbance during the night can lead to several next day effects. It can in-


crease an individual’s sleepiness. Also, it may lead to decrements in performance and


increased annoyance to aircraft noise. A description of these next day effects follows.


2.7.1 Sleepiness and Tiredness


The effect of aircraft noise on sleepiness has been evaluated objectively as well as


subjectively. Basner (2008) used the Pupillographic Sleepiness Test (PST). Data


was collected for 24 out of the 128 subjects from the DLR laboratory sleep study.


PST involves measuring the oscillations in pupil size. The change in size will be
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below 0.3 mm for alert subjects, while for sleepy subjects the change could be several


millimeters. Basner (2008) calculated the pupillary unrest index (PUI), which is a


measure of the oscillation in pupil size per unit of time. They found that the natural


log of PUI did increase with levels of noise events and also with the number of events


that people were exposed to over the preceding night. The results were compared


to PUI values for people with obstructive sleep apnea (OSA). It was found that the


levels of sleepiness caused by aircraft noise never reached the levels found for those


with OSA.


Another test used to evaluate sleepiness is the Multiple Sleep Latency Test (MSLT).


This test involves evaluating how long it takes for an individual to fall sleep. Each


test period is 20 minutes long, 4 to 5 sessions are completed throughout the day, with


approximately 2 hours between tests. For a normal subject it takes between 10 to 20


minutes to fall asleep. The less time it takes to fall asleep, the higher an individual’s


sleepiness. MSLT tests were performed as part of the laboratory study conducted by


Flindell et al. (2000). They did not find any statistically significant difference between


the data from subjects following a control night and following a noise exposure night.


In many studies sleepiness is evaluated subjectively. There are three scales that are


often used in sleep research, although they are not typically implemented in studies


by researchers investigating effects of aircraft noise on sleep. These scales include


the Epworth Sleepiness Scale (ESS) (Johns, 1991), Karolinska Sleepiness Scale (KSS)


(Åkerstedt and Gillberg, 1990), and the Stanford Sleepiness Scale (SSS) (Flindell


et al., 2000).


The Epworth Sleepiness Scale (ESS) is derived from answers to questions on how


likely subjects are to fall asleep while in different situations which include: 1) reading,


2) watching TV, 3) sitting in a public place, 4) as a passenger in a car, 5) lying down to


rest in the afternoon, 6) sitting and talking to someone, 7) sitting after a lunch, and 8)
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in a car while stopped. Each scale is rated from 0 to 3, and the results for each question


are added together to obtain an overall score. A test in which the use of the ESS was


examined was conducted by Johns (1991). The subjects for this test included a control


group as well as those with sleep disorders including snoring, obstructive sleep apnea,


narcolepsy, idiopathic hypersomnia, and periodic limb movement disorder. Several


patients not only filled out the ESS but also underwent Multiple Sleep Latency Tests.


It was found that there was a correlation between MSLT and ESS scores.


The Karolinska Sleepiness Scale (KSS) is a 9 point scale, which has verbal labels


for every odd scale number. The verbal labels are: 1) extremely alert, 3) alert 5)


neither alert nor sleepy 7) sleepy but no difficulty remaining awake and 9) extremely


sleepy-fighting sleep (Åkerstedt and Gillberg, 1990). The Stanford Sleepiness Scale


(SSS) has 7 detailed descriptions of the degree of sleepiness. For example, a rating


of 1 is associated with “feeling active, vital, alert, or wide awake” while a rating of


7 is associated with “No longer fighting sleep, sleep onset soon, having dream like


thoughts.” This scale was used in the aircraft noise study conducted by Flindell et al.


(2000). However, they found no effect of aircraft noise on sleepiness as evaluated by


using the SSS. Passchier-Vermeer, Vos, Steenbekkers, van der Ploeg, and Froothuis-


Oudshoorn (2002) had subjects evaluate sleepiness with a 9 point scale. They found


that nighttime noise was related to sleepiness ratings but only when the rating was


completed first thing in the morning.


Tiredness has been examined in other studies. In a social survey conducted around


Heathrow and Gatwick Airports, a large variation in reports of tiredness was found.


Tiredness was evaluated by using a five point scale marked from “very refreshed”


to “very tired” (DORA, 1980). The reported tiredness was compared to the average


A-weighted night-time noise levels between 10:00 pm and 7:00 am and no relationship


was found below 65 dB(A), however above 65 dB(A) there was an increase in reported
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tiredness with noise level. Fidell et al. (1995) used a 5 point scale to evaluate tiredness


(1 “not at all tired”, 5 “extremely tired”). They found that tiredness was positively


correlated with the number of behavioral awakenings.


2.7.2 Performance


Sleep disturbance might also decrease next day performance. Wilkinson and Campbell


(1984) evaluated performance after sleep disturbance caused by traffic noise. Perfor-


mance was evaluated both before and after double glazed windows were installed.


They used several different performance tests including a reaction time test, short


term memory tests, and vigilance tests. After installing double glazed windows they


found that reaction time improved. They showed that this decrease in reaction time


also coincided with an increase in Stage 4 sleep and an improvement in the subjects’


evaluations of sleep. However, the relationship between these three variables was not


statistically significant. The association between SWS and performance has also been


shown by Marks and Griefahn (2005) after nights where subjects were exposed to rail


traffic noise.


Elmenhorst and Basner (2008) have found small but statistically significant dif-


ferences in performance after noise exposure. A decrease in performance with LAeq


levels was found. An increase in reaction time of 0.13 ms/dB was found in the labo-


ratory studies and a 0.3 ms/dB increase in reaction time in the field studies. Flindell


et al. (2000) also evaluated next day performance. They used several tests that were


completed every two hours during the day. The tests included a sustained attention


task, a digit memory recall task, and a choice reaction task. They found that perfor-


mance did not decrease with increased noise exposure. In the field study, performance


improved for all three tasks over the course of three days (following nights of noise ex-


posure). However, it was noted by the authors that few of the field subjects completed
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all of the required training and therefore the results could represent a learning effect.


In their laboratory tests, for most performance tests and testing times, a statistically


significant effect of noise on performance could not be found. Schapkin, Falkenstein,


Marks, and Griefahn (2006) also found no statistically significant results that would


indicate that noise affects next day performance. It was mentioned that this could


have been due to the tasks being too easy, which was indicated by the low false alarm


rates. These results are also further supported by Passchier-Vermeer et al. (2002)


who used a reaction time task to evaluate performance and found that neither the


reaction time nor mistakes made during the test were affected by sleep disturbance


caused by nighttime aircraft noise.


As a result of the negative findings found in many studies, there is the question of


what type and what amount of sleep disturbance would lead to next day performance


decrements? Guilleminault, Abad, Philip, and Stoohs (2006) conducted a study in


which a 1000 Hz tone was used to excite cardiac arousals but not EEG arousals during


one night. For a second night they excited EEG arousals. For both nights, once an


arousal was obtained, at least 1 minute of sleep had to occur before another tone was


played. The following morning, after each experimental night, subjects completed


a psychomotor vigilance task. They found that an increase in reaction time only


occurred for the test condition in which EEG arousals were evoked.


Decrements in performance are found after nights in which sleep time is greatly


reduced. However, even in studies in which subjects are completely deprived of sleep,


there are large variations in performance and not all tests indicate a decrease in per-


formance. Frey, Badia, and Wright Jr. (2004) evaluated the performance of subjects


after two nights of sleep deprivation. The subjects completed 22 different performance


tests that included psychomotor vigilance tasks and reaction time tasks. The tasks


were completed every three hours during the sleep deprivation period. Performance







47


compared to that on baseline nights was worse for 17 out of the 22 tasks. Performance


for individual subjects was highly task dependent. The subject that performed the


worst on one test did not consistently perform the worst on all tests. There was also


a large variability in response between subjects. Thus, when evaluating next day


performance, it is important to use multiple tests as well as evaluate the change in


performance on an individual basis.


2.7.3 Annoyance


Sleep disturbance can also lead to increased annoyance. Using laboratory and field


data, Quehl and Basner (2006) examined annoyance due to nighttime noise. Annoy-


ance was evaluated each morning using the standardized 5 point annoyance scale (1


“Not at all Annoyed” to 5 “Extremely Annoyed”) (Fields et al., 2001). They found


that annoyance in the laboratory was greater than in the field. They also found that


it was important to include the number and level of events when assessing annoyance.


Basner, Elmenhorst, Maass, Müller, Quehl, and Vejvoda (2008a) also evaluated an-


noyance due to sleep disturbance caused by aircraft, road, and train noise. They


found that aircraft noise caused the greatest amount of annoyance but it caused the


least number of transitions to Wake or Stage 1 sleep.


2.7.4 Coping Strategies


Coping strategies such as taking sleeping pills and closing windows to reduce the noise


are both used in the short term to improve sleep for a particular night, and in the


long term when their use becomes a continuous habit for an individual. Griefahn,


Schuemer-Kohrs, Schuemer, Moehler, and Mehnert (2000) found that the probability


that an individual slept with the windows closed increased with outdoor noise level.
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They also found that those exposed to road noise were less likely to sleep with windows


closed compared to those exposed to train noise of the same outdoor noise level.


Passchier-Vermeer et al. (2002) found that an increase in age as well as noise level


contributed to an increase in the percentage of people taking sleeping pills.


2.8 Long-Term Health Effects and Potential Pathways


In addition to next day effects, noise induced sleep disturbance may lead to long-


term health effects. One of the largest studies examining the health effects caused


by aircraft and road traffic noise is the Hypertension and Exposure to Noise near


Airports study (HYENA) (Jarup et al., 2008). This study was conducted in order


to evaluate the risk of developing hypertension due to aircraft and road traffic noise


exposure. The study was conducted in communities surrounding six airports: London


Heathrow, Berlin Tegel, Amsterdam Schiphol, Stockholm Arlanda, Milan Malpensa


and Athens Elpheterios Venizelos Airports. Researchers compared both LAeq,16hr and


Lnight measures of aircraft noise with the odds ratio for hypertension and found that


only the relationship with Lnight was statistically significant. Therefore, it seems that


nighttime noise and sleep disturbance may be an important pathway through which


noise may affect an individual’s health.


2.8.1 Sympathetic Tone


In response to a stressor, an increase in activity in the sympathetic nervous system


occurs. This includes an increase in heart rate and blood pressure among other effects.


Elevations in activity of the parasympathetic nervous system cause the opposite re-


actions. There have been a few studies conducted in which the effect of noise on these


levels has been investigated. Graham, Janssen, Vos, and Miedema (2009) conducted
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a study to investigate the effect that train and road noise have on sympathetic and


parasympathetic tone. They found no relationship between traffic noise and cardiac


sympathetic tone but they did find a relationship with cardiac parasympathetic tone;


there seemed to be a reduced level but only for the second half of the night.


Carter, Henderson, Lal, Hart, Booth, and Hunyor (2002) conducted a laboratory


study in which the subjects were 9 nurses who were night-shift workers. The effect of


noise on heart rate, blood pressure, and sympathetic tone was evaluated. They played


military aircraft, trucks, tones, and civilian aircraft sounds to the subjects during an


80 minute period at the beginning of night. They found that military aircraft and


pure tones increased systolic and diastolic blood pressure. To evaluate the effect of


noise on sympathetic tone they performed a frequency analysis of the heart rate and


blood pressure measures. They found that there was an increase in sympathetic tone


for military aircraft when assessing the data on blood pressure, but did not find an


increase when analyzing the heart rate data.


2.8.2 Cardiac Arousals


In addition to EEG arousals, the effect of noise on autonomic arousals has been inves-


tigated. One of the main indicators of an autonomic arousal is a change in heart rate.


Griefahn, Bröde, Marks, and Basner (2008a) examined cardiac arousals caused by


road, rail, and aircraft noise. Cardiac arousals both with and without an awakening


were assessed. With an awakening the changes in heart rate were monophasic (an


increase from baseline to a maximum followed by a decrease to baseline). The maxi-


mum heart rate was greatest when awakening from SWS and lowest when awakening


from REM sleep. For autonomic arousals not associated with an awakening, the be-


havior was biphasic with an increase in heart rate followed by a deceleration and then


a gradual increase back to baseline. The sleep stage the person was in affected the
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extent of the arousal; this time it was greatest during REM sleep and lowest during


SWS. A greater heart rate elevation was found when an awakening occurred.


Di Nisi, Muzet, Ehrhart, and Libert (1990) also found that noise affects heart


rate. They conducted a laboratory test in which subjects were exposed to five dif-


ferent sounds: a jet, truck, motorcycle, train, and a telephone. They conducted two


tests, one in which subjects were exposed during the day and another study where


subjects were exposed at night. For the daytime experiment, each of the signals were


presented six times. They measured ECG, finger-pulse, respiratory movements, and


body movements. For the nighttime tests they used all of the sounds except the tele-


phone ringing and they reduced the average noise levels of the sounds by 15 dB(A).


Eight sounds per hour were played, the inter-arrival time of the stimuli was random.


In addition to the measurements made during the day, they also used polysomnog-


raphy to evaluate sleep. They found that the heart rate response at night was much


greater than that during the day, which was especially significant because the sounds


during the night were 15 dB(A) quieter than the sounds heard during the day.


2.8.3 Stress Hormones


The effect of sleep disruption on stress hormones has been investigated in several


studies. Understanding the effect of noise on cortisol levels, for example, is important


as an elevated level could affect glucose functions, increase protein and bone degener-


ation, and could affect blood pressure raising hormones (Spreng, 2004). In a normal


night cortisol levels will decrease during the first half of the night and will increase


in the second half of the night, reaching a peak shortly after awakening. Elevated


levels are due to a stress response (Born and Fehm, 2000). Spiegel, Leproult, and


Van Cauter (1999) found, after restricting sleep to 4 hours, that morning cortisol


levels obtained from saliva samples were elevated. In addition to sleep length, there
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is also evidence that the number of arousals during the night may be related to an


increase in cortisol levels. Ekstedt, Åkerstedt, and Söderström (2004) separated their


data into two groups, results for those that experienced more than 9 arousals per


hour and those that experienced less than 9 per hour. For subjects with a higher


frequency of arousal a statistically significant increase in heart rate, blood pressure,


and cortisol level was found.


Carter, Hunyor, Crawford, Kelly, and Smith (1994) evaluated the sleep of 9 sub-


jects who had a history of cardiac arrhythmia. The subjects spent four nights in the


laboratory, two of which included exposure to noise. For one night road traffic noise


was presented, while for the other night aircraft noise was played. They measured


levels of noradrenaline, adrenaline, and dopamine at the end of the night and found


that all levels were in the normal range and were unaffected by noise. MaaB and


Basner (2006) found similar results to Carter et al. (1994). For both the laboratory


and field studies they assessed the levels of stress hormones cortisol, adrenaline, no-


radrenaline, and the electrolytes potassium, calcium, sodium, and magnesium. They


found that aircraft noise exposure did not have a large affect on any of these levels.


2.8.4 Appetite Regulation Hormones Leptin and Ghrelin


Fragmented sleep may also have an affect on appetite. Spiegel, Tasali, Penev, and


Van Cauter (2004) evaluated the level of leptin and ghrelin after sleep restriction.


Elevated levels of ghrelin are related to increased appetite while increased levels of


leptin are associated with a decrease in appetite. Spiegel et al. (2004) had 6 subjects


spend 10 hours in bed, while 6 subjects had their sleep restricted to 4 hours in bed.


The following morning blood samples were obtained. They also had subjects evaluate


their hunger and appetite using a questionnaire. Spiegel et al. found that after the


4 hour sleep condition there was an increase in appetite especially for sweet or salty
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foods. Also, they found that leptin levels were 18% lower and ghrelin levels were


28% higher compared to the results for subjects who spent 10 hours in bed. The


results found by Spiegel et al. are supported by results from a much larger study


conducted by Taheri, Lin, Austin, Young, and Mignot (2004). This study was part


of the Wisconsin Sleep Cohort Study. They found that ghrelin and leptin levels are


related to sleep duration. They also found an increase in Body Mass Index (BMI) for


reduced sleep duration, although BMI also increased for sleep durations greater than


8 hours and therefore there seems to be a U-shaped relationship between BMI and


sleep duration.


2.8.5 Increased Blood Pressure


Haralabidis et al. (2008), as part of the HYENA Study, examined nighttime blood


pressure. Subjects around four airports were investigated: Athens, Malpensa, Ar-


landa and Heathrow Airport. Blood pressure and heart rate were measured every 15


minutes during the night. They found that there was a 0.6 mmHg increase in systolic


and diastolic blood pressure for a 5 dB increase in noise level as measured using the


LAeq,15min which is the average A-weighted level during a 15 minute time period. Also,


they found that the mean increase in blood pressure when an aircraft noise event oc-


curred was 6.2 mmHg for systolic blood pressure and 7.4 mmHg for diastolic blood


pressure. In addition, they found that heart rate increased by 5.4 beats per minute.


This increase in blood pressure is troubling as during normal sleep the blood


pressure level should become lower. A person is classified as a “dipper” if blood


pressure during the night drops by more than 10%, compared to its daytime level. The


“non-dipping” of blood pressure may increase the risk for developing cardiovascular


and renal disease (Pickering and Kario, 2001). Loredo, Nelesen, Ancoli-Israel, and


Dimsdale (2004) determined that dipping was associated with a greater amount of
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slow wave sleep (SWS). In another study conducted by Loredo, Ancoli-Israel, and


Dimsdale (2001), the blood pressure of subjects with sleep apnea was measured during


the night. Their results indicate that time in SWS and the number of arousals may


be related to the variance seen in the diastolic blood pressure.


Guilleminault and Stoohs (1995) evaluated the blood pressure and heart rate for


both control subjects as well as those with sleep apnea when aroused by auditory


stimuli. The auditory stimuli caused an increase in blood pressure of approximately


20%. Their results also indicated that the greatest change in blood pressure occurred


when aroused from SWS.


2.8.6 Glucose Tolerance and Diabetes


Disturbed sleep may also increase the risk for developing type 2 diabetes. Spiegel,


Tasali, Penev, and Van Cauter (2004) had subjects sleep 4 hours for 6 nights and


12 hours for 7 nights. They found that glucose effectiveness was 30% lower when


subjects were sleep deprived. They also found that there was a decrease in insulin


response. They stated that the cause of the decrease in insulin response could be due


to an elevation in sympathetic and a decrease in parasympathetic activity during the


sleep deprivation nights, which might affect pancreatic function.


Tasali, Leproult, Ehrmann, and Van Cauter (2008) found similar results in a more


recent study. They suppressed SWS in subjects for three nights using acoustic stimuli


of different frequencies and intensities. They did not want to cause awakenings but


just a sleep stage change so that total sleep time and amount of REM sleep would


remain the same while the amount of Stage 2 sleep would increase. They assessed


glucose tolerance after the three nights. It was found that glucose tolerance was


decreased by 23% and insulin sensitivity was decreased by 25%. Glucose tolerance


is a measure of the decrease in glucose levels, it is measured in terms of the percent
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decrease per minute. They also performed spectral analysis of ECG recordings and


evaluated the amount of high and low frequencies, which is a measure of sympathetic


activity. They found that sympathetic activity had increased.


The study by Tasali et al. (2008) was conducted in a laboratory, with an unnatural


suppression of slow wave sleep. However, similar findings have been found in large


epidemiological studies. Gottlieb, Punjabi, Bewman, Resnick, Redline, Baldwin, and


Nieto (2005) used data from two cohort studies, which were a part of the Sleep Heart


Health Study, to evaluate glucose tolerance. A significant odds ratio for impaired


glucose tolerance and the development of diabetes was found for those sleeping less


than 6 hours or greater than 9 hours.


2.8.7 Myocardial Infarction and Stroke


One of the overall longterm effects of noise on health is that it may lead to car-


diovascular disease and Myocardial Infarction. A possible pathway which has been


discussed is the repeated elevation in the sympathetic nervous system which may


cause elevated heart rate and blood pressure.


Huss, Spoerri, Egger, and Röösli (2010) conducted a study to examine whether


aircraft noise and air pollution due to flight operations caused an increase in risk


of death from myocardial infarction in Switzerland. They used data from the Swiss


National Cohort which contains national census data and national mortality data.


They found that increased aircraft noise was associated with a higher risk of dying


from myocardial infarction and that the risk increased with the duration that an


individual had lived in the area. They found no relationship with increased risk and


air pollution which was a measure of particulate matter.


Sørensen, Hvidberg, Andersen, Nordsborg, Lillelund, Jakobsen, Tjønneland, Over-


vad, and Raaschou-Nielsen (2011) examined the risk of stroke and exposure to trans-
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portation noise. The data used was from a diet, cancer and health study that was


conducted between 1993 to 1997. Subjects were between 50 and 64 years in age and


lived in the Copenhagen or Aarhus area. A questionnaire was completed as well as


subject’s height, weight, and blood pressure were measured. Sørensen et al. (2011)


were able to link the data from the cohort study to the Danish National Hospital


Registry and were able to identify those individuals who were in the hospital and


who had suffered a stroke. The road noise levels LAeq for the day, evening, night and


Lden were predicted. They also predicted train and aircraft noise, and air pollution.


They found that a 10 dB increase in road traffic noise was associated with a 14%


increased risk of stroke. The increased risk was greater for older subjects. These


results are applicable for Lden (which is average A-weighted sound pressure level with


different weightings for noise during the day, evening, and night) levels greater than


60 dB(A). Air pollution and train and aircraft noise exposure did not result in an


increased risk of stroke.


2.8.8 Mental Health


Stansfeld and Matheson (2003) stated that aircraft noise causes annoyance and that


annoyance may lead to long term mental health issues. Several early studies were


conducted to investigate the effect of aircraft noise on admissions to mental hospitals.


Meecham and Smith (1977) examined the mental hospital admissions in a census


tract near Los Angeles International airport and a control census tract further away.


The two areas had similar socioeconomic conditions. They found a 29% increase in


admissions in the area closer to the airport. However the total number of admissions


in both areas was low.


More recently, the pathway from annoyance to mental health has been exam-


ined using survey questionnaires. Schrenkenberg, Meis, Kahl, Peschel, and Eikmann
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(2010) examined the self reported quality of life of those living around Frankfurt air-


port. They found no relationship between ratings of mental health and noise level.


However, there was a relationship between ratings of aircraft annoyance and mental


health as well as between noise sensitivity and mental health.


Noise may also effect the mental health of children. Stansfeld, Clark, Cameron,


Alfred, Head, Haines, van Kamp, van Kempen, and Lopez-Barrio (2009) examined the


effect of noise on children’s health and cognition as part of the RANCH study. They


used a questionnaire, The Strengths and Difficulties Questionnaire, to evaluate mental


health. The questionnaire had four scales relating to emotional symptoms, conduct


problems, hyperactivity, and peer relations problems. They found no relationship


between the overall score of mental health and noise. However, they did find that


aircraft noise was associated with a higher rating of hyperactivity. Contradictory


evidence though was found for road noise where a lower amount of conduct disorders


was associated with higher noise levels. While there are no conclusive findings from


this study, the authors did state that due to the transitory nature of aircraft noise it


would be expected that it would have a stronger affect on attention than road traffic


noise.


2.9 Effects of Noise on Children


For most of the studies mentioned the subjects have been adults. However, as found in


the RANCH study, noise also effects children. Öhrström, Hadzibajramovic, Holmes,


and Svensson (2006) conducted a study to examine the effect of road traffic noise on


sleep in adults and children. They conducted a main study involving a questionnaire


as well as a more detailed study in which subjects filled out sleep logs and wore


actimeters for 4 days. They found that children had better sleep quality and less


awakenings then adults when analyzing the subjective responses. However, they found
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that children had worse sleep as determined by actimeter data. They stated that


children may naturally have higher motility which could have caused the difference


between the objective and subjective measurements of sleep. For children whose


sleep was disturbed by noise, a large percentage indicated a problem with daytime


sleepiness. Lukas (1972) conducted a study in order to evaluate sleep disturbance


caused by sonic booms and jet aircraft noise. Subjects indicated awakenings by using


a switch. Their sleep was also evaluated using polysomnography. It was found that


the age of the subjects greatly affected the degree of disturbance. Children in the


study were found to be relatively insensitive to the noise. A survey conducted around


Heathrow and Gatwick airport (DORA, 1980) contained questions in which parents


were asked to state whether aircraft noise disturbed the sleep of their children. It was


found that children seemed to be far less disturbed by noise at night, it was reported


that 89% of children were not awakened by the noise. From the results of these three


studies it was concluded that children are less likely to be awakened by noise then


adults.


However, just because children are less likely to be awakened, it does not mean that


noise does not cause negative effects. Ising and Ising (2002) conducted a study with


children between the ages of 7 to 10 years. The children were exposed to heavy truck


noise approximately every 2 minutes during the night. The effect of noise on sleep


was evaluated by measuring cortisol levels. Two urine samples were collected from


each subject. One sample was taken in the morning, while the other was obtained


during the night. They found that noise seemed to cause an increase in cortisol


levels in the first half of the night. They also found that memory and concentration


problems were higher in the quarter of the group with the highest cortisol level. This


study provides some evidence that noise at night is affecting children despite the low


number of awakenings found in other studies. Also Sadeh, Gruber, and Raviv (2002)
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conducted a study involving children in second, fourth, and sixth grades. The children


were classified as either good or bad sleepers; a bad sleeper was defined as someone


that had at least three awakenings lasting more than 5 minutes and at least 10% of


the night was spent awake. They found significant differences in the performance of


children on tests as well as significant differences in behavior. Therefore, there is still


a need for studies in the future to further examine the effect of noise on children’s


sleep and next day performance.


2.10 Conclusions


Aircraft noise can cause an increase in awakenings and a decrease in slow wave and


REM sleep. These changes in sleep could lead to short term effects such as an increase


in sleepiness and a decrease in performance. Fragmented sleep due to noise could also


lead to long term effects such as hypertension, diabetes, and a change in appetite


which could contribute to obesity. However, there have been no studies that have


investigated directly the long term effects of noise-induced sleep disturbance. It still


needs to be determined whether the disturbance that occurs due to nighttime noise


is significant enough to lead to these adverse health effects.
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3. NOISE INDUCED SLEEP DISTURBANCE MODELS


Several models have been developed which predict noise induced sleep disturbance.


Most only predict the percent awakened to a single noise event. However, an ANSI


standard has been developed to predict the percent of the population that is awakened


at least once due to multiple events. A description of these models will be provided.


In order to evaluate these sleep models data was obtained from four sleep disturbance


surveys. A description of the data that was obtained and comparisons between model


predictions and behavioral awakening survey data is described.


3.1 Obtained Survey Data


As discussed in Chapter 2, there have been several studies conducted which have


provided information on the relationship between noise and sleep disturbance. It was


desired to obtain several of these datasets in order to develop new sleep disturbance


models because conducting a new sleep study would be expensive and require a sig-


nificant amount of time, and it is not guaranteed whether any new information would


be gained. Data from four sleep studies were obtained. A description of the obtained


data is provided and limitations of the datasets are discussed.


3.1.1 US Sleep Disturbance Survey Data


Data from the three most recent sleep studies conducted in the US were obtained.


The studies were conducted around Los-Angeles International Airport and Castle Air-


Force Base (Fidell, Pearsons, Tabachnick, Howe, Silvati, and Barber, 1995), DeKalb-
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Peachtree Airport, and Stapleton International and Denver International Airport


(Fidell, Pearsons, Tabachnick, and Howe, 2000). For the study conducted around


Los-Angeles International Airport and Castle-Air-Force Base, 1887 nights of data


were collected. Sleep was assessed by having subjects use push buttons; subjects


pressed a button when they were awakened. To quantify the noise, they measured


one half second LAeq levels (A-weighted equivalent noise level, the average noise level


for the defined time period). The recording of events was triggered based on a thresh-


old. To account for variation in the level of background noise from site to site, this


threshold was set specific to each site. However, to be classified as a noise event the


threshold only had to be exceeded for 2 seconds so other loud sounds may also have


been classified as aircraft noise events. The main result of this study was that the


A-weighted Sound Exposure Level (SELA) correlated best to the number of awak-


enings, although the relationship was weak. They also found that the probability of


awakening increased with the time since retiring.


The purpose of the other two US studies, conducted by Fidell et al. (2000), was to


evaluate sleep disturbance when a change in airport operations occurred. One study


was conducted around Stapleton International Airport before and after it closed, and


around Denver International Airport before and after it opened. Fidell et al. (2000)


also completed a study around DeKalb-Peachtree airport before, during, and after the


1996 Atlanta Olympics. The primary method used for evaluating sleep disturbance


was again the use of push buttons, although actimeters were also used. Both indoor


and outdoor LAeq levels were obtained. The result for all testing sites was that there


was a very low probability of awakening due to an aircraft event. For the DeKalb-


Peachtree study they also found no change in the number of awakenings for the three


different testing periods. However, behavioral awakenings are extremely insensitive
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measures of sleep disturbance and therefore the method used to measure awakenings


may be the reason for the negative findings.


The data that was obtained for these 3 studies include information on the gen-


der and age of the subjects. In terms of sleep data, the number of spontaneous


awakenings and button presses which corresponded to noise events are included in


the dataset. The timing of the noise-induced awakenings are indicated but not the


timing of spontaneous awakenings. Data for subjective evaluations of sleep was also


obtained including evaluations of tiredness, recalled sleep latency, and recalled time


awake.


The information on noise events in the dataset include indoor noise levels, SELA


and LAmax, for each aircraft event. The timing of the events is also known. A difficulty


with the dataset is that very few of the subjects experienced the same noise scenario,


as well as subjects were not all tested for the same number of nights. A summary of


the number of locations and subjects for each of the three studies is listed in Table


3.1. The maximum number of noise events at a location is also listed.


Table 3.1. Number of locations and subjects that took part in the 3
US sleep studies.


Survey Number of Number of Maximum Number
Locations People of Noise Events


(1995) LAX and Castle 43 72 435
Air Force Base
(1994/1995) DEN and 65 113 153
DIA airport
(1996) PDK airport 12 22 136


The number of events and awakenings for each indoor SELA level for the three studies


conducted by Fidell et al. (1995, 2000) are summarized in Table 3.2.
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Table 3.2. Number of events and awakenings for each noise level for
the 3 US field studies.


SELA Number of Events Number of Awakenings
52 2222 20
55 4399 36
58 3378 28
61 2716 48
64 4374 67
67 3703 71
70 4302 83
73 4984 109
76 4354 85
79 4274 95
82 4299 81
85 3096 76
88 1809 44
91 1230 34
94 680 35
97 396 15
100 166 3
103 40 1


3.1.2 1999 UK Sleep Study Data


Data from a study in which sleep was measured using polysomnography was also ob-


tained. This study was conducted in the UK in 1999 and involved both a laboratory


study conducted in Farnborough and a field study conducted around Manchester air-


port (Flindell, Bullmore, Robertson, Wright, Turner, Birch, Jiggins, Berry, Davison,


and Dix, 2000). It was funded by the UK Department for Transport and the data


is owned by the Civil Aviation Authority. Both laboratory and field were considered


trial studies. The three main objectives were to examine noise during the shoulder


hours to see if they led to premature awakenings or delayed sleep onset, to compare


sleep patterns of individuals living in high and low noise exposed areas, and to study


sleep disturbance in a group of people that considered themselves sensitive to noise.
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The field test was conducted around Manchester airport. Eighteen participants


took part in the study, 9 were from a low noise area and 9 were from a high noise area.


Only data from 12 subjects was suitable though to use for analysis. All subjects were


in the age range of 30-40 years. Also, all subjects were considered to have high noise


sensitivity as evaluated by the Weinstein scale. The high noise area was located 500


to 2500 meters from the airport, while the low noise area was located 4000 to 7000


meters from the airport. One problem with the study was that while the high and


low areas had different outdoor noise levels, there was little variation in the indoor


noise levels.


For the field study subjects participated for 5 consecutive nights. Sleep was


recorded using polysomnography. Recordings of 4 channels of EEG, 2 channels of


EOG, ECG, EMG and respiratory measurements were obtained. Sleep stages for


each subject were scored. The noise levels that were collected were A-weighted sound


pressure level noise time histories, measured both indoors and outdoors and a voltage


signal that was synchronized with the physiological measurements. The voltage signal


was not a sound recording, it only had a 10 Hz sampling rate. Information from the


airport on the timing of arrivals and departures and type of aircraft were obtained.


Also, for four sites, 10 second recordings (stored in .wav files) of the events and one


third octave band data through time were also collected.


Nine people living near Farnborough took part in the laboratory test. The sub-


jects were tested one night per week over a period of five weeks. In addition to an


adaptation night, one night was a baseline night and consisted of no noise. There was


three noise exposure nights; one noise condition was supposed to be representative of


a night around Manchester airport, for one night the noise exposure was similar to


that at Manchester airport but with more noise events added during the beginning


of the night, and for one night the noise exposure was like that at Manchester airport
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but with more events at the end of the night. Five aircraft recordings were used in


the study. As in the field study, sleep was recorded using polysomnography and a


voltage measurement of the noise was also recorded.


For both laboratory and field studies, tests to evaluate sleepiness and performance


decrements were also performed; no significant differences in results between nights


of noise exposure and baseline nights were found. In general, there was not a large


difference between results in the laboratory study and those in the field study. A


similar number of awakenings, sleep stage changes, and slow wave sleep was found


for the Manchester typical noise night in the laboratory and in the field study. Those


who participated in the laboratory study, though, did have less REM and more stage


2 sleep during the noise exposure nights.


3.1.3 1999 UK Sleep Study Data Used for Analysis


For several of the subject nights data was either missing or a recording was not


acceptable for use because an electrode most likely became loose during the night.


Only subject nights which had a C4-A1 and C3-A2 EEG recording, EOG left and


right recordings, EMG recording and scored sleep stages were used for analysis. A


list of subjects, and the subject nights used in the analysis throughout this report


are listed in Table 3.3. Subjects 1 through 18 were in the field study and Subjects 19


through 27 were in the laboratory study. A total of 76 subject nights were used for the


sleep stage classification algorithm development and for estimating the parameters of


the nonlinear dynamic models. However, when evaluating the changes in sleep due


to noise events data from subjects 1 through 7 were not used. The reason for this


elimination is that for these subjects a voltage recording of the noise event that is time


locked with the polysomnography data was not made. The timing of the noise events


were only obtained from the separate sound level meter measurements. However,
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from reviewing the data there seems to be a drift in time that occurred over the 5


days of testing in the sound level meter data. Therefore to insure that the time of


events coincides with the activity in the physiological data these subjects was not


used in the noise analysis. Also the data for subjects 26 and 27 for night 2 were


not used in the noise analysis as the timing of noise events did not match the noise


scenario that was supposed to be played that evening.


3.2 Sleep Disturbance Models


Several models have been developed to predict the effect of aircraft noise on sleep.


Many of these models predict the percent awakened due to a single noise event. A


standard has also been developed which predicts the effect of an entire nighttime sce-


nario of events on a population. Models have also been developed based on responses


to social survey questionnaires. A review of these existing models is provided.


3.2.1 Single Event Awakening Models


Most of the models that have been developed are simple dose response relationships


between the indoor noise level of an event and the percent awakened. In these models


it is assumed that the response to each event during the night is independent of its


previous responses. The noise level is measured by using either LAmax or SELA. LAmax


is the maximum A-weighted noise level of the event, SELA takes into account the


energy of the event within 10 dB of the peak of the noise event. Both metrics are


highly correlated to one another.


Finegold, Harris, and von Gierke (1994) analyzed data from several studies in


order to create an awakening model. They grouped the number of awakenings by


counting the number in each 5 dB interval. For their regression, each noise interval
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Table 3.3. UK Data used in analysis. (Dark gray indicates that data
was used in all analysis, light gray indicates data was not used in noise
analysis. Y-data available, N-data not available).


Subject Adaptation Night Night 1 Night 2 Night 3 Night 4
1 N N Y N Y
2 N Y N Y Y
3 N N N Y Y
4 N N N N N
5 N N N N N
6 N Y Y Y N
7 N N N N N


F
ie
ld


8 N N N N Y
9 N Y N Y Y
10 Y Y N Y N
11 N N N N N
12 Y Y Y Y Y
13 N Y Y Y Y
14 Y Y N Y Y
15 Y Y Y Y Y
16 N N Y Y Y
17 N N Y N Y
18 Y Y N Y N
19 Y Y Y N N
20 N Y Y Y N
21 N N N N N


L
ab


or
at
or
y 22 Y Y Y Y Y


23 Y Y Y Y Y
24 N Y Y Y Y
25 Y Y N Y Y
26 Y Y Y Y Y
27 Y Y Y Y N
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had equal weight even though there was a different number of data points in each


interval. Another weakness in this model is that the data sets were from studies that


used different noise sources and were conducted in different testing environments,


both laboratory and field. Two further analyses were done to create an updated


dose response relationship. Finegold and Elias (2002) used data from more recent


surveys, however, as in the development of the previous model, data from different


noise sources were combined. The equation for the model developed by Finegold et al.


(1994) is,


%Awake = (7.1e−6)SELA3.5, (3.1)


and the model by Finegold and Elias (2002) is,


%Awake = 0.58 + (4.3e−8)SELA4.11. (3.2)


FICAN (1997), the Federal Inter-Agency Committee on Aircraft Noise, developed a


curve based on 6 datasets examined by Pearsons et al. (1995) as well as the data


from the Ollerhead et al. (1992) study and from the Denver and Los Angeles sleep


studies by Fidell et al. (1995, 2000). In contrast to Finegold et al.’s models, the


dose response relationship that was developed predicts the upper limit of the percent


awakened found in the data. The equation for the FICAN model is,


%Awake = 0.0087(SELA− 30)1.79. (3.3)


Several other models that predict the probability of awakening because of a noise


event have been developed including: Anderson and Miller’s (2005) model


z = −10.7383 + 0.0874SELA; %Awake =
100


1 + e−z
, (3.4)
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the dose response relationship used in the ANSI (2008) Standard,


z = −6.8884 + 0.04444SELA; %Awake =
100


1 + e−z
, (3.5)


Basner et al.’s model (2006),


%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243, (3.6)


Passchier-Vermeer et al.’s model (2002),


%Awake = 0.51 + 0.000353SELA2, (3.7)


and Ollerhead et al.’s model (1992),


%Awake = 0.4(−2.96 + 0.162SELA). (3.8)


The predictions of the different awakening models are shown in Figure 3.1. The FI-


CAN and Basner et al. models predict the highest percent awakened. The FICAN


model was meant to be an upper bound of the survey data from which it was de-


rived. The model developed by Basner et al. is based on awakenings from a study


conducted around Cologne-Bonn airport where they measured awakenings by using


polysomnography which is a more sensitive measure of awakenings. Most of the other


models were developed based on behavioral awakenings data which are a less sensitive


measure of sleep and occur less often during the night.







69


50 55 60 65 70 75 80 85
0


2


4


6


8


10


12


Indoor SELA


Pe
rc


en
t A


w
ak


en
ed


     FICAN
(Conservative)Basner et al.


(All awakenings,
not just behavioral)


Figure 3.1. Output of various awakening models for each 5 dB group-
ing of SELA values. From left to right; 1) Anderson and Miller (2005),
2) ANSI dose response curve (2008), 3) Finegold and Elias (2002), 4)
Passchier-Vermeer et al. (2002), 5) Ollerhead et al. (1992), 6) FICAN
(1997), and 7) Basner et al. (2006) model predictions.


3.2.2 Models Based on Reported Sleep Disturbance


The models that were described were based on measures of awakenings from polysomnog-


raphy, button pressing to measure behavioral awakenings, or from actigraphy mea-


surements. However, dose response models have also been developed based on sub-


jective reports of sleep disturbance. In addition to the sleep studies that have been


conducted, many large social surveys on the effects of aircraft noise on communities


have been conducted. General questions on sleep disturbance that are often asked


include whether an individual’s sleep was disturbed and how often, or whether they


were annoyed because their sleep was disturbed. Miedema, Passchier-Vermeer, and


Vos (2002) developed dose-response curves based on data from these social surveys.


The models relate Lnight to the percent of the population that are a little sleep dis-
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turbed (LSD), sleep disturbed (SD), or highly sleep disturbed (HSD). They developed


curves for aircraft, road, and train noise. For aircraft noise, the models are based on


seven different community surveys. The three equations are:


%HSD = 18.147− 0.956Lnight + 0.01482L2
night, (3.9)


%SD = 13.714− 0.807Lnight + 0.01555L2
night, (3.10)


%LSD = 4.465− 0.411Lnight + 0.01395L2
night. (3.11)


One of the problems with these dose-response models are that they are based on


responses to different types of questions. For example, for most of the aircraft noise


studies, the questions on sleep were related to how annoyed an individual was if they


were awakened by aircraft noise. However, they combined data on annoyance caused


by sleep disturbance with data from another study in which the question was how


often an individual was awakened by noise. These questions are asking two different


things and thus it is questionable whether the responses can be combined. Also,


annoyance should not be considered synonymous with sleep disturbance. Therefore,


these dose-response relationships do not predict the percent of the population that is


sleep disturbed but rather they are an indication of how sleep disturbance may relate


to annoyance.


3.2.3 Multiple Events Awakening Model


In 2008, an ANSI (American National Standards Institute) standard for predicting


the probability of awakening at least once due to multiple events was published. The


use of this standard has been recommended by FICAN. It is based on behavioral
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awakening data. In the model, the probability of awakening due to a single event is


dependent on the noise level, as measured by indoor SELA. There is also a model


which accounts for the time the noise event occurred. The equation for the time


dependent model is:


z = −7.594 + 0.04444SELA+ 0.00336Tretire; %Awake =
100


1 + e−z
, (3.12)


where Tretire is the time (in minutes) an event occurred relative to the time an indi-


vidual went to bed. The process for calculating the probability of awakening at least


once for an entire night using the ANSI model is shown in Figure 3.2. It is determined


by multiplying the probabilities of not awakening to each individual event,


%Not Awake = (1− P1)(1− P2)... (3.13)


and subtracting this result from 1,


%Awakened at Least Once = 1− (1− P1)(1− P2)... (3.14)


Figure 3.2. Example of the ANSI standard method of calculating
percent awakened at least once for a full night of aircraft events.
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The ANSI standard is based on the work of Anderson and Miller (2007). One


component of their model that was not included in the standard is the sensitivity


to awakening. Anderson and Miller evaluated the data from Fidell et al.’s surveys


(1995, 2000) and found a large inter-individual difference in the number of noise


induced awakenings. They modeled this variation as a Gaussian distribution and


added a coefficient to their model to account for this.


3.2.4 Spontaneous vs Noise-Induced Awakenings


When comparing model predictions to survey data one of the challenges is defining


what an awakening is. To determine how many noise-induced awakenings occur, a


time window about each noise event has to be defined. Within the time window,


sleep disturbance is attributed to the noise. The length of the time window varies


depending on the study and the technique used to evaluate sleep. For example, Basner


et al. (2004) defined a noise-induced awakening when it occurred within 90 seconds


of a noise event in the field study and within 60 seconds in the laboratory study.


Ollerhead et al. (1992) defined a time window as beginning 16 seconds before the


start of a noise event and having a width of 64 seconds. Fidell et al. (1995), who used


behavioral (signaled) awakenings, found the strongest relationship between noise and


awakenings when using a time window of 5 minutes.


Also, there is a challenge in separating noise-induced awakenings from spontaneous


awakenings, which are awakenings that occur naturally during a non-noise disturbed


night. Brink and Basner (2009) have discussed two ways to define the probability


of awakening to just the noise events. The first is what they call P additional which is


equal to the probability of awakening due to noise events minus the probability of a


spontaneous awakening occurring. However, they recognize that a noise awakening


and a spontaneous awakening may not be mutually exclusive. A person may be in the
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process of awakening spontaneously and then an aircraft event occurs and they are


awakened by the noise. Therefore, they also defined P induced, which is the probability


of awakening due to a noise event which is not confounded with the probability that


a spontaneous awakening was jointly occurring. The practice that is most commonly


used is to calculate P additional.


3.2.5 Noise Protective Measures


Different noise metrics have also been proposed for predicting and preventing sleep


disturbance in communities. In the US only DNL is used for predicting noise impact.


However, in Europe, the noise metric, Lnight is used in order to protect communities


from adverse effects of nighttime noise. Lnight is the average nighttime noise level


for 11:00 pm to 7:00 am. It is stated in the World Health Organization’s Night


Noise Guidelines for Europe (2009) that noise leads to additional awakenings and


movements above an Lnight,outside of 30 dB. For an Lnight,outside between 40 to 55 dB


most of the population will be affected by the noise and for an Lnight,outside above 55


dB adverse health effects may occur. WHO has issued a recommendation that outside


noise levels be below 40 dB at night to prevent adverse health effects. However, as


such a limit would be difficult to obtain a target goal of 55 dB has been proposed.


A protection criteria based on the number of awakenings has been developed by


Basner, Samel, and Isermann (2006). They defined three goals to achieve by creating


this criteria: 1) Limit effects to less (on average) than 1 additional noise induced


awakening, 2) Prevent awakenings that will be remembered the next day, 3) Prevent


increases in latency of falling asleep again during the night. To obtain these goals


they defined a contour which is based on a region in which 1 or more additional


awakenings occur and 1 or more events have a LAmax greater than or equal to 80


dB(A). The dose-response curve developed by Basner, Samel, and Isermann (2006)







74


was used to create these contours. This method was implemented around Leipzig-


Halle airport. Another protection criteria, the Frankfurt Night Index (FNI), is also


based on the dose-response relationship developed by Basner et al. (2006). An area


that needs to be protected is defined as one in which 0.5 or more additional noise


induced awakenings occur on average (Schreckenberg, Thomann, and Basner, 2009).


3.3 Model Comparisons


To evaluate how well awakening models predict the percent awakened found in survey


data comparisons were made between the US behavioral awakening survey data and


six dose-response awakening models. The performance of the ANSI standard method


was also examined. Comparisons were made between the ANSI model and DNL for


different numbers of nighttime aircraft noise events.


3.3.1 Awakening Model Comparison


To examine how well the dose-response models predict the percent awakened in survey


data, comparisons were made with the results from Fidell et al.’s surveys. As part of


this analysis a Monte Carlo simulation was performed in order to determine whether


enough data was collected in these surveys to validate the awakening models. For


each SELA, a vector of uniformly distributed random numbers in the range from 0 to


1 was created. The length of the vector was equal to the number of events that were


experienced in the survey data for that particular SELA level. Then using one of the


awakening models, the number of values in the vector below the specific probability


of awakening was calculated. This value is equal to the number of people awake. The


percent awakened was then calculated and this procedure was repeated 10,000 times


in order to evaluate the variation in predictions for different sampling. The results
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of the simulation were then compared to the actual percent awakened in the survey


data. The comparisons are shown in Figure 3.3. The error bars for the simulations


indicate that 95% of all outcomes of the Monte Carlo simulation were within that


range, while for the survey data the error bars are the 95% confidence intervals. From


the results of performing this analysis, shown in Figure 3.3, it is evident that there


was not a lot of data collected in the survey at the higher noise levels. Lack of data


at high noise levels was the reason why, for this analysis, the data from all three of


the studies conducted by Fidell et al. were combined. Also, the predictions of the


Passchier-Vermeer et al. model most closely matched the awakenings in the survey


data. Although most of the models predicted the percent awakened at low noise levels


reasonably well.


3.3.2 Multiple Events Model Evaluation


The process described in the ANSI standard was used to compare the change in


awakenings and the corresponding change in DNL when the number of nighttime


events are increased. For simplicity it was assumed that 1 aircraft event occurred


every 2 minutes during the day and that initially there were no nighttime events. The


number of daytime operations was 450 which is similar to the number of operations


at a medium sized airport such as Indianapolis International Airport. It was assumed


all the aircraft events were of the same noise level for simplicity. The noise level of


the events was an indoor SELA level of 57 dB(A). This level results in an initial


DNL of 60 dB(A) for this number of events. Nighttime events were then added.


The new DNL level and the percent awakened at least once, using the method of


the ANSI standard and the different awakening models (without time dependence),


was calculated for each additional nighttime event. The results of this simulation


are shown in Figure 3.4. When 110 nighttime events were added the DNL level
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Figure 3.3. The percent awakened in Fidell et al.’s surveys (red-
circles) and model predictions (blue-x). (a) Anderson and Miller
(2005), (b) Finegold and Elias (2002), (c) FICAN (1997), (d) Basner
et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f) Ollerhead
et al. (1992) model predictions.
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increased by about 5 dB while the percent awakened at least once varied from 30%


to approximately 98% depending on the awakening model that is used. The average


number of awakenings per individual as predicted by the different awakening models


are in Table 3.4. The awakening model by Basner et al. (2006) predicts on average


two noise-induced awakenings per person when there are 50 nighttime events.
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Figure 3.4. The effect of increasing the number of nighttime noise
events on DNL and percent awakened at least once. (a) Increase in
DNL and (b) increase in percent awakened at least once predicted
using different awakening models. Indoor SELA=57 dB(A).
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Table 3.4. Average number of awakenings per person. Highlighted in
dark gray are situations where on average approximately 0.5 awaken-
ings occur, light gray highlights where on average approximately one
awakening occurs. Events were all indoor SELA=57 dB(A).


Awakening Models/Number of Events 10 20 30 40 50
Anderson and Miller (2005) 0.03 0.06 0.10 0.13 0.16
ANSI Standard (2008) 0.12 0.26 0.38 0.50 0.65
Finegold and Elias (2002) 0.13 0.25 0.39 0.53 0.65
Passcher-Vermeer et al. (2002) 0.17 0.33 0.51 0.66 0.83
Ollerhead et al. (1992) 0.25 0.49 0.74 1.01 1.25
FICAN (1997) 0.32 0.64 0.95 1.27 1.60
Basner et al. (2006) 0.45 0.89 1.38 1.82 2.26


The results of this analysis demonstrate that a model other then DNL is needed


to predict the impact of noise on sleep. However, the method described in the ANSI


standard is not without limitations. Several airports have a large number of freight


aircraft operations at night and can have well over a hundred flights. Data that


was obtained for two US airports, for example, showed that there were 150 and 280


nighttime flights at these airports. In order to assess the predicted percent awakened


at least once for different noise levels and numbers of nighttime flights, the ANSI


method with the different dose-response relationships were used. The results are


shown in Figure 3.5. When there are greater than 100 nighttime events, the models


all predict that the entire population (100%) will be awakened at least once and that


there is no longer any noise level dependence. However, when the average number of


awakenings is predicted, there still is a noise level dependence. The results for the


average number of awakenings is shown in Figure 3.6.
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Figure 3.5. The percent awakened at least once for different numbers
of events from 1 (thin line) to 200 (thick line). Each line represents 1,
2, 5, 10, 20, 50, 100, 150, or 200 nighttime events. (a) ANSI standard
Model (2008), (b) Finegold and Elias (2002), (c) FICAN (1997), (d)
Basner et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f)
Ollerhead et al. (1992) model predictions.
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Figure 3.6. The average number of awakenings for different numbers
of events from 1 (thin line) to 200 (thick line). Each line represents 1,
2, 5, 10, 20, 50, 100, 150, or 200 nighttime events. (a) ANSI standard
Model (2008), (b) Finegold and Elias (2002), (c) FICAN (1997), (d)
Basner et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f)
Ollerhead et al. (1992) model predictions.
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3.4 Conclusions


Several models have been developed in order to predict the percent of the population


that is awakened from nighttime aircraft events. While these models are a better pre-


dictor of nighttime disturbance than using DNL, they are not without limitations.


There are significant differences in the predictions of various models even when re-


moving the FICAN and Basner et al. models. Also only the Passchier-Vermeer et al.


model predicted the behavioral awakenings in the Fidell et al. studies to any degree


of accuracy for noise event levels above an SELA indoor of 80 dB(A). Also the ANSI


standard was found to no longer predict differences in sleep disturbance for different


aircraft operations when the number of events was greater than 100. This is because


of the use of the percent awakened at least once. The use of the average number of


awakenings per person per night may be more useful especially for busier airports.
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4. MARKOV MODELS AND AIRCRAFT NOISE INDUCED SLEEP


DISTURBANCE


Aircraft noise not only causes an increase in awakenings, but also decreases the


amount of time spent in rapid eye movement (REM) and slow wave sleep (SWS)


(Griefahn, Robens, Bröde, and Basner, 2008b). These changes in sleep may be im-


portant to predict around airports, as they may lead to next day or long term health


effects. A more sophisticated model of sleep disturbance has been developed by Bas-


ner (2006) which would allow these changes in sleep structure to be predicted, however


this model does not have a dependence on noise level. A review of this model and how


a noise level dependence was introduced into the model is described. Comparisons


made between model predictions and survey data are also discussed.


4.1 Description of Markov Model


Basner’s (2006) Markov model is based on the data from a laboratory experiment that


was conducted at the German Aerospace Center between 1999 and 2003. 128 subjects


took part in the study. Sixteen were in the control group (no noise) and 112 were


in the experimental group. Each subject slept in the laboratory for 13 consecutive


nights. The first night was an adaptation night, subjects became acquainted with


sleeping in the laboratory setting, the second night was a no noise night which was


used to establish a baseline measurement of normal non-noise disturbed sleep. Nights


3 to 11 were noise experimental nights and nights 12 and 13 were no noise recovery


nights. For the experimental nights, the number of aircraft sound events varied from


4 per night to 128. For a given night, the events were evenly spaced in time and all
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events were of the same noise level. Playback of the events began after 11:00 pm, the


exact starting time though varied depending on the number of nighttime events. The


maximum noise levels used in the study ranged from a maximum noise level (LAmax


indoor) of 45 dB(A) to 80 dB(A). Polysomnography was used to measure sleep.


By using the data from the baseline and noise-exposure nights, the coefficients


for four Markov models were estimated. These sleep disturbance models predict the


probability of transitioning from sleep stage sj to stage si given the time of night (t


is measured in the number of 30 second epochs since the first occurrence of Stage 2,


and ranges from 1 to 820). The models are of the form:


pk(si|sj) = eak(si)+bk(si)t+ck(si,sj)∑5
i=0 e


ak(si)+bk(si)t+ck(si,sj)
(4.1)


where the subscripts i=0, 1, 3,...5, and j=1, 2, ...5. In the notation so refers to wake,


s1 to s4 refers to Stage 1 though Stage 4, and s5 refers to REM. The subscript k=1,


2, 3, 4 and refers to one of the four noise models. The inclusion of four noise models


came from an examination of the data and refer to: 1-no noise, 2-noise event just


begun, 3-flyover in progress, and 4-flyover just completed. Stage 2 is the reference


stage and so


ak(s2) = bk(s2) = ck(s2, sj) = 0. (4.2)


The data from the experiments were used to estimate the 4 x (5+5+25)= 140 co-


efficients by using a multinomial logistic regression model estimation process. Basner


used the CATMOD program in SAS to complete this estimation. For reference in


Appendix C a list of the estimated coefficients values for all four models are provided.


Using the Markov models and given the stage (sj) that a person is in, the time


of night, and what noise situation is occurring, the probabilities of moving to each


of the six stages can be computed, P0, P1,...P5, where the sum of the probabilities
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is equal to 1. A sample (X) from a random process uniformly distributed from 0


to 1 is generated and the sleep stage is determined as depicted in Figure 4.1. By


repeating this process for each 30 second interval during the night a hypnogram can


be generated, an example is shown in Figure 4.2. The sleep stage an individual is in


for each 30 second segment of sleep is indicated by the hypnogram. The probability


of being in each of the six sleep stages during the night, as predicted by the baseline,


no noise model, is shown in Figure 4.3.


Figure 4.1. Method for determining what sleep stage an individual is
in using Basner’s Markov model.


One limitation of the sleep structure model is that the noise models only take into


account whether an aircraft event occurred and not the level of the noise event. The


results from numerous studies, as discussed in Chapter 3 indicate that the degree


of disturbance will increase with level. Another problem is that for each model, 35


different coefficients had to be estimated. From the SAS CATMOD outputs, included


in Basner’s report (2006), the standard error of some of the parameters was infinite,


or the standard error was very large (e.g. greater than 50). The reason for this


high variance in the estimates is that some sleep transitions, such as the transition


from Stage 4 to Stage 1 do not occur very often. Therefore the probability of this


transition occurring is or is close to zero. An individual most likely will pass through


Stage 3 and Stage 2 on the way to Stage 1. Therefore, there was not enough data to
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Figure 4.2. Sleep hypnogram, the output of the sleep structure model
using the no noise model for one person.


estimate these coefficients. The coefficients that could not be estimated well due to a


low probability of the associated sleep stage transition occurring are listed in Table


4.1.


4.2 Modification of Sleep Structure Model


To overcome one limitation of Basner’s sleep structure model, a method of adding a


noise level dependence to the model was explored. This approach was meant to be a


first attempt at adding this dependence. A linear relationship was defined between


the noise level of an event (SELA) and the model coefficients. The linear models were


developed based on the baseline coefficient and the corresponding coefficient in the


noise models. It was assumed that for the baseline coefficients the noise level was


30 dB(A) which was the background noise level in the sleep rooms of the laboratory.


The noise level for the noise model coefficients was assumed to be 63 dB(A) which


is the mean SELA level of the aircraft events used in the laboratory study when
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Figure 4.3. (a) Probability of being in a particular sleep stage through-
out the night predicted using Basner’s baseline model. Stage 5 is
REM, Stages 3 and 4 are slow wave sleep, Stage 0 is awake. (b) A
close up of the plots for Stage 0, 1, 3, and 4.
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Table 4.1. Coefficients of Basner’s Markov models that were not es-
timated well due to a low probability of the transition occurring and
thus a lack of observations on which to make a good estimate of the
probability.


Model Coefficients
Baseline c(s4,s1)


c(s4,s5)
1st Noise Model c(s4,s1)


c(s5,s4)
c(s3,s5)
c(s4,s5)


2nd Noise Model c(s3,s1)
c(s4,s2)
c(s5,s4)
c(s3,s5)
c(s4,s5)


3rd Noise Model c(s4,s1)
c(s1,s4)
c(s5,s4)
c(s3,s5)
c(s4,s5)
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the number of people, number of events, and level of each event was considered. A


conversion from LAmax which was used in Basner’s study to SELA was performed


because most sleep models are based on SELA. The method for converting between


the two was defined by Pearsons, Barber, Tabachnick, and Fidell (1995), the relation


is defined as:


SELA = LAmax + 10log10(D10)− 3.7, (4.3)


where D10 is the duration of the event when it is within 10 dB of the maximum noise


level. An average value of D10 was assumed based on aircraft recordings and was


found to be approximately 9.5 seconds. Therefore 6 dB was added to the LAmax levels


to predict the SELA values.


The change in coefficients c(si,s1) with noise levels from 53 to 103 in increments


of 10 dB for the 4 different models are shown in Figure 4.4. The coefficients are for


transitions between Stage 1, s1 to five sleep stages (so, s1, s3, s4, s5). Recall that


s2 is the reference and therefore c(s2, s1) = 0. In Figure 4.5 through Figure 4.7 the


average transition probabilities for the entire night, for increasing noise levels from 53


to 103 in increments of 10 dB, for all three noise models are shown. For the first noise


model, most of the changes in the transition probabilities followed expected trends;


the probability of a transition from each sleep stage to Stage Wake increases with


noise level. The probability of a transition to deeper stages of sleep, such as Stage 3


and 4 decreases with noise level. There was one unexpected change with noise level;


the probability of transitioning from REM sleep to Stage 4 increased with high noise


levels in the first noise model. The value of the coefficient c(s4, s5) related to this


transition was therefore reduced, and it was made equal to the value of the coefficient


for the second noise model. For the second and third noise models, in general there


is an increase in transition probabilities to lighter stages of sleep with increased noise


levels. Some of the unexpected trends, such as the decrease in probability of remaining
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in Stage Wake in the second and third noise model, may be due to the fact that most


awakenings are brief and therefore individuals will fall back to sleep after the event.
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Figure 4.4. Change in coefficients c(si,s1) (i=0, 1, 3, 4, 5) with noise
level for transitions from Stage 1 to each sleep stage. Noise 1-First
noise model, Noise 2-Second noise model, and Noise 3-Third noise
model.


Once the noise level component was added to the model it was desired to determine


whether this model would still be a reasonable estimate of the original data of Basner’s


study. Therefore, a simulated dataset was created using the level dependent version
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Figure 4.5. Change in the transition probabilities of the first noise
model with noise level: (a) to (f) transitions to so thru s5 for each
stage. Bars further to the right are results for higher noise levels. The
bar all the way to the left is for the baseline model. Levels are SELA
= 53, 63, 73, 83, 93, and 103 dB(A). * denotes unlikely scenario.
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Figure 4.6. Change in the transition probabilities of the second noise
model with noise level: (a) to (f) transitions to so thru s5 for each
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Figure 4.7. Change in the transition probabilities of the third noise
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of Basner’s model. This simulation was conducted using the same number of people,


same number and timing of aircraft events, and the same noise level of the events.


From the simulated dataset the coefficients of Basner’s original model, i.e. the model


without noise level dependence, was estimated, by using the mnrfit command in


Matlab. The simulation was performed 40 times, and the mean value and the 5th


and 95th percentiles of the estimated coefficient values are shown in Figure 4.8. The


largest differences between the original and estimated parameters typically were for


the coefficients that were not estimated well in the original model (see Table 4.1).


These coefficients are indicated by black boxes in the figure. It is noted though that


these coefficients would be difficult to estimate even with a large quantity of data as


these transitions do not occur often in sleep, an example being a transition from Stage


1 directly to Stage 4. Also there was more variance in the estimation of parameters


when the current stage was Stage 3 and 4 and also for transitions to these stages


(Figure 4.8 (b) and (d) ).


4.3 Comparison of Markov Model Predictions to Behavioral Awakening US Survey Data


To further validate the modified version of Basner’s model, with incorporated noise-


level dependence, the model was used to create simulated responses for the same


event scenarios as those of the three US surveys conducted by Fidell et al. (1995,


2000). For this simulation the same number of people, events, timing of events, and


noise levels as in the original survey data were used. For the simulation, a definition


for a behavioral or conscious awakening had to be defined since sleep was measured


in the surveys by having subjects press a button when awakened. In one simulation


it was assumed that a conscious awakening occurred if the subject was awake for at


least two and a half minutes and in the other a conscious awakening was deemed to


have occurred if the subject was awake for at least 3 minutes. The awakenings were
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Figure 4.8. Coefficients of the first noise model. Basner’s Original
model coefficients (black triangles) and the estimated coefficients from
the simulated noise-level dependent model (gray squares). Bars show
the 5th and 95th percentile of estimates.
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required to start within 90 seconds or 3 epochs from the start of the noise event. An


example of the outcome for 2 simulations for both conditions are shown in Figure 4.9.


The model over-predicted the number of awakenings when a definition of two and


a half minutes was used for conscious awakenings. A better agreement was obtained


when a definition of three minutes was used. This demonstrates how comparing model


predictions to survey data is highly dependent on the definition of awakening that is


used. The Markov model with added noise dependence tracks the Passchier-Vermeer


et al. (2002) model predictions at higher SELA, but there appears to be less noise


level sensitivity in the actual survey data.


4.4 Comparison of Markov Model Predictions to Data from UK Study


While the number of subject nights was limited in the UK Study (Flindell et al., 2000),


predictions of sleep stages using Basner’s Markov model for the baseline laboratory


nights was made. To compare the predictions for baseline non-noise disturbed nights,


the data from nine laboratory subjects in the UK study was used. The probability


of being in NREM, REM, and Wake states was calculated for each 5 minute block of


time. The results are shown along with predictions using the baseline Markov model


in Figure 4.10.


The the probability of being in REM, NREM, and Wake stages calculated using


Basner’s Markov model followed the same trends as the predictions from the 1999


UK data. However the oscillating nature in the 1999 UK data, i.e. the probability


of NREM and REM sleep varying every 90 to 100 minutes, is clearly missing in the


Markov model predictions. The variation in probability of being in NREM and REM


sleep was present in the data used to create Basner’s Markov model. The values for


the probability of being in REM sleep for his study were extracted from a graph in


the report by Basner (2006) and are shown in Figure 4.11. For direct comparison







96


50 60 70 80 90 100
0


5


10


Indoor SELA


Pe
rc


en
t


A
w


ak
en


ed


(a)


50 60 70 80 90 100
0


5


10


Indoor SELA


Pe
rc


en
t


 A
w


ak
en


ed


(b)


50 60 70 80 90 100
0


5


10


Indoor SELA


Pe
rc


en
t


A
w


ak
en


ed


(c)


50 60 70 80 90 100
0


5


10


Indoor SELA


Pe
rc


en
t


A
w


ak
en


ed


(d)


Figure 4.9. The percent awakened in the three US studies (light gray
x) of Fidell et. al (1995, 2000) and that predicted by a modified
version of Basner’s model (dark gray circles) with 95% confidence
intervals, the percent awakened predicted by Passchier-Vermeer et
al.’s model (2002) is shown by the black dashed line. (a,b) A conscious
awakening was defined as lasting at least 2 and half minutes. (c,d) A
conscious awakening was defined as lasting at least 3 minutes.
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Figure 4.10. Baseline Markov model predictions of the probability of
being in Wake, REM, and NREM (red line). The estimated probabil-
ity of being in these sleep stages calculated using the 1999 UK sleep
data (blue circles).
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the results from the 1999 UK data are also shown again. The oscillations in Basner’s


data are less extreme than in the UK data but are clearly present.
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Figure 4.11. Comparison of Markov model predictions for the proba-
bility of being in REM (red line), and the probability of being in the
same sleep stages calculated using the (a) 1999 UK sleep data (blue
circles) and (b) extracted from Basner (2006) (blue circles).


The predicted time spent in each of the six sleep stages and the actual time spent


in the sleep stages for non-noise nights in the 1999 UK laboratory study are listed


in Table 4.2. The durations are based on the first 410 minutes of sleep. Using the


baseline component of Basner’s Markov model, simulations of the sleep of 9 people


were performed. This was repeated 100 times and the mean of those 100 simulations


and the standard deviation of the data are listed in the table. The amount of time
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spent in Stage 2 and Stage REM in the 1999 UK study are similar to the predictions.


However, in the UK study, more time was spent in Stage 1 and less time in Stage


4 than was predicted from the Markov Baseline model. Possible reasons for the


differences found are that the model is based on 128 nights of data while the UK data


used only consisted of 9 subject nights. In the UK study all subjects were between 30


to 40 years old. Subjects in Basner’s laboratory study ranged from 18 to 65 years old,


with a mean age of 38 years old. As individuals age less time is spent in Stage 4, but


it is unknown whether the younger subjects in Basner’s dataset may have affected


the results.


Table 4.2. Mean time spent in each sleep stage for baseline no noise
nights. The standard deviation of the data is in parenthesis.


Sleep Stage 1999 U.K. Data Basner Markov Model
(minutes) Predictions (minutes)


Wake 20.7 (15.7) 35.7 (2.9)
Stage 1 45.1 (18.1) 7.3 (1.7)
Stage 2 217.6 (25.7) 210.3 (3.9)
Stage 3 37.6 (12.7) 39.9 (2.9)
Stage 4 5.2 (12.9) 26.9 (1.7)
REM 83.7 (18.1) 90.3 (2.3)


4.5 Conclusions


A Markov model for predicting changes in sleep stages through the night was de-


veloped by Basner (2006). One limitation of the model is that it does not predict


changes in sleep for noise events of different noise levels. An initial attempt to add a


noise level dependence to the model was explored by varying the model coefficients


with noise level. Predictions of conscious awakenings obtained using the modified


form of Basner’s model were found to be similar to the percent awakened found in
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the US survey data. Not surprisingly, the results are dependent on the definition of


awakening that is used. Although the number of subjects nights of data from the UK


study is limited, the probability of being in REM, NREM, and Wake stages calculated


based on 9 nights of data were compared to predictions using Basner’s Markov model


and both followed similar trends. However, there were differences in the actual and


predicted time spent in the 5 NREM stages. There are many possible reasons for the


differences found. It may be useful to have a model that incorporates age groups,


noise sensitivity and other individual characteristics as variables. Although Basner’s


model represents a significant improvement over awakening models, there are still


deficiencies that need to be addressed if a goal is to have a more accurate predictor


of sleep structure. One approach would be to gather more data and make coefficients


more complicated functions of time and of other variables. Another approach would


be to look at more physical models of sleep and adapt those to incorporate the effects


of disturbances such as aircraft noise.
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5. NON-NOISE DISTURBED SLEEP MODELS


In this chapter sleep models that predict normal, non-noise disturbed sleep patterns,


are described. While Markov models and additional simplistic sleep pattern models


are reviewed the focus of this chapter is an examination of existing nonlinear dynamic


sleep models which can be used to predict the amount of slow wave activity, REM


sleep, and awakenings during the night. The attraction of the nonlinear models is the


ability to understand at a more fundamental level the dynamic properties of sleep.


These models were examined in order to determine a candidate model that could be


modified to predict the effect of aircraft noise on sleep. A parameter variation study


conducted for several of the nonlinear dynamic models is also described.


5.1 Markov Models


Basner’s model is the only Markov model that has been developed to predict the


impact of noise on sleep, however several other Markov models have been developed to


predict normal sleep patterns. Zung, Naylor, Gianturco, and Wilson (1965) developed


a Markov model based on the data from 14 subjects. They developed one model for


subjects who were 20 to 29 years old, another for those 30 to 39 years old, and a


combined model for those between 20 and 39 years of age. For each age group, there


is a transition probability matrix for each half hour of the night. These models do


not predict the probability of transitions between the sleep stages that are currently


used (e.g. NREM Stages 1 to 4 and REM). These models are based on an earlier


definition of sleep stages which were labeled A through E. A indicates lighter sleep


while E indicates deeper sleep. These stages were defined by Davis, Davis, Loomis,
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Harvey, and Hobart (1937). There is no stage corresponding to REM Sleep. When


performing simulations with the model they assigned one sleep stage to each 3 minute


interval rather than to each 30 second epoch as Basner did in his Markov model. The


probabilities of being in a particular sleep stage during the night are shown in Figure


5.1. The probability of being in a sleep stage as predicted by Basner’s Baseline Markov


model (2006) is also shown for comparison. The probabilities through time for Zung’s


model are not smooth functions since there is a different probability matrix used for


each 30 minute block of sleep. Zung’s model predicts a much greater probability of


awakening (Stage A) at the end of the night than what is predicted by Basner’s model.


Basner’s model though was limited to 410 minutes of the sleep period. For Zung’s


model the probability of being in Stage B is much higher than the probability of being


in Stage 1. However, Stage B means there is no alpha activity therefore it includes


Stage 1, Stage 2 when there is no sleep spindles, and REM sleep. The prediction


for Stage E, or the deepest sleep is much greater at the beginning of the night than


predicted by Basner’s model. However, this stage incorporates part of Stage 3 as


well as Stage 4. Due to differences in sleep stage definitions it is difficult to make


comparisons between predictions of Basner’s and Zung et al.’s models. However, both


follow some similar trends: the probability of deep sleep decreases during the night


and lighter sleep increases.


Kemp and Kamphuisen (1986) also developed a Markov model to simulate sleep


hypnograms. Their model is based on the data of 23 subjects, 2 nights of data per


subject. They determined the number of transitions between sleep stages from Stage


si to Stage sj per second during a specific time interval (transition rates). For each


sleep stage transition, 32 transition rates, one for each 15 minute interval of the night,


was calculated. The average transition rates calculated for the entire night are shown


in Table 5.1. For comparison, the average transition rates for Basner’s baseline model
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Figure 5.1. (a) Probability of being in a particular sleep stage through-
out the night, from Zung et al.’s model: (light gray) model for 20-29
yr olds, (dark gray) model for 30-39 yr olds, and (black) model for
20-39 yr olds. (b) Probability of being in a particular sleep stage
throughout the night predicted using Basner’s baseline model.
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were estimated and are in Table 5.2. The largest difference between the two models


is that Basner’s model predicts that transitions from Stage 4 to Stage Wake happen


more often than transitions from Stage 4 to Stage 2; Kemp and Kamphuisen’s model


show the opposite. Also for Basner’s model, the transition from one of the 6 sleep


stages to Stage Wake was either the highest transition rate or the second highest


transition rate.


Table 5.1. Average (entire night) transition rates from Stage si to
Stage sj for Kemp and Kamphuisen’s model (1986): (dark gray) high-
est transition rate, (light gray) second highest transition rate.


si/sj 0 5 1 2 3 4
0 - 0.000149 0.007771 0.000130 0.00000 0.000000
5 0.000221 - 0.001409 0.000338 0.000000 0.000003
1 0.001363 0.003211 - 0.011243 0.000000 0.000000
2 0.000249 0.000405 0.001069 - 0.001033 0.000000
3 0.000137 0.000026 0.000231 0.005195 - 0.003734
4 0.000028 0.000000 0.000028 0.000198 0.005777 -


Table 5.2. Average (entire night) transition rates from Stage si to
Stage sj for Basner’s baseline model (2006): (dark gray) highest tran-
sition rate, (light gray) second highest transition rate.


si/sj 0 5 1 2 3 4
0 – 0.000179 0.000266 0.000474 0.000007 0.000000
5 0.000266 – 0.000028 0.000184 0.000000 0.000000
1 0.000072 0.000028 – 0.000276 0.000000 0.000000
2 0.000500 0.000281 0.000082 – 0.000568 0.000015
3 0.000059 0.000004 0.000000 0.000471 – 0.000285
4 0.000035 0.000000 0.000000 0.000020 0.000244 –


Yang and Hursch (1973) argued that Markov models like the ones developed by


Zung et al. (1965) and Kemp and Kamphuisen (1986) are inadequate for modeling


sleep. For a Markov model, the cumulative distribution for the length of time spent
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in a given stage should follow an exponential distribution. However, Yang and Hursch


(1973) found that their data did not follow this distribution. They instead developed


a Semi-Markov model in which the cumulative distribution of transition times can


follow any distribution. They assumed that the distribution was independent of the


stage that was being transitioned to, it only depended on the stage an individual was


currently in. Also they assumed that transitions could only occur between adjacent


stages. For example, a transition could be made from Stage 3 to Stage 2 or from


Stage 3 to Stage 4. However, a transition can not occur from Stage 3 directly to


Stage 1. Due to this assumption the probability of transitioning from Stage 3 to


Stage 2 is just 1 minus the probability of transitioning from Stage 3 to Stage 4.


These assumptions reduced the number of transition probabilities to 3 (pji is the


probability of transitioning from Stage j to Stage i): p12, p34, p23. They assumed that


the transition probabilities were constant over 1 hour. Also the probability p12 was


determined to be constant throughout the entire night. The transition probabilities


they determined for subjects between the ages of 30 to 39 years old are listed in Table


5.3. The probability for the transition p34 was only defined in the article up to hour


5.


Table 5.3. The transition probabilities for the Semi-Markov model
developed by Yang and Hursch (1973).


Hour p23 = p34 = p12 =
1− p21 1− p32 1− p10


1 0.63 0.51 0.853
2 0.3 0.33 0.853
3 0.4 0.35 0.853
4 0.14 0.28 0.853
5 0.16 0.39 0.853
6 0.1 — 0.853
7 0.04 — 0.853
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5.2 Simple Dynamic Models


There are several simple models that have been developed to predict sleep patterns


and processes regulating sleep, such as a force that pulls an individual from an awake


state to sleep. These models are briefly described.


5.2.1 Sleep Patterning Model


A simple model developed by Lawder (1984) is composed of a line with a negative


slope and a triangular waveform which are used to predict when certain sleep stages


will occur. When a defined triangular waveform is above the ramp REM sleep is


predicted, when the triangular waveform is below the ramp and the ramp exceeds


the triangular waveform by 70 arbitrary units, Stages 3/4 is considered to occur,


otherwise Stages 1/2 are predicted. The increase in duration spent in REM sleep


during the night is predicted by this model as well as the cycling between NREM and


REM sleep during the night. The ramp starting height and slope could be changed


to predict sleep for different age groups. Lawder (1984), for example, stated that a


lower initial value of the ramp and a smaller slope could be used to predict the sleep


of children as this would lead to a greater amount of REM sleep. An example of an


output of the model is shown in Figure 5.2.


5.2.2 Sleep Package Model


Kobayashi (1994) developed a model which he referred to as the Sleep Package Model.


The model can be used to predict the time out of 100 minutes that is occupied by


Stage 2, REM, or SWS (slow wave sleep). The amount of REM sleep is determined


by the circadian rhythm. The circadian rhythm is the 24-hour variation in biological


processes, such as the temperature, of the human body. For this model, the circadian
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Figure 5.2. Example of the results obtained from one simulation with
Lawder’s Model (1984). (a) The ramp (red-dotted line) and triangular
waveform (blue-solid line) and (b) estimated sleep stages.


rhythm is modeled with a sinusoidal term with a period of 24 hours. The percent of


a 100 minute time frame that is occupied by REM sleep is defined as,


%REM = 10sin(24t+ θ) + 40. (5.1)


From the results of an experiment they conducted, they found that the total


amount of SWS during the night increases with the amount of prior wakefulness
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before the sleep period in a logarithmic fashion. The equation for the total amount


of SWS during the night is defined by the equation,


SWS(Tw) = a log(b Tw + 1), (5.2)


where Tw is the duration of prior wakefulness before the sleep period. The amount of


SWS during each 100 minute interval of sleep is based on a linear decreasing function,


there is less SWS at the end of the night,


SWS = (ct+ d)SWS(Tw). (5.3)


The amount of Stage 2 sleep is just the difference between 100 minutes and the


amount of SWS and REM sleep. None of the values for the coefficients of the model


were defined in the paper by Kobayashi (1994). This model like the model developed


by Lawder (1984) involves many assumptions including the number of sleep cycles


during the night.


5.2.3 Random Walk Sleep Model


Lo, Nunes Amaral, Havlin, Ivanov, Penzel, Peter, and Stanley (2002) developed a


model which predicts sleep and wake states. The model is based on 39 nights of data,


from 20 subjects. They calculated the cumulative distributions for the durations of


sleep states and wake states during the night. They determined that the cumulative


distribution for the duration of wake states followed a power law,


P (tw) = t−αw , (5.4)
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while the duration of sleep states followed an exponential distribution,


P (ts) = e−ts/τ . (5.5)


They found that the value of α of the power law did not change with time from sleep


onset, but the value of τ in the exponential distribution of Equation (5.5) did. It was


determined that the length of Wake states increase toward the end of the night. They


also assumed that there is a restoring force which pulls a person back to sleep if they


have entered an awake state. However, the strength of this force decreases the longer


an individual is awake. Based on these assumptions they developed a random walk


model. They decided to use a random walk model because they thought it would


account for the random competition between the firing of sleep promoting neurons


and sleep inhibiting neurons. When x is less than 0 an individual is considered to be


in a sleep state, and the equation for the model is,


x(t+ 1)− x(t) = ε(t), if −Δ ≤ x(t) ≤ 0 (sleep). (5.6)


When x is larger than 0, an individual is considered to be in an awake state and the


equation for the model is,


x(t+ 1)− x(t) =
−b
x


+ ε(t), if x(t) > 0 (wake). (5.7)


In the Equations (5.6) and (5.7), ε(t) is a Gaussian distributed random variable with


zero mean and unit standard deviation. The value of Δ and b can be altered in order


to match the cumulative probability distributions for the duration of sleep and wake


states. The equation,


α = 1/2 + b, (5.8)
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relates b, which is the term for the restoring force, to α, which is the coefficient in the


power distribution. The equation,


τ = Δ2, (5.9)


relates Δ, which limits the minimum level of x, to τ , which is the coefficient in the


exponential distribution. An example of an output simulated using Lo et al.’s model


is shown in Figure 5.3. The results are only plotted for 6 hours of sleep because only


three different values of Δ were defined for the model, one for each two hours of sleep.
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Figure 5.3. Example of the results obtained from one simulation with
Lo et al.’s model. (a) Output of model and (b) classification of sleep
stages.
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To calculate the probability of awakening as predicted by Lo et al.’s model, 1000


simulations were performed. The result is shown along with the probability of being


awakened predicted using Basner’s baseline model (2006) in Figure 5.4. The model


by Lo et al. predicted a lower probability of awakening than Basner’s baseline model


but by decreasing the values of Δ, a better agreement between the two models was


able to be obtained.
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Figure 5.4. (a) Predicted probability of awakening using Lo et al.’s
model for (black) original values of Δ and (gray) decreased values of
Δ. (b) Predicted probability of awakening using Basner’s Baseline
Markov model.


5.3 Flip-Flop Sleep-Wake Nonlinear Dynamic Models


There are two primary approaches in modeling the oscillation between sleep and wake


states during 24 hour periods and NREM and REM sleep during the night. One


approach, defined by Lu, Sherman, Devor, and Saper (2006) involves modeling the


control of REM sleep as a flip-flop switch. In their descriptive model there are two
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distinct states, one associated with high levels of REM promoting neuron activity


and another related to high levels of REM inhibiting neuron activity. Each group


of neurons will inhibit the other and thus are self exciting as they will disinhibit


and reinforce their own firing rate. The state an individual is in is dependent on


the balance of inhibition between the two states (Fort, Bassetti, and Luppi, 2009). A


descriptive flip-flop switch model for sleep and wake states has also been developed by


Saper, Chou, and Scammell (2001). Two mathematical models based on the concept


of the flip-flop switch have been developed and will be described.


5.3.1 Phillips and Robinson’s Sleep-Wake Model


Phillips and Robinson (2007) modeled the behavior of neuron activity that leads to


sleep and wake states during a 24 hour period. One population of neurons they


modeled are monoaminergic (MA) neurons which are found in the brain stem. This


group of neurons have a high firing rate during wake states and a lower firing rate


during sleep. The second group of neurons are found in the ventrolateral preoptic


area (VLPO) and have a high firing rate during sleep and a low firing rate during


wake states. The homeostatic and circadian drives act on the VLPO population in


the model. The homeostatic drive is an indication of the need for sleep and increases


during the day and decreases during the night. The equations for the two neuron


populations are,


V̇vτv + Vv = νvmQm +Do
v +ΔDv, (5.10)


and,


V̇mτm + Vm = νmvQv +Do
m +ΔDm, (5.11)
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where the subscript v refers to the VLPO neurons and the subscript m refers to the


MA neurons. In the equations V is the cell body potential and Q is the mean firing


rate of the neurons. The equation for Qj, j=m or v is:


Qj =
Qmax


1 + exp(−(Vj − θ)/σ)
. (5.12)


The circadian (C) and homeostatic (H) terms of the model cause an increase in


the VLPO population potential and this is modeled by:


Do
v = νvcC + νvhH, (5.13)


where the equation for the circadian term is,


C(t) = sinωt+ co, (5.14)


and the homeostatic term is defined by,


χḢ +H = μQm. (5.15)


The values for the model parameters are in Table 5.4. The behavior of the model


follows the concept of sleep neuron activity behaving like a flip-flop circuit. The two


populations of neurons are mutually inhibiting and it is the circadian and homeostatic


terms that lead to the imbalance in firing and the rapid transitions between the two


states. An example an output of the model, that was simulated, is shown in Figure


5.5.
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Figure 5.5. An example of an output of Phillips and Robinson’s model
(2007). (a) Vv the cell potential for VLPO neurons, (b) Vm, the cell
potential for MA neurons, (c) the Homeostatic Process and (d) the
Circadian Process.
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Table 5.4. Values of the model parameters for the Fulcher, Phillips
and Robinson sleep model (2008).


Model Parameter Value
Qmax 100 s-1


θ 10 mV
σ 3 mV
A 1.3 mV
νvm -2.1 mVs
νmv -1.8 mVs
νvh 1 mVnM-1


νvc -2.9 mV
μ 4.4 nMs
χ 45 h
τm 10 s
τv 10 s
co 4.5


5.3.2 Rempe, Best, and Terman’s Sleep Model


Rempe, Best, and Terman (2010) also developed a sleep model based on the flip-flop


concept of sleep regulation. However, unlike the Phillips and Robinson (2007) model


they also modeled NREM and REM activity. The basic form of the model equations


for wake (xA, yA) are,


δAẋA = fA(xA, yA)− IV + IA, (5.16)


ẏA = gA(xA, yA), (5.17)


and the equations for xV (sleep promoting activity) are defined in a similar manner,


δV ẋV = fV (xV , yV )− IA + IV , (5.18)


˙yV = gV (xV , yV ), (5.19)
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where f(x, y) and g(x, y) are defined as,


f(x, y) = 3x− x3 + 2− y, (5.20)


g(x, y) = ε(γH∞ − y)/τ(x), (5.21)


and H∞ is a Heaviside function. The aminergic (AMIN) wake promoting neurons


are inhibiting the VLPO sleep promoting neurons, as is expected from the flip-flop


concept of sleep modeling. As there are numerous equations for this model, the entire


set of equations are not listed here but refer to Rempe, Best, and Terman (2010). The


form of the equations for the NREM and REM promoting neurons are similar to those


listed for wake and sleep, in that the two neuron populations are mutually inhibiting.


Circadian and Homeostatic terms in the model largely control the switch from sleep


to wake. The switch between NREM and REM sleep is partly controlled through one


type of VLPO neuron, the extended eVLPO, which inhibits NREM activity. When


the level of eVLPO decreases, NREM sleep is activated. An example of the output of


the model simulated using the full model given in Rempe, Best, and Terman (2010)


is shown in Figure 5.6.


5.4 Reciprocal Interaction REM Models


McCarley (2007) argued against the flip-flop models for REM sleep regulation. He


stated that the model of Lu, Sherman, Devor, and Saper (2006) did not state what the


external force is that will lead to an imbalance in REM promoting and REM inhibiting


activity which causes the switch, between the two states. Another comment made


by McCarley is that transitions from one stage to another are not immediate. It is


evident from EEG, and other sleep data, that there are short periods of transitions


between sleep states. McCarley instead stated that REM sleep regulation is controlled







117


0 5 10 15 20 25 30 35 40 45
−5


0


5
(a)


Time (hours)
x A


 &
 x


v


0 5 10 15 20 25 30 35 40 45
−5


0


5
(b)


Time (hours)


x A
,x


N
, &


 x
R


16 18 20 22 24 26 28
−5


0


5
(c)


Time (hours)


x A
,x


N
, &


 x
R


16 18 20 22 24 26 28
NREM


REM


Wake
(d)


Time (hours)


Figure 5.6. An example of the output of Rempe, Best, and Ter-
man’s model (2010). (a) Firing rate of aminergic wake promoting xA


(black) and VLPO sleep promoting xV neurons (red dashed line), (b)
firing rate of wake promoting xA (black), NREM sleep promoting xN


(red dashed line) and REM sleep promoting xR neuron activity (light
gray),(c) firing rate of wake promoting xA (black), NREM sleep pro-
moting xN (red dashed line) and REM sleep promoting xR neuron
activity (light gray) between 15 and 28 hours, and (d) scored sleep
stages between 15 and 28 hours.


by the reciprocal interaction between REM promoting and REM inhibiting neuron


activity. Two models of this reciprocal interaction have been developed and both


are described. These models seemed to represent the best approach for modeling


REM sleep patterns for normal sleep and have a structure that could be adapted
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to incorporate effects of noise disturbance. Therefore they are examined in greater


detail than the models that have previously been discussed.


5.4.1 McCarley and Hobson Lotka-Volterra REM Sleep Model


McCarley and Hobson (1971) examined the firing of neurons in the brain during dif-


ferent stages of sleep. The results were used to develop the REM Sleep Reciprocal


Interaction Model. To determine which neurons are related to REM sleep they com-


pared the firing rates of different neurons in cats during REM, NREM, and Wake


periods. They measured the rate of firing for 69 neurons in 4 different areas; giganto-


cellular tegmental field (FTG), tegmental fields adjacent to FTG, tegmental reticular


nucleus, and the pontine gray matter. They found that firing rates in the FTG cells


are greater in REM sleep than in Wake or NREM sleep. This trend was not found


in the other cells examined. Therefore, they hypothesized that the FTG cells may


excite REM sleep.


Hobson, McCarley, and Wyzinski (1975) further examined individual neuron fir-


ings in cats. They found that some LC (locus coeruleus) cells had firing rates that


were opposite to those of the FTG cells. Thirteen of 21 LC cells showed a decrease


in firing in REM sleep compared to NREM and Wake states. Eight out of the 21


LC cells showed similar trends to those of the FTG cells. It was stated that there


must be two types of LC cells. There are LC cells that are related to the excitation


of REM sleep and those cells related to the inhibition.


McCarley and Hobson (1975) wanted to model the reciprocal interaction found


between some of the LC cells and the FTG cells. They found evidence that the rate of


change of activity of the FTG cells is dependent on the current level and is excitatory


while the LC cell activity is also dependent on the current level but in an inhibitory


fashion. The firing rate of the neurons was non-sinusoidal in behavior, which they
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assumed must be due to an interaction between the FTG and LC cells. They decided


to model this as a multiplication of the terms representing the FTG and LC cells.


The resulting equations they used are known as the Lotka-Volterra equations, X is


the level of activity of the FTG or REM promoting (REM-ON) cells and Y is the


level of activity of the LC or REM inhibiting (REM-OFF) cells. The two equations


of the model are,


Ẋ = aX − bXY, (5.22)


Ẏ = −cY + dXY, (5.23)


where a, b, c, and d are positive constants. These equations can also be written as:


Ẋ + γ1X = 0, (5.24)


where γ1 = (bY − a). If (bY − a) ≈ constant, then X ≈ e−γ1t and


Ẏ + γ2Y = 0, Y = e−γ2t, (5.25)


where γ2 = (c− dX). If (c− dX) ≈ constant, then Y ≈ e−γ2t.


When γ1 or γ2 are less than 0, there is an increase in activity, and when γ1 or γ2 are


greater than zero there is a decrease in neuron activity. If Y decreases γ1 becomes


negative and X increases, but if X gets too large γ2 becomes negative and Y increases


causing γ1 to become positive and X decays.


The Lotka-Volterra equations have been extensively studied (Strogatz, 2000), they


are often also referred to as Predator-Prey equations. The equilibrium points of the


equations can be found by setting the left hand sides of the Equations (5.22) and


(5.23) equal to zero. The stability of the equilibrium points can be determined by
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calculating the Jacobian J and determining the eigenvalues (λ) for each equilibrium


point (Strogatz, 2000),


J =


⎡
⎢⎣ a− bY −bX


dY −c+ dX


⎤
⎥⎦ . (5.26)


The equilibrium point at the origin has one positive and one negative eigenvalue,


X = 0, Y = 0, λ = a, −c, (5.27)


and is therefore a saddle point and unstable. The other equilibrium point has two


imaginary eigenvalues,


X =
c


d
, Y =


a


b
, λ = ±i√ca, (5.28)


and is therefore a center. The solution in the phase plane is a set of ellipses. Each


elliptical path is neutrally stable. There is a different path for each set of initial


conditions.


The dependence of the solution on initial conditions can be more clearly seen by


obtaining an intrinsic solution for the Lotka-Volterra equations,


dY
dt
dX
dt


=
(−c+ dX)Y


(a− bY )X
. (5.29)


The solution is,


a ln(Y )− bY + c ln(X)− dX + C(Xo, Yo) = 0, (5.30)


where C(Xo, Y o) is a constant dependent on the initial conditions and is equal to,


−a ln(Yo) + bYo − c ln(Xo) + dXo. (5.31)
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and ln denotes loge. When the initial conditions are varied the different solutions in


the phase plane can be clearly distinguished. The initial conditions for both X and Y


were varied from 0.5 times the original value (Xo=1, Yo=4.5) to 1.5 times the original


value in increments of 0.25 in order to emphasize the differences in the solution paths.


The obtained solutions for different initial conditions in the phase plane are shown in


Figure 5.7 and in the time domain in Figure 5.8. The initial conditions of the solution


clearly have a large effect on the solution both in the magnitude and period of the


response.
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Figure 5.7. Solutions in the phase plane for different initial values of
REM-ON (X) and REM-OFF (Y ) activity.


The effect of varying the parameters of the model, in addition to varying the


initial conditions was also examined. The values for the coefficients in the report by


McCarley and Hobson (1975) were used. The coefficients are listed in Table 5.5. The


Lotka-Volterra equations can be rescaled, the equation for X becomes,


x = (d/c)X, ẋ = a(x− xy), (5.32)
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Figure 5.8. REM-ON (X) (green/light gray) and REM-OFF (Y )
(blue/black) activity for different initial conditions, (a) 0.5 times the
original initial conditions, (b) the original initial conditions, and (c)
1.5 times the original initial conditions.
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and the equation for Y becomes,


y = (b/a)Y, ẏ = c(−y + xy). (5.33)


Therefore, according to McCarley and Massaquoi (1986) the dynamic behavior of the


equations is dominated by the a and c terms and b and d just scale the responses. In


Table 5.5 the coefficients for a and b, and c and d are equivalent. Despite the ability


to simplify the equations, the effect that varying all four coefficients (a, b, c, and d)


has on the solution was examined because the intersection of the X and Y curves


(affected by b and d) is used to define REM thresholds.


Table 5.5. Coefficients of the REM Reciprocal Interaction model (Mc-
Carley and Hobson, 1975).


Coefficient Original Value
a 0.3029
b 0.3029
c 0.1514
d 0.1514
Xo 1.0
Y o 4.5
Phase 2.3


In the absence of Y , the coefficient a determines the exponential growth of X


(REM-ON) activity. An increase in a will increase the growth rate of X. This


increase in X will also increase the growth of Y . These changes are shown in Figure


5.9. The result is that when a is increased the number of REM cycles increase and


the length of REM sleep during a given cycle decreases. The duration of REM sleep is


defined by a threshold. The threshold level is based on the point at which REM-OFF


activity intersects REM-ON activity as depicted in Figure 5.10.
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Figure 5.9. Results for different values of a, (a) a = 0.75 times the
original coefficient, (b) a = the original coefficient value, and (c) a =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the decrease
in the X-Y period with increased a.
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Figure 5.10. Example of how the threshold for REM sleep is deter-
mined. REM-ON (X) (green) and REM-OFF (Y ) (blue).
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The coefficient b determines the inhibiting effect that Y (REM-OFF) cells have


on the level of X (REM-ON) activity. When b is increased the rate of increase of X


(REM-ON) activity decreases, therefore the first cycle occurs later and the number


of REM cycles decreases. Increasing b will also decrease the rate of increase of Y


(REM-OFF) activity. The result is that the duration of REM sleep during a given


cycle will increase, which is shown in Figure 5.11.


The coefficient c determines the inhibiting effect that the activity of Y (REM-


OFF) cells have on themselves. If the value of c is increased, this leads to an increase


in the decay rate of Y . The level of Y activity becomes low which is why in Figure 5.12


the X (REM-ON) activity grows to a higher level when c is increased. An increase


in the coefficient c also results in an increase in the number of REM cycles and an


increase in the duration of REM sleep for one cycle.


The coefficient d determines the excitatory effect of X (REM-ON) cells on Y


(REM-OFF) cells. This coefficient affects the rate of growth of the Y (REM-OFF)


activity. An increase in d will cause an increase in Y activity which results in a de-


crease in the level of X (REM-ON) activity, which is shown in Figure 5.13. Increasing


d also results in a decrease in the duration of REM sleep for one cycle.


From varying all of the coefficients in the Lotka-Volterra equations, it was found


that changing the level of coefficients had an affect on the number of REM cycles


during a given period of time. Also the duration of REM sleep during one sleep cycle


changed. Coefficients a and d caused a decrease in duration of REM sleep for one


cycle, while the coefficients b and c caused an increase. The change in the duration


of REM sleep for one sleep cycle when the model coefficients were varied is listed in


Table 5.6.
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Table 5.6. Duration of REM sleep and period of X in minutes for
different coefficient values. (See Table 5.5 for original values of a, b,
c, and d).


Coefficient 0.75 times the Original Value 1.25 times the
Original Value Original Value


R
E
M


D
u
ra
ti
on a 6.4 5.1 4.3


b 4.5 5.1 5.5
c 5.0 5.1 5.2
d 6.1 5.1 4.4


R
E
M


P
er
io
d


a 58.4 45.0 36.9
b 38.3 45.0 52.2
c 55.9 45.0 38.5
d 45.1 45.0 45.1
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Figure 5.11. Results for different values of b, (a) b = 0.75 times the
original coefficient, REM duration = 4.5 minutes and REM period =
38.3 minutes, (b) b = the original coefficient value, REM duration =
5.1 minutes and REM period = 45.0 minutes and (c) b = 1.25 times
the original coefficient, REM duration = 5.5 minutes and REM period
= 52.2 minutes. REM-ON (X) (green) and REM-OFF (Y ) (blue).
See Table 5.5 for original values. Note the increase of the X-Y period
with increased b.


5.4.2 REM Limit Cycle Reciprocal Interaction Model (LCRIM)


McCarley and Massaquoi (1986) updated the REM Reciprocal Interaction model.


One of the primary reasons for updating the model was that the behavior of the
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Figure 5.12. Results for different values of c, (a) c = 0.75 times the
original coefficient, (b) c = the original coefficient value, and (c) c =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the decrease
in the X-Y period with increased c.


Lotka-Volterra model is highly dependent on the initial conditions. They decided


to model the reciprocal interaction of REM neuron activity as a limit cycle model.


The solutions for a limit cycle model are a group of spirals that all converge to the


same path (Strogatz, 2000) unlike the Lotka-Volterra equations. Initial conditions


determine whether the limit cycle is approached from the interior or exterior.
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Figure 5.13. Results for different values of d, (a) d = 0.75 times the
original coefficient, (b) d = the original coefficient value, and (c) d =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the small
change in the X-Y period with increased d.


The difference between the Limit-Cycle model and the Lotka-Volterra model that


was previously described is that the coefficients a and b are now functions of the level


of X (REM-ON activity) and there are two saturation functions that have been added


which limit the growth of X and Y activity. The Limit-Cycle model equations are,


Ẋ = a(X)S1(X)X − b(X)XY, (5.34)
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Ẏ = −cY + dcircS2(Y )XY, (5.35)


a(X) = 2− 1.8


(
1− 1


1 + e−4(X−0.5)


)
, (5.36)


b(X) =
2


1 + e−80(X−0.1)
, (5.37)


S1(X) = 1− 1.4


(
1


1 + e−0.8(X−2.5)


)
+ 0.167, (5.38)


S2(Y ) = 1− 1.5


(
1


1 + e−20(Y−2)


)
. (5.39)


The term dcirc in Equation (5.35) accounts for the circadian variation in sleep.


It is a sinusoidal function with a period of 24 hours. Each of the coefficients and


saturation functions are shown in Figure 5.14. The function a(X) reduces the growth


rate of X when the level of X is low. Therefore a(X) decreases the level of X and


Y for the first cycle, but it will cause a large increase in level of X and Y for the


second cycle because a low level of Y will lead to an increase in the growth of X. The


purpose of b(X) is to prevent the level of X activity from decaying to zero. When X


is low the second term, b(X)XY in Equation (5.34), will also be low and will be less


than the first term in the equation. S1(X) limits the growth of X and S2(Y ) limits


the growth of Y .


The effect of the term dcirc on the solution was examined. This circadian term


affects the growth rate of Y . When the phase is changed so is the number of REM


cycles. Also a change in phase will result in each REM period having a different


duration. Without dcirc, the duration of each REM cycle would be the same. For the


results shown in Figure 5.15 (a) the duration of the first REM cycle is 18.7 minutes,


the duration of the second cycle was 25.2 minutes, the third cycle was 28.3 minutes,


and for the fourth REM cycle the duration was 30.0 minutes.







132


0 1 2 3
0


1


2


3


REM−ON (X)


a(
X


)


(a)


0 0.5 1
0


1


2


3


REM−ON (X)


b(
X


)


(b)


0 1 2 3 4
0


0.5


1


1.5


2


REM−ON (X)


S 1(X
)


(c)


0 1 2 3
0


1


2


REM−OFF (Y)


S 2(Y
)


(d)


Figure 5.14. Coefficient and saturation functions for the REM Limit
Cycle Reciprocal Interaction model; (a) a(X), (b) b(X), (c) S1(X),
and (d) S2(X).


5.5 Two Process Model of Slow Wave Activity


In addition to models of REM sleep there are also models that have been developed


to predict slow wave activity during the night which is related to the depth of sleep.


A model developed by Achermann and Borbély (1990) is referred to as the Two


Process Model. This model is based on the results of laboratory studies by Borbély,


Baumann, Brandeis, Strauch, and Lehmann (1981) in which they measured sleep


using polysomnography for two baseline nights and for two recovery nights following


40.5 hours of sleep deprivation. They found that during the recovery night there was a


greater need for sleep which resulted in an increase in slow wave activity particularly in


the first sleep cycle. Slow wave activity is measured by calculating the power between


0.5 and 4.5 Hz in the EEG signal. They also found that there was an exponential


decay in the amount of slow wave activity during the night. These two observations


serve as the foundation of the Two Process Model.
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Figure 5.15. Solutions for a different phase of dcirc; (a) 0.5 times
the original phase, (b) original phase = 2.3, and (c) 1.5 times the
original phase. REM-ON (X) (green/light gray) and REM-OFF (Y )
(blue/black).
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One process accounted for in the model is the Homeostatic process, called Process


S, which increases while an individual is awake and decreases during sleep. The longer


a person is awake the greater their need for sleep and the greater the level that Process


S is at the beginning of the sleep period. The decay of Process S is approximately


exponential, but is dependent on the level of slow wave activity (SWA). The equation


for Process S is,


Ṡ = −gc SWA. (5.40)


The model also predicts the amount of slow wave activity (SWA). The level of slow


wave activity varies during the night in cycles, it increases when an individual is in


Stage 3 or 4 and decreases when the individual is in REM sleep or Stages 1 and 2.


The equation for slow wave activity is,


˙SWA = rc SWA


(
1− SWA


S


)
− fc SWA REMT + SWA n(t). (5.41)


The values for the coefficients of the model are in Table 5.7, and So and SWAo are


the values of S and SWA, respectively, at the start of sleep (t=0). In Equation (5.41)


n(t) is Gaussian random noise with a zero mean and a standard deviation of 0.2. The


term REMT refers to a REM trigger. This trigger is equal to 1 during REM sleep


and 0 during NREM sleep. The REM trigger causes the level of slow wave activity


to increase when REM sleep is not occurring and to decrease when REM sleep is


occurring.


An estimate of the timing of REM sleep (REMT ), that was used for simulations,


was obtained from the data of the 1999 UK study (Flindell et al., 2000). The dataset


includes information on the sleep stages each subject was in during the night. There-


fore, the time when an individual is in REM sleep and not in REM sleep could be


determined. The value of REMT was set equal to 1, 12 minutes before REM sleep
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Table 5.7. Coefficients of the Two Process Model (Achermann and Borbély, 1990).


Coefficient Original Value
rc 0.2
fc 0.4
gc 0.008
So 0.624
SWAo 0.007


began in the data so that a decrease in slow wave activity could occur before the on-


set of REM sleep. This procedure was also done by Achermann and Borbély (1990).


Figure 5.16 contains an example of results obtained using Achermann and Borbély’s


model, using the timing of REM sleep, determined for two different subjects in the


UK study. The values of REMT were rescaled in this plot for viewing purposes only.
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Figure 5.16. Example of results from Achermann and Borbéy’s Two
Process Model (1990). Process S (Green), slow wave activity (SWA)
(Blue), and scaled REMT (Red). (a) Example 1 and (b) Example 2.
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In order to further understand the model a parameter variation study was con-


ducted. The term for Gaussian noise (n(t) in Equation (5.41)) was not included when


results were obtained in order to better demonstrate the effect that each individual


coefficient has on the solutions. For the parameter variation study, the nonlinear


equations were solved by using the ode45 solver in Matlab.


In Equation (5.41), rc is the rise constant. The original value was varied from 0.8


times the original value to 1.2 times the original value in increments of 0.1. The slow


wave activity obtained for different values of rc is shown in Figure 5.17. When the


value of rc is increased the rise time of slow wave activity decreases.
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Figure 5.17. Slow wave activity for different values of rc. (a) Slow
wave activity for the entire night and (b) slow wave activity between
50 and 150 minutes.


The term fc in Equation (5.41) is called the fall constant. The value of fc was


varied from 0.5 times the original value to 1.5 times the original value in increments


of 0.25. The effect that fc has on the level of slow wave activity is shown in Figure


5.18. When the value of fc is increased, the rate of fall of slow wave activity increases.


Also the minimum level of slow wave activity during the REM period decreases. This


decrease in the minimum level results in an increase in rise time for the next NREM


sleep cycle. The level of SWA reaches a maximum later and the shape of SWA


changes.
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Figure 5.18. Slow wave activity for different values of fc. (a) Slow
wave activity for the entire night and (b) slow wave activity between
40 and 150 minutes.


The equation for Process S contains only one coefficient gc, which is referred to as


the gain constant. The original value was varied from 0.8 times the original value to


1.2 times the original value in increments of 0.1. When gc is increased it will result in


a lower level of Process S and slow wave activity. These changes are shown in Figure


5.19.


The initial values of slow wave activity and Process S were also varied. The initial


value of Process S (So) was varied from 0.8 times the original value to 1.2 times the


original value in increments of 0.1. The initial value of slow wave activity (SWAo) was


varied from 0.5 times the original value to 1.5 times the original value in increments


of 0.25. The resulting changes in the solutions are shown in Figure 5.20. Increasing


So results in a higher level of Process S and slow wave activity for the entire night.


Increasing SWAo results in an earlier increase in SWA for the first sleep cycle, though


the change is small. An overview of how each coefficient affects the solution of the


model is listed in Table 5.8.


Several variations in the form of the equations for the Two Process Model have


been proposed including an extra S term in the SWA equation and the addition of a


lower bound for the slow wave activity (Achermann and Borbély, 1992),


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT. (5.42)
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Figure 5.19. Results for different values of gc. (a) Slow wave activity,
(b) slow wave activity from 50 and 150 minutes, and (c) Process S.
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Figure 5.20. (a) Slow wave activity and (b) Process S for different
initial values of Process S (So). (c) A close-up of slow wave activity
between 0 and 50 minutes for different initial values of SWA (SWAo).







140


Table 5.8. Effect of an increase in coefficient value on the solution of
the Two Process Model.


Coefficient SWA Process S
rc Decrease in rise time No significant change
fc Decrease in fall time No significant change


Increase in rise time
gc Decrease in level Decrease in level
So Increase in level Increase in level
SWAo Earlier increase in level No significant change


for first sleep cycle
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The additional S term primarily affects the shape of the SWA activity. The changes


are shown in Figure 5.21. The SWAL term acts as a lower asymptote.
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Figure 5.21. Illustration of the effect of the extra S term on the
outcome of slow wave activity, without the extra term (blue/black)
and with the extra term (green/light gray). (a) SWA and (b) level
of Process S for the entire night.


Two other variations in the form of the model have been proposed which includes


a different form of the Process S equation (Achermann, Dijk, Brunner, and Borbély,


1993),


˙SWA =
rc


Su
SWA (S − SWA)− fc (SWA− SWAL)REMT, (5.43)


Ṡ = −gc SWA+ rs(Su − S). (5.44)


An upper asymptote Su was added to the model. Increasing Su results in an increase


in slow wave activity. Also, for some variations of the Two Process Model, the


Gaussian noise term n(t) (which has a zero mean and a standard deviation of 0.18) is


applied within the differential equation (Achermann and Borbély, 1990), and in other


variations the noise is applied to SWA after solving the differential equations,


SWA := SWA(1 + n(t)). (5.45)


Due to the slow dynamics of the SWA equation, the noise term causes smaller, lower


frequency oscillations when it is within the differential equation. A version of the
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model in Achermann, Dijk, Brunner, and Borbély (1993) also has a term for brief


awakenings,


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−


fcw (SWA− SWAL)w(t),


(5.46)


where w(t) is equal to one when awake and zero otherwise. A specification of timing


and duration of the awakenings used to simulate normal sleep, spontaneous awaken-


ings, was not specified.


5.6 Combined Two Process SWA and Reciprocal Interaction REM Models


In order to predict both REM and slow wave activity, several models have been


developed which have combined one of the variants of the Two Process Model and


the Reciprocal Interaction REM Model.


5.6.1 REM and Slow Wave Activity LCRIM-Based Integrated Sleep Control Model


Massaquoi and McCarley (1992) developed a model called the LCRIM-based Inte-


grated Sleep Control Model (LCRIM/I). The coefficients of the model are in Table


5.9. The equation for REM-ON (X) activity is the same as in the LCRIM model,


Ẋ = a(X)S1(X)X − b(X)XY. (5.47)


One change was made to the equation for REM-OFF (Y ) activity. An excitatory


term E was added to the equation,


Ẏ = −cY + dcircS2(Y )(X + E)Y. (5.48)
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The addition of E allows spontaneous awakenings to be predicted. The term E


represents neuron activity from the forebrain or brainstem that act as an excitatory


input to the REM-OFF neurons. The equation for the excitatory term E is,


Ė = N − kE, (5.49)


The equation can also be written as,


Ė + kE = N. (5.50)


This is a first order system and behaves as a low pass filter with a cut-off frequency of


k rad/time units. The equation for the frequency response and the cut-off frequency


for the filter is defined as,


H(ω) =
1


jω + k
, (5.51)


ωc = k. (5.52)


For a step input N = No for t <= 0 and N = N1 for t >0,


E =
1


k
(N1 − (N1 −No)e


−kt). (5.53)


The term N is a Poisson noise process. A Poisson process is one in which the inter-


arrival time between pulses T follows an exponential distribution p(T ) = e−γT for T ≥
0 and p(T ) = 0 for T < 0 which for this model had a mean (1/γ) of 1.1. The shape of


the pulses were assumed to be square waves and with varied amplitude and duration.


The amplitude is uniformly distributed from 1.25 to 25 and the duration is uniformly


distributed from 2.7 to 5.4 minutes. E exponentially increases and decreases. The
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excitatory term (E) can also be thought of as low pass filtered impulse noise. An


example of N and E for 1 pulse are shown in Figure 5.22.
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Figure 5.22. An example of the terms for excitation, N and E, (k = 10).


The amplitude of the excitatory term E is greatly reduced compared to the level


of the noise term N . The form of Equation (5.50) does not allow the cutoff frequency


of the lowpass filter and the gain of the filter to be controlled independently. A


correction should perhaps be applied to the model to allow the two to be separately


defined, e.g.,


Ė + kE = kAN. (5.54)


where k is the cut-off frequency and A is the gain.


Massaquoi and McCarley (1992) also made a change to the equation for slow wave


activity,


˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t). (5.55)
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The REM trigger was removed and a dependency on the level of REM-ON (X)


behavior through the term SWAmaxwas added,


SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05). (5.56)


This term also includes a dependence on the excitatory term E, which causes a


decrease in the level of SWA. The equation for the homeostatic Process S is of the


form,


Ṡ = −gc SWA+ rs(1− S), (5.57)


Using this model, the time spent in NREM, REM, and Wake states can be deter-


mined. Massaquoi and McCarley (1992) classified REM when the level of X (REM-


ON) activity exceeded 1.4, Wake is scored when the slow wave activity is below 0.1


and the level of E exceeds 0.5 and the remaining time is classified as NREM sleep.


An example of how the outputs of the model could be used to classify sleep states is


shown in Figure 5.23. The values for the coefficients of the model are listed in Table


5.9.


The excitatory term E causes a decrease in the slow wave activity and causes an


increase in the Y (REM-OFF) activity. This increase in Y can lead to an increase


in the duration of NREM periods and a decrease in REM sleep. An example of the


outcome for more noise is shown in Figure 5.24 along with the results for the original


level. For this example, the amplitude of N was increased by 50% and exactly the


same process was used (just scaled). The noise term (n(t)) was not included in the


SWA equation for this comparision as the desire was to purely observe the effect of


E on the model ouput. Increasing the interarrival time or duration of the events will


similarly also lead to a greater decrease in slow wave activity and REM-ON activity.
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Figure 5.23. An example of using Massaquoi and McCarley’s
LCRIM/I model (1992) to classify sleep stages, (a) REM-ON (X)
(green) and REM-OFF (Y ) (blue) activity, (b) Process S and SWA,
(c) Excitatory Activity (E), and (d) sleep stages. Thresholds used for
scoring sleep stages (red-dashed lines).
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Table 5.9. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).


Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n Uniformly distributed between -10 and 10
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Figure 5.24. The effect of changing the amplitude of N on the level of
X (REM-ON) (green), Y (REM-OFF) (blue), and slow wave activity
(SWA). (a,c,e,g) variation of amplitudes was based on the original
model parameters, (b,d,f,h) amplitudes of N used to obtain E was in-
creased by 50%, (Thresholds used for scoring sleep stages, red-dashed
lines).
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5.6.2 Acherman and Borbély’s Combined REM and Slow Wave Activity Model


Achermann and Borbély (1992) also combined the Two Process Model with the REM


Sleep Limit-Cycle Reciprocal Interaction model (LCRIM). They combined the two


models by using the value of REM-ON (X) activity to determine when to initiate the


REM trigger. When the level of X activity is greater than 1.4, REMT is equal to


1, otherwise it is equal to 0. This model, unlike the Integrated Sleep Control model


(LCRIM/I), is a 24 hour model. The main purpose of extending the model to 24


hours is that Achermann and Borbély (1992) also included a model for predicting


alertness during the day. The alertness portion of the model, though, will not be


discussed further because the emphasis of this research is on predicting sleep. The


equations for the REM model are the same as those used in the LCRIM/I model,


Ẋ = a(X)S1(X)X − b(X)XY, (5.58)


Ẏ = −cY + dcircS2(Y )(X + E)Y, (5.59)


however, the term E is very different. The excitatory term is defined as,


E = e+ 0.95W. (5.60)


where e is defined as,


e = 0.39 + 0.3CSO − 0.05


10.7
(t− tSO) if e > 0 else, e = 0. (5.61)


The term e, in Equation (5.60), has a small effect on the results. This term, is


dependent on the value of the circadian oscillator C at sleep onset (CSO) and linearly


decreases with time. However this decrease is for only a short time period, until e


becomes less than zero, at which point it is reset to 0. Changing the value of CSO
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will either slightly increase or slightly decrease the number of ultradian oscillations.


The term tSO is the time of sleep onset.


The purpose of E in this model is to turn off the ultradian oscillations. Ultradian


oscillations are the oscillations in the slow wave activity, or REM and NREM sleep


during the night. When the sleep period has ended W (Wake) is equal to 1, during


sleep it is equal to zero. E becomes a large number when W is 1. This high level of E


causes an increase in Y (REM-OFF) activity which causes the ultradian oscillations


during the night to end.


The final difference between this model and the LCRIM/I model is the circadian


oscillator term. In the combined model developed by Massaquoi and McCarley (1992),


the circadian dependence was modeled by a sinusoidal term. Achermann and Borbély


have modeled the circadian behavior with a set of nonlinear equations dependent on


the light intensity I,


dcirc = 0.975 + do C, (5.62)


Ċ =
( π


720


)(
Cc + μc


(
C − 4C3


3


)
+B


)
, (5.63)


Ċc =
( π


720


)
(−C +BCc) , (5.64)


B = (1−mC)kI1/3. (5.65)


The resulting term C is still oscillatory in nature. The values of all the coefficients of


the model are listed in Table 5.10 and an example of an output of the model is shown


in Figure 5.25.


5.6.3 Additional Combined REM and Slow Wave Activity Models


Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) also developed a combined


model for predicting REM sleep and slow wave activity. Unlike the two previously
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Table 5.10. Coefficients of Achermann and Borbély’s Combined REM
and Slow Wave Activity model (1992).


Model Component Coefficient Original Value
C and Cc μc 0.26


m 0.3333
k 0.018
I 1000 during day


0 during night
SWA and S rc 0.283


fc 0.236
SWAL 0.0177


gc 0.00835
rs 0.0009167
n mean 0


st. dev 0.182
X and Y c 1


do 0.08
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Figure 5.25. An example of the outcome of the combined Limit-
Cycle Reciprocal Interaction Model and the Two Process Model by
Achermann and Borb́ely (1992). (a) REM-ON (green) and REM-
OFF Activity (blue), (b) Process S (green) and SWA (blue), (c) the
circadian oscillator, and (d) scored sleep stages.
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discussed combined models, they used the simpler Lotka-Volterra equations to model


REM sleep. To predict slow wave activity they used equations that were similar to the


Two Process Model. The reason for using the simpler REM model was that Ferrillo


et al. (2007) wanted to fit the models to sleep data, which would have been difficult


with the saturation functions in the REM model.


Comte, Schatzman, Ravassard, Luppi, and Salin (2006) created a three state


model to predict Wake, REM (sometimes termed paradoxical sleep) and slow wave


sleep. This model is also based on the simpler Lotka-Volterra REM sleep model.


The equation for the change in level of slow wave neuron activity (sw) has a cubic


dependence on its current level and is also dependent on the product of the level of


Wake neuron firing (w) and REM neuron firing (p). The equations for the model are,


ẇ = −αow + βowp, (5.66)


ṗ = α1p− β1wp, (5.67)


˙sw = −α2(sw − swo)
3 − β2wp. (5.68)


The coefficients for the model are listed in Table 5.11.


Table 5.11. Comte et al.’s model cofficients (2006).


Model Coefficient Value
αo 4
α1 2
α2 1
βo 1
β1 4
β2 1
SWo 5.5
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In order to define sleep states, the levels of REM, NREM and Wake neuron firing


are all normalized so that they are between 0 and 1. Sleep Stages are then assigned


based on the highest neuron firing rate. Limitations of this model include the fact


that the duration of REM sleep does not increase during the night and also brief


arousals during REM and NREM sleep are not predicted. Also sw does not provide


information on the depth of sleep. An example of an output of the model is shown


in Figure 5.26.


Diniz Behn, Brown, Scammell, and Kopell (2007) also developed a model of neu-


ron firing activity during sleep. They used Massaquoi and McCarley’s reciprocal


interaction concept to model REM sleep regulation, the REM sleep promoting neu-


rons excite the Wake promoting neurons and the Wake promoting neurons inhibit


the REM promoting neurons. Their model is more complex than those already men-


tioned, readers are referred to Diniz Behn, Brown, Scammell, and Kopell (2007) for


further details. They not only modeled neuron firing activity, but also the dynamics


of neurotransmitters which drive the change in neuron firing rate. An example of the


output of the model is shown in Figure 5.27.


5.7 Use of Nonlinear Dynamic Models to Predict Noise-Induced Sleep Disturbance


In Table 5.12 is a summary of the features of the various models discussed. The


nonlinear dynamic models were reviewed because it was desired to identify a model


that could be altered and used to predict the effect of aircraft noise on sleep structure.


The best candidate model that was identified was the LCRIM-based Integrated Sleep


Control Model developed by Massaquoi and McCarley (1992). It is the only combined


model that could be used to estimate slow wave activity, REM, and spontaneous


awakenings.
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Figure 5.26. An example of the output of Comte et al.’s model (2006).
(a) Wake neuron activity (w), (b) REM neuron activity (p), (c) SWS
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Figure 5.27. An example of the output of Diniz Behn and Booth’s
model (2010). (a) Firing rate of different neuron populations. Wake
promoting neurons locus coeruleus and dorsal raphe (green), sleep
promoting neurons VLPO (red), and REM promoting neurons (blue).
(b) Homeostatic sleep drive (h) and (c) sleep stages.
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Table 5.12. Summary of nonlinear dynamic sleep model structures.


Model SWA REM Activity Brief Awakenings
Two Process Model (1990) ✓
Lotka-Volterra REM Model (1975) ✓
REM LCRIM Model (1986) ✓
Achermann and Borbély’s ✓ ✓
Combined Model (1992)
Behn and Booths’s ✓ ✓
Sleep Model (2007)
Comte et al.’s Model (2006) ✓
Ferrillo et al.’s ✓ ✓
Combined Model (2007)
Massaquoi and McCarley’s ✓ ✓ ✓
LCRIM/I Model (1992)
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While the Massaquoi and McCarley model was found to be best candidate model,


it is not without its limitations. When examining the model, there does appear to


be one immediate problem with the excitatory term. It seems that the excitatory


term will never cause awakenings to occur during REM sleep, only during NREM


sleep. The reason is that the excitation term increases Y (REM-OFF) which in turn


will decrease X (REM-ON) activity. The time-scale of the dynamics of X and Y


interplay and mirror the slow-term behavior observed in subjects REM and NREM


sleep. However, the level of Y is low when the level of X is high. Therefore changes


need to be made to the model in order predict changes in sleep structure that are


similar to those found in sleep studies. This limitation and approaches for overcoming


it are discussed in more detail in Chapter 7.


5.8 Conclusions


Several models are reported in the sleep literature that predict sleep patterns. The


nonlinear dynamic models that have been developed predict spontaneous awakenings,


rapid eye movement (REM) sleep, and slow wave activity which is related to the depth


of sleep. These models are based on a more physical explanation for changes in sleep,


than the Markov models such as the one developed by Basner (2006). Out of all the


models that have been reviewed the best candidate model for predicting sleep patterns


of individuals exposed to aircraft noise is the LCRIM-based Integrated Sleep Control


model by Massaquoi and McCarley (1992). It is the most complete model out of those


reviewed. However, changes to the excitatory term (E) in the model will need to be


made, both to predict spontaneous awakenings and to model aircraft noise induced


awakenings.
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6. ARTIFACT REMOVAL AND SLEEP STAGE CLASSIFICATION


This chapter contains a description of some of the methodologies used to remove


artifacts from polysomnography data. A description of methods used to automatically


detect characteristics that are present in different sleep stages, and the development


of an algorithm for automatically classifying sleep stages is presented.


6.1 Overview of EEG Artifacts


An understanding of how the time history and spectrum of the EEG signal may be


affected by artifacts is needed to reduce the number of incorrect evaluations. Several


artifacts occur in EEG signals. A list of the artifacts that can occur, frequencies


they affect, and potential methods for successful removal or significant attenuation


of them are listed in Table 6.1. Two types of artifacts; sweating and breathing affect


low frequencies. Sweat artifacts appear as high amplitude, low frequency activity.


They can be removed by high pass filtering the EEG signal with a cut-off frequency


between 0.75 and 1.0 Hz. Breathing artifacts appear as slow waves and are caused by


movement of an individual when they are breathing in and out. Breathing artifacts


are typically below the lowest frequency of the delta band (0.5 Hz or 1 Hz) (Devuyst,


Dutoit, Stenuit, Kerkhofs, and Stanus, 2008), which is the lowest frequency range


that is examined. Another artifact that can be easily removed are those caused by


interference or from a loose or faulty electrode, these artifacts will appear around 60


Hz and can be removed by using a notch filter. Sweat, breathing, and 60 Hz artifacts


though do not occur very often in EEG sleep recordings (Schlögl, Anderer, Barbanoj,
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Klösch, Gruber, Lorenzo, Filz, Koivuluoma, Rezek, Roberts, Värri, Rappelsberger,


Pfurtscheller, and Dorffner, 1999).


Table 6.1. Artifacts in EEG signals. PCA-Principal Components
Analysis, ICA-Independent Components Analysis, Regression-Linear
regression using other recorded signals such as ECG and EOG.


Artifact Frequency Range Methods for Removal
Breathing Below 1 Hz High pass filter
Sweat Below 1 Hz High pass filter
EOG Artifact Primarily Delta Band Regression, Adaptive


filtering, PCA, ICA
ECG Artifact Maximum energy Regression, Adaptive


approx. 15Hz filtering, PCA, ICA
Muscle Activity Strongest in high Remove epoch


frequencies from analysis
Movement Strongest in high Remove epoch


frequencies from analysis
Interference, Loose Electrode 60 Hz Notch filter


The artifacts that occur more often are caused by body movements and muscle


activity, eye movement commonly referred to as an EOG artifact, and heart activity


which is referred to as an ECG artifact. ECG artifacts are caused by the heart beat


being picked up in the EEG signals because the electrode is located near a vein or


artery (Spriggs, 2008). These artifacts will appear as a repetitive spike in the EEG


signal occurring about once every minute. An example of an ECG artifact is shown


in Figure 6.1. Garcés Correa, Laciar, Patiño, and Valentinuzzi (2007) stated the


maximum energy of the ECG artifact is at approximately 15 Hz in the EEG signal.


Eye movement may also be picked up in the EEG signal. It will appear as


large amplitude oscillations and will primarily affect the delta frequency band (Inuso,


La Foresta, Mammone, and Carlo Morabito, 2007). This artifact most strongly con-


taminates the frontal EEG channels. The effect on other EEG channels decreases


with the square of the distance. The data from the 1999 UK study contains EEG
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Figure 6.1. (a) The ECG signal and (b) the EEG signal where the
heart beats are being picked up in addition to the EEG information.


.


data for the central and occipital channels, therefore eye movement artifacts can still


appear but not as strongly. Also between EOG and EEG signals there is bidirectional


contamination, therefore while eye movement may contaminate the EEG signal, brain


activity may contaminate the EOG signal. This makes it more difficult to remove


EOG artifacts from an EEG signal. An example of an EOG artifact is shown in


Figure 6.2.


Muscle artifacts may also occur, which are caused by movement of facial and neck


muscles. These artifacts affect frequencies primarily above 15 Hz (van de Velde, van


Erp, and Cluitmans, 1998). The last type of artifact is caused by whole or partial


body movement and will appear as a high amplitude, high frequency component and


will affect most channels that are recorded, an example is shown in Figure 6.3.
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Figure 6.2. An example of an EOG artifact in an EEG signal, (a)
EOG and (b) corresponding EEG signal with artifact.


6.2 Description of Artifact Removal Methods


The most common technique for removing artifacts is still through visual scoring.


The epochs containing artifacts are identified and removed before conducting further


analysis. While this is possible for movement artifacts, other artifacts such as ECG


and EOG, can affect many epochs of the data. Eliminating these epochs would result


in a large loss of data. Therefore, several methods for removing artifacts from EEG


signals have been proposed. The first method is based on a linear regression approach


which can be performed either in the frequency or the time domain. This method


can only be applied if a reference signal was recorded, i.e. if ECG or EOG activity


was recorded. For linear regression it is assumed that the obtained or recorded EEG


signal is a linear combination of the actual EEG signal and the artifact signal (An-


derer, Roberts, Schlögl, Gruber, Klösch, Herrmann, Rappelsberger, Filz, Barbanoj,


Dorffner, and Saletu, 1999). The portion of the signal that contains the artifact can


be estimated and subtracted from the EEG signal. One problem with this linear
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Figure 6.3. An example of a movement artifact in the (a) EEG, (b)
EMG, (c) Right EOG, and (d) Left EOG signal.
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regression approach is that the EEG signal and the artifact signal may not be aligned


in time. Also, the relationship between the two signals may be more complicated


than a simple amplification and offset and the bidirectional contamination may result


in removal of desired information.


Another method for removing the artifacts that allows for a more complex rela-


tionship to exist between the EOG or ECG and the EEG signals is to use an adaptive


filter. Most often in the literature, a recursive least squares (RLS) algorithm is used


to estimate the filter coefficients (He, Wilson, and Russell, 2004) which defines the


relationship between the artifact measurement and the signal affected by the artifact.


The input (x) is the artifact signal, either the ECG or the EOG signal. An estimate


is made of the ECG or EOG component in the EEG signal (ŷ). The error e, which


is the difference between the recorded EEG signal (y) and the estimate of the ECG


or the EOG signal, is the uncontaminated EEG signal. A diagram of the process for


removing an ECG artifact is shown in Figure 6.4.


Figure 6.4. A diagram of the process used to remove ECG artifacts
from the EEG signal.
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For an (RLS) adaptive filter there are two parameters that have to be specified; M


which is the filter order and λ which is the forgetting factor. The goal is to estimate


the filter coefficients hk in the equation,


ŷ(n) =
M−1∑
k=0


hkx(n− k). (6.1)


Note this is a M-point finite impulse response filter. The forgetting factor is related


to an exponential weighting on the cost function (J), data points in the past have


less effect on the estimate of the weighted sum of the magnitude squared error e,


e(n) = y(n)− ŷ(n), (6.2)


ε =
n∑


k=0


λn−k|e(k)|2, (6.3)


(Haykin, 1996). At each time step the coefficients of the filter are estimated by


updating the previous values. Garcés Correa, Laciar, Patiño, and Valentinuzzi (2007)


used an adaptive filter to remove ECG artifacts and found that the maximum energy


at 15 Hz due to the artifact was attenuated anywhere from 4 to 50% depending on


the subject. Therefore, the effectiveness of adaptive filters at reducing ECG artifacts


varies greatly for different subject nights. An example of using adaptive filtering to


remove the ECG artifact from an EEG signal of the UK dataset is shown in Figure


6.5. A filter order of 3 and a forgetting factor of 0.9999 was used.


A challenge in using adaptive or regression methods for removing EOG artifacts


from EEG data is bidirectional contamination. When a portion of the EOG signal is


subtracted from the EEG signal, not only is the artifact removed but so is part of the


EEG signal. Several researchers have pre-filtered the EOG signal to reduce the brain


wave activity in the recording. Wallstrom, Kass, Miller, Cohn, and Fox (2004) used a
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Figure 6.5. An example of an outcome obtained using an RLS adap-
tive filter to remove ECG artifacts. The (a) ECG, (b) EEG with
artifact, and (C) EEG after minimizing artifact signals.


Bayesian adaptive regression spline. They wanted to smooth out the high frequency


small amplitude activity (this is due to brain wave activity) of the EOG signal and


retain the high frequency large amplitude activity which is more likely to be caused


by eye movement. For a spline the signal is divided into segments. For each segment


a polynomial is defined to represent the data, the end points of the segments are


called knots. A Bayesian adaptive regression spline is a free-knot spline. This means


the placement of the knots are determined by the data rather then being placed at


fixed locations. More knots are placed in locations where the data has large changes


in values (DiMatteo, Genovese, and Kass, 2001). Another challenge with removing
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the EOG signal is that at least two channels, vertical and horizontal EOG, have been


found to be needed to fully remove artifacts from the signal (Anderer et al., 1999).


However, only 1 channel was recorded in the 1999 UK sleep study. Therefore, using


adaptive or regression techniques, it may not be possible to remove all of the artifacts


caused by ocular motion.


One disadvantage of both adaptive filtering and regression is that a reference sig-


nal is needed. While EOG and ECG signals were recorded for the UK sleep study, for


some subjects the recordings have poor quality or the electrodes became loose during


the night. Two methods that have been used to remove artifacts which do not re-


quire a reference electrode are Principal Component Analysis (PCA) and Independent


Component Analysis (ICA).


PCA involves finding a matrix that separates the signals into the contributing


components. PCA finds components which are uncorrelated. The definition for two


random variables (X, Y ) being uncorrelated is that the covariance is zero (E is the


expected value) and it is assumed that E[X] and E[Y ]=0:


E[XY ] = E[X]E[Y ] = 0. (6.4)


Using PCA, the components can be found through singular value decomposition of


the covariance matrix (Sanei and Chambers, 2007).


For ICA analysis it is also assumed that you have N signals which are mixtures


of N components (Jung, Makeig, Humphries, Lee, McKeown, Iragui, and Sejnowski,


2000). The goal once again is to find a matrix that will result in the calculation of the


individual components. ICA is used to find independent components, which means


that unlike PCA in which the results or components can be rotated, the components
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of ICA cannot because they would no longer be independent (Stone, 2009). The


definition of independence is that:


p(x, y) = px(x)py(y), (6.5)


where p(x, y) is the joint probability density function and p(x) and p(y) are each


individual probability density functions (DeVore, 2008). For Independent Compo-


nent Analysis the assumption is also made that the components are non-Gaussian.


Vigário, Särelä, Jousmäki, Hämäläinen, and Oja (2000) stated that artifacts tend to


be non-Gaussian and therefore this method is more applicable then PCA. The meth-


ods used to calculate the Independent components maximize the non-Gaussianity of


the components.


A problem with both PCA and ICA is determining which of the components are


artifacts. The artifact components are usually determined based on a combination


of spectral features, spatial topography, and time domain features. Particularly for


spatial topography this requires that a large number of EEG channels were recorded.


In studies in which ICA or PCA have been used more than 10 channels of recordings


were typically made. However, for the data that was obtained from the 1999 UK


study only 4 channels of EEG were recorded for each subject.


The most common method for dealing with muscle and movement artifacts is to


eliminate contaminated epochs from the analysis. Brunner, Vasko, Detka, Monahan,


Reynolds III, and Kupfer (1996) developed a method to automatically detect muscle


artifacts to remove that data from subsequent analysis. They determined the average


power in the range of 26.25 and 32.0 Hz for each four second epoch. They then applied


a 45 point median filter to smooth the power estimate and multiplied this smoothed


power time history by some constant and used this as a threshold for detecting muscle


artifacts. When the threshold is exceeded it is assumed that an artifact has occurred.
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They found a threshold at 4 times the level of the smoothed average power worked


well for identifying artifacts. An example of the use of this method for removing


artifacts from an EEG signal in the UK dataset is shown in Figure 6.6.
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Figure 6.6. An example of the use of Brunner et al.’s (1996) method
to remove muscle and movement artifacts. (a) Power between 26.0
and 32.0 Hz of an EEG signal with artifacts present and (b) power
after removing epochs which exceeded the threshold.


After examining several artifact removal methods, the best approach for removing


artifacts from the EEG data of the 1999 UK Sleep Study was determined to be the use


of recursive least squares (RLS) estimated adaptive filters to remove EOG and ECG


artifacts. All subject nights of data did have EOG measurements, however not all


had ECG recordings that could be used. Therefore, for some EEG signals examined


ECG artifacts could not be removed. For the removal of EOG and ECG artifacts a


filter order of 3 and a forgetting factor of 0.9999 was used. The method developed


by Brunner et al. (1996) was used to identify epochs with muscle and movement


activity. For calculations of slow wave activity or power in other frequency bands,


segments containing movement artifacts were identified and not used in the analysis.
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6.3 Review of Existing Sleep Stage Classification Methods


Many approaches have been developed to extract different features from polysomnog-


raphy data, such as sleep spindles and rapid eye movements, which are then used


to classify sleep stages. Some of these methods for feature detection and sleep stage


classification are described.


6.3.1 Slow Wave Sleep Detection


Slow waves are the defining feature of Stage 3 and Stage 4 sleep. They are defined


as having a frequency between 0.5 and 2 Hz and having a peak-to-peak amplitude of


at least 75 μV . A method that can be used to identify these waves is a peak ampli-


tude detection method similar to an approach used by Kuwahara, Higashi, Mizuki,


Matsunari, Tanaka, and Inanaga (1988). This method involves applying a 4th or-


der Butterworth band-pass filter, with cutoff frequencies of 0.5 and 2.0 Hz, to the


EEG signal, identifying the zero crossings of the signal and then the peak amplitude


between each zero crossing. The peak-to-peak amplitude can then be calculated by


taking the magnitude and then adding together adjacent peak amplitudes and then


the percent of an epoch that contains slow wave activity, defined by when the peak-


to-peak amplitude exceeds 75 μV , can be calculated. An example of the use of this


approach for detecting slow wave sleep is shown in Figure 6.7. The percentage of


each 30 second epoch, sliding 1 second through time, that contains slow wave sleep,


calculated for one subject night in the UK dataset, is shown in Figure 6.8.


6.3.2 Rapid Eye Movement Detection


In order to classify Stage REM, rapid eye movements need to be identified. The


primary method used to identify the occurrence of rapid eye movement is to calculate
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Figure 6.7. An example of slow wave sleep detection. (a) An EEG
signal filtered between 0.5 and 2.0 Hz (blue) and zero crossings (red
x) and (b) detected slow wave sleep.
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Figure 6.8. The percent of each epoch containing slow wave sleep (SWS).


the correlation of the right EOG and left EOG channel. The standard placement of


the EOG electrodes is to have one electrode placed outside and above the corner of


one eye, and the other electrode placed outside and below the corner of the other


eye. Therefore, when an eye movement occurs one of the measurements will have
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a negative value while the other will have a positive value and therefore the two


channels will be negatively correlated.


In most of the methods developed to detect rapid eye movements the EOG signals


have been filtered to retain only energy below 5 Hz before further analysis. Agarwal


and Gotman (2001) applied a 6th order low-pass filter with a cutoff frequency of 5 Hz


to the EOG signals. Gopal and Haddad (1981) used a low pass Butterworth filter of


order 3 with a cutoff frequency of 6.5 Hz. Agarwal, Takeuchi, Laroche, and Gotman


(2005) used a 4th order Butterworth bandpass filter with cutoff frequencies of 1 and


5 Hz, Boukadoum and Ktonas (1986) stated that most REM movements are between


200 ms and 1 second in duration, which would correspond to a frequency range of 1


to 5 Hz, while Smith, Cronin, and Karacan (1971) used a slightly smaller frequency


range than the other researchers for their detection of REM; they only examined


activity between 1 to 3 Hz.


In addition to filtering the EOG signals and calculating the correlation between


the EOG channels, a few additional methods have been used. Hatzilabrou, Greenberg,


Sclabassi, Carroll, Guthrie, and Scher (1994) used a method of matched filtering for


detecting rapid eye movements. They created a template of the shape of a rapid


eye movement and then calculated the cross-correlation between the template and


the EOG signal. Virkkala, Hasan, Värri, Himanen, and Härmä (2007) also used


cross-correlation to identify rapid eye movements. They bandpass filtered the EOG


signals with a passband between 0.5 to 6 Hz and 1 to 6 Hz. The difference in the


cross-correlation results of the 0.5 to 6 Hz band and the 1 to 6 Hz band was used to


separate slow eye movements from rapid eye movements.


McPartland, Kupfer, and Foster (1973) used an 11 point moving average filter


in order to smooth the EOG signals before extracting additional features to identify


rapid eye movements including: requiring the two channels to be negatively corre-
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lated, the events on each channel to occur within 100 ms of each other and have a


minimum amplitude of 25 μV . Smith, Cronin, and Karacan (1971) also set minimum


requirements for the amplitude of the EOG signals. They required that the maxi-


mum amplitude of a rapid eye movement must be greater than or equal to 50 μV in


one EOG channel and greater than 30 μV in the other channel. Gopal and Haddad


(1981) derived a method to automatically detect rapid eye movements in infants. In


one method used they calculated the average of the first derivative of the slope for


the segment of the EOG signal between the local minimum and maximum value. A


rapid eye movement was considered to occur if the slope was between 0.33 to 0.66


mV/s. Agarwal, Takeuchi, Laroche, and Gotman (2005) also examined the slope of


the EOG signals. They calculated the deflection angle, the angle of the peak of the


eye movement, to determine if the eye movement was a rapid or a slow eye movement.


The primary methods found in the literature for detecting rapid eye movements


only utilize EOG activity below 5 Hz, calculate the correlation between the left and


right EOG channels and set a minimum threshold for EOG activity. Therefore, this


was the approach taken to identify rapid eye movements in the 1999 UK sleep study


EOG data. A 4th order Butterworth bandpass filter was used with cutoff frequen-


cies of 0.5 and 5 Hz. The correlation between the two EOG channels was calculated


and if the correlation was below -0.2 a rapid eye movement was considered to occur.


This threshold for the correlation was used by Agarwal, Takeuchi, Laroche, and Got-


man (2005). A minimum amplitude threshold of 25 μV was used. This minimum


threshold as well as the cutoff frequencies of the bandpass filter were determined


after visually identifying and extracting over 1000 examples of rapid eye movement


and then analyzing the frequency content and maximum amplitudes. An example


of the cumulative sum of power in every 0.25 Hz frequency block is shown in Figure


6.9 for all samples of rapid eye movements that were extracted, and it can be seen
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that a significant amount of power of the EOG signal is below 1 Hz which was the


reason for defining a lower cutoff of 0.5 Hz, compared to other researchers who set the


lower threshold at 1 Hz. An example of the correlation between the filtered left and


right EOG channels calculated for one subject night is shown in Figure 6.10. The


oscillations between REM and NREM sleep can be identified from the correlation


between EOG channels. Eye movements that occur during Stage Wake may also be


identified using this method. By also using other characteristics, including amplitude


of the EMG signal and power in the alpha frequency band of the EEG signals, these


eye movements can often be distinguished from the rapid eye movements which occur


during REM sleep.
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Figure 6.9. Cumulative power of 1,166 samples of rapid eye movement
(black-dash line is at 0.5 Hz).


6.3.3 Sleep Spindle Detection


Sleep spindles were defined by Rechtschaffen, Hauri, and Zeitlin (1966) as short bursts


of activity between 12 and 14 Hz (sigma band). These bursts of activity must last at
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Figure 6.10. Correlation between right and left EOG Channels for
one subject night in 1999 UK study.


least 0.5 seconds. However, the frequency range for sleep spindles has been expanded


and in automatic detection methods activity as low as 11 Hz and as high as 16 Hz


has been considered. Two methods have been primarily used to detect sleep spindles,


one approach is to detect sigma activity exceeding a set amplitude threshold while


the second approach is to use autoregressive modeling to detect sigma activity.


Devuyst, Dutoit, Didier, Meers, Stanus, Stenuit, and Kerkhofs (2006) applied a


bandpass filter to their EEG signals, the filter had cutoff frequencies of 11.5 and 15


Hz. If a defined amplitude threshold was exceeded for more than 0.5 seconds then a


sleep spindle was considered to occur. Their threshold was defined as:


threshold = μ+Kσ, (6.6)


where μ is the mean amplitude of the filtered EEG signal and σ is the standard


deviation. They found that a value of K equal to 2 provided the best sensitivity


and specificity for identifying sleep spindles. This approach allows the threshold for


detecting sleep spindles to be set separately for each subject which is different from a
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method used by Schimcek, Zeitlhofer, Anderer, and Saletu (1994) in which a minimum


peak to peak amplitude of 25 μV was used for identifying spindles.


Dang-Vu, McKinney, Buxton, Solet, and Ellenbogen (2010) automatically identi-


fied sleep spindles in their analysis of the relationship between the number of sleep


spindles and the probability of awakening to a noise event. Like Devuyst et al. (2006)


they also used a variable threshold. To calculate sleep spindles they bandpass filtered


the central EEG channels using an FIR filter with cutoff frequencies of 11 and 15 Hz.


They then calculated the rms (root-mean-square) power of the filtered EEG signal for


each 0.25 second segment of the signal. They assumed that a sleep spindle occurred


when the rms power was above the 87th percentile of activity within the sigma band.


They also required that the peak-to-peak amplitude of the sigma activity was between


10 and 100 μV and that the duration of the sleep spindle was at least 0.5 seconds.


In many algorithms a minimum duration for sleep spindles is defined however Ray,


Fogel, Smith, and Peters (2010) also defined a maximum duration. The criteria they


defined were that spindles had to have a minimum duration of 0.5 seconds, maximum


duration of 3 seconds and an interval of at least 0.1 seconds between spindles.


Olbrich and Achermann (2008) and Venkatakrishnan, Sangeetha, and Sukanesh


(2008) used autoregressive (AR) modeling to identify sleep spindles. An autoregres-


sive model is defined as (Haykin, 1996),


yn =
M∑
k=1


akyn−k + εn, (6.7)


where εn is white noise or can be thought of as an error term. It is called an auto-


regressive model because the value yn is a combination of past values. The transfer


function of an AR model is defined as,


H(z) =
1∑M


n=0 anz
−n


. (6.8)
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As can be seen from the transfer function, AR models are all pole models. Where


the the poles zm are defined as,


zm = rme
iθm , m = 1, 2, ...M (6.9)


the decay rate is defined as,


γm = −ln(rm)/Δ, (6.10)


and the frequency of that component is:


fm = θm/(2πΔ). (6.11)


Olbrich and Achermann (2008) examined the use of an AR(M=8) model and a


AR(M=4) model. They noted that the AR(8) model resulted in frequencies being


identified that are not found in oscillatory events like sleep spindles during the night.


The coefficients of the AR model were calculated using the Burg Algorithm (Olbrich


and Achermann, 2005) and the frequencies and the decay associated with the poles


were calculated. The decays of the AR model components were used as an indicator


for whether a sleep spindle could be occurring. From Equation (6.10), the higher the


value of rm the lower the damping of a particular frequency component. Therefore,


if a sleep spindle was occurring it would be expected that the damping coefficient for


a frequency between 11.5 and 16 Hz would be low and the value of rmwould be high.


Olbrich and Achermann (2008) set a threshold for detecting sleep spindles, if the


value of rm was greater then 0.95 and the frequency was within the sigma frequency


band, then it was assumed that the occurrence of a sleep spindle was probable. The


duration of a potential sleep spindle was defined by the duration that rm was greater


than 0.9.
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In order to characterize sleep spindles a similar approach to that of Olbrich and


Achermann (2008) was used. The EEG signal was segmented into 1 second segments.


An AR(4) model was used and the coefficients were calculated by using arburg in


Matlab. The frequency component with the lowest decay rate was then found. If the


frequency was within the sigma frequency band then the occurrence of a sleep spindle


was considered probable. The frequency with the lowest decay rate calculated for


each 1 second segment of an EEG signal for an entire night is shown in Figure 6.11.


Periods in which the dominant frequency was within the sigma frequency band can


be seen to correspond to periods of Stage 2 sleep.
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Figure 6.11. (a) Scored sleep stages for one subject night from the
1999 UK Dataset and (b) the frequency with lowest decay rate calcu-
lated using an AR(4) model.


An example of identifying a sleep spindle in a single brief 20 second segment of


EEG data is shown in Figure 6.12.
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Figure 6.12. (a) EEG Segment and (b) the frequency with lowest
decay rate for each 1 second segment determined from an adaptive
AR(4) model.


6.3.4 Additional Features


Additional features of EEG signals that are sometimes identified as part of sleep


stage classification algorithms include K-complexes and Vertex Waves. A K-complex


is defined as a sharp negative deflection followed by a positive deflection that lasts at


least 0.5 seconds. They occur during Stage 2 sleep and may or may not be followed


by a sleep spindle. The peak-to-peak amplitude of a K-complex should be greater


than 75 μV . To identify K-complexes, Devuyst, Dutoit, Stenuit, and Kerkhofs (2010)


extracted several features of the wave including the peak-to-peak amplitude and the


second derivative of the waveform in order to obtain an estimate of the sharpness of


the negative component of the wave.


Bremer, Smith, and Karacan (1970) also examined different features that could


be used to classify K-complexes. They found that an interval of 2 seconds typically


occurred between K-complexes and that the maximum amplitude of the EEG signal


both before and after a K-complex should not exceed 50 μV . They stated that


requiring an interval of low EEG activity before and after a K-complex was a way
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to distinguish K-complexes from bursts of delta activity. Bankman, Sigillito, Wise,


and Smith (1992) also attempted to automatically classify K-complexes. They stated


that when visually detecting K-complexes the distinction between them and Delta


waves is the sharpness of the waveform, therefore possible measures to help separate


the two include the rise time, or the slope of the signal.


Vertex Waves have also been detected as part of sleep stage classification algo-


rithms and are a key feature of Stage 1 sleep. Exarchos, Tzallas, Fotiadis, Konit-


siotis, and Giannopoulos (2006) and Da Rosa, Kemp, Paiva, Lopes da Silva, and


Kamphuisen (1991) defined Vertex Waves as having a duration between 70 and 200


milliseconds. The amplitude of Vertex Waves are typically greater than 100 μV and


should not exceed 250 μV .


While the ability to identify K-complexes and Vertex Waves was examined, Stage


1 sleep was not estimated separately as part of the sleep stage classification algorithm


that was developed as it is a transitory stage and it won’t be estimated as part of


the developed nonlinear model described in Chapter 7. K-complexes often have very


similar features as slow wave sleep, therefore epochs which had nonzero slow wave


activity calculated using the peak-to-peak amplitude detection approach often also


provided an indication of whether a K-complex occurred. Therefore, K-complexes


were not identified separately.


6.4 Sleep Stage Classification Algorithm


There were two methods for automatically classifying sleep stages which were iden-


tified in the sleep literature. One approach is to use some type of classifier. Becq,


Charbonnier, Chapotot, Buguet, Bourdon, and Baconnier (2005) for example exam-


ined the use of linear and quadratic classifiers, k nearest neighbors, Parzen kernels


and neural networks to classify sleep stages. Others have developed a set of rules,
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a series of (if-then statements) in their code, to identify sleep stages (Agarwal and


Gotman, 2001). As sleep stages are traditionally scored visually based on a set of


rules/criteria the second approach was used. A list of key features of each sleep stage


and methods to identify these characteristics are listed in Table 6.2.


Table 6.2. Key features of sleep stages and characteristics of
polysomnography data that were extracted.


Sleep Stage Key Features Extraction Method
REM Fast Eye Movements Correlation


Low EMG between EOG channels
Stage Wake Alpha waves (8-12 Hz), Amplitude of EMG


Movement, High EMG Power in different
Stage 2 Sleep Spindles (12-14 Hz), Frequency Bands


K-complexes, Peak-to-Peak Amplitude
Theta activity (4-8 Hz) Detection


Stage 3/4 Low freq. activity (0.5-2 Hz), AR(4) Modeling
> 75 μV Peak to Peak amplitude
for > 20 % of epoch


In addition to features already described including the use of AR modeling to


identify sleep spindles, the calculation of the correlation between left and right EOG


channels to identify rapid eye movements, and peak-to-peak amplitude detection for


identifying slow wave sleep, the power in several EEG frequency bands including


delta, theta, alpha, sigma, and gamma was also calculated. To calculate the power


in each frequency band, the EEG signals were band-passed filtered using 4th order


Butterworth filters and the total power within each 30 second segment, sliding one


second through time was calculated. An example of the percent of the total power in


several frequency bands for one subject night is shown in Figure 6.13.


The mean and standard deviation of the power in each frequency band during


each of the 6 sleep stages was also calculated using all 76 subject nights of data in the


UK dataset, the results are shown in Figure 6.14. The Delta1 frequency band refers
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to power between 0.5 to 2 Hz, while the entire Delta frequency band ranges from 0.5


to 4.5 Hz. The mean and standard deviation for the ratio of alpha to theta is shown


in Figure 6.15 (a). The mean and standard deviation for the the average percentile of


the EMG amplitude is shown in Figure 6.15 (b). The mean and standard deviation


of the percent of a 30 second epoch occupied by slow wave sleep calculated using the


peak-to-peak amplitude detection method described earlier, are shown in Figure 6.15


(c). The mean values shown were useful in determing thresholds to use in the sleep


stage classification algorithm.


The standard method for scoring sleep stages is to assign a stage to each 30


second epoch or block of time. However, it was desired to create a more continuous


method for scoring sleep stages. Therefore while sleep stages were still scored for 30


second segments a sliding window of 1 second was used. Thus for each 30 second


interval there are 30 classifications, one for each 1 second interval derived from a 30


second period around that time. To compare the results to 30 second sleep stages,


the probability of being in each stage for each 30 second epoch was calculated and


then the 30 second sleep stage was assigned according to which stage had the highest


probability of occurrence. The 4 main steps of the algorithm are shown in Figure


6.16.


To classify the sleep stages for each 1 second (center of 30 second window), a


set of rules were developed, which are shown in Figure 6.17. First of all, if the 30


seconds of data contained a movement artifact for 20% or more of the 30 second


segment or it contained alpha activity in greater than 50% of the epoch, then the


sleep stage was classfied as wake. If the segment did not contain an artifact or high


alpha activity then the next step was to seperate segments according to whether it


contained eye movement, which was classified according to whether the correlation


of the two filtered EOG channels was less than -0.2. If the segment did not contain
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Figure 6.13. Percentage of the total power in an EEG signal in the
(a) Delta1 band, (b) Theta band, (c) Alpha band, (d) Sigma band,
and (e) Gamma frequency bands.


eye movement then the sleep stage was either Stage 3/4, Stage 2 or Wake. Stage 3/4


was identified according to the amount of delta power and whether the percentage


of slow wave sleep identified (using the peak-to-peak amplitude detection method)


was greater then 15 %. The sleep stage was classified as Stage 2 if the amount of


slow wave sleep was greater than zero and if sleep spindles occured. When rapid eye
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Figure 6.14. Average percentage of power for 76 subject nights in
each of the frequency bands for sleep stages Wake (0), NREM Stages
1 through 4, and REM sleep (5).


movement was identified, if the EMG activity was greater than the 85th percentile


or the power in the alpha frequency band was greater than the power in the theta


frequency band by a factor of 1.5 then the segment was categorized as Stage Wake


otherwise it was classified as Stage REM. An example of the probability of being in


each sleep stage through the night calculated using the developed algorithm for one


subject night is shown in Figure 6.18.
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Figure 6.15. The average (a) ratio of power in the alpha frequency
band to the power in the theta frequency band, (b) percentile of
the EMG and (c) percent of an epoch occupied by slow wave sleep
(SWS) for 76 subject nights for sleep stages Wake (0), NREM Stages
1 through 4 and REM sleep (5).


Figure 6.16. Steps used in developing sleep stage classification algorithm.


The estimated 30 second sleep stages and the original stages for one subject night


from the 1999 UK dataset are shown in Figure 6.19. The mean agreement between


original and estimated sleep stages was 0.70. This was found by calculating the


proportion of sleep stages correctly identified for each subject night and then taking


the average of all scores. The minimum agreement for one subject night was 0.51 and


the maximum agreement was 0.83. The specificity and sensitivity were also calculated
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Figure 6.17. Rules used in scoring sleep stages.


for each sleep stage. The sensitivity is a measure of how well a sleep stage can be


identified, while the specificity is related to how well the lack of a certain sleep stage


can be identified. Both sensitivity and specificity would be equal to 1 if the sleep


stage algorithm was correct in identifying each sleep stage. A reasonable specificity
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Figure 6.18. Probability of being in (a) Stage Wake/S1, (b) Stage 2,
(c) Stage 3/4 and (d) REM calculated using the developed algorithm.


and sensitivity similar to other sleep stage classification approaches were obtained for


Stage 2, Stage 3/4 and Stage REM (Agarwal and Gotman, 2001). The results are


listed in Table 6.3. However, a low sensitivity was obtained for Stage Wake/1. Part


of the reason for the low sensitivity is that Stage 1 sleep was not identified separately
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Figure 6.19. (a) Original Sleep Stages from the UK dataset and (b)
sleep stages scored using the developed algorithm.


because it is just a transient stage and is often grouped with Stage Wake in noise


induced sleep literature (Basner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet,


Müller, Müller, Plath, Quehl, Samel, Schulze, Vejvoda, and Wenzel, 2004), another


reason is that awakenings and transitions to Stage Wake and Stage 1 are brief. If


the sensitivity is calculated considering a period of plus or minus 1 minute about the


current epoch then the sensitivity for classifying Stage Wake/1 is greatly improved,


the resulting sensitivity was 0.66.
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Table 6.3. Sensitivity and Specificity for identifying sleep stages.


Sleep Stage Specificity Sensitivity
Wake/1 0.92 0.21
Stage 2 0.66 0.85
Stage 3/4 0.97 0.48
REM 0.95 0.74
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6.5 Conclusions


Methods for processing the polysomnography data that was obtained as part of the


UK dataset were reviewed. To remove artifacts, movement artifacts were identified


based on power in the gamma EEG frequency band and a recursive least squares


adaptive filtering approach was used to remove both EOG and ECG artifacts. To


identify characteristics of different sleep stages various methods including AR mod-


eling, calculation of power in different frequency bands, and correlation of the EOG


signals was used. Based on these characteristics a sleep stage classification algorithm


was developed in which sleep stages were assigned based on Tp seconds of data cen-


tered on each 1 second of the dataset. Here Tp = 30 seconds was used. The data


in each 1 second interval contributed to 30 windows of data, each of which results


in a classification. The probability of being in a sleep stage can be calculated from


these 30 results. The time intervals Tp can be varied. Small Tp intervals will produce


highly variable results while intervals that are too large will produce oversmoothed


sleep stage plots. The choice of 30 seconds was used to be consistent with visual


scoring and the sliding window was used to remove sensitivity to the starting point


of the window. The contribution made, was to build on previous people’s automatic


sleep stage classification algorithms, combining and refining their approaches and to


introduce the sliding window and window size flexibility to provide a more continuous


assessment of changes in sleep stages during the night.
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7. NONLINEAR SLEEP MODEL DEVELOPMENT AND PARAMETER


ESTIMATION


After reviewing the literature on sleep models, the Massaquoi and McCarley nonlinear


dynamic model was found to be the best candidate for altering so it could be used to


predict the effect of aircraft noise on sleep. However, the model has slow dynamics


which makes it difficult to predict brief awakenings including those that occur due


to noise. To overcome this limitation additional components were introduced into


the models. These components include an additional excitation term which has a


dependence on noise level and a model that predicts faster dynamics during a REM


period. The parameter values for the modified model were estimated using the 1999


UK study data. This required developing parameter estimation methods and also


methods to process the polysomnography data to produce signals that are closely


related to the E, n(t), X, Y , SWA and S of the original Massaquoi and McCarley


model. Similarly, parameters in the new fast REM part of the model had to be


estimated from signals derived from the sleep study data. A method to determine


whether a person is in Tonic or Phasic REM sleep, based on the occurrence of Rapid


Eye Movement was also developed. The results of simulations using the model will


also be presented later in this chapter.


7.1 Limitations of Massaquoi and McCarley Model


Before determining how to add a noise level dependence to the Massaquoi and Mc-


Carley model, simulations were conducted using the original model to determine if it


could be used to predict trends in sleep stages similar to those observed with other
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models. The values of the coefficients of the model, used in the simulations, are listed


in Table 7.1 and the equations were provided in Chapter 5 (Equations (5.47), (5.48),


(5.49), (5.55), (5.56), (5.57)) . One hundred simulations were performed using the


model. The variability in the predictions for each simulation was due to the impulsive


excitation term E (filtered square waves) where each impulse has a random arrival


time, height, and duration (Massaquoi and McCarley, 1992). The probability of be-


ing in NREM, REM and Wake stages was calculated and the results were compared


to predictions using Basner’s Baseline Markov model (2006). The results are shown


in Figure 7.1. The Massaquoi and McCarley model predicted a higher probability of


being in NREM sleep than Basner’s model, and lower probability of being awake or in


REM sleep. In order to improve the predictions of the model the value of c (in Equa-


tion (5.48)), which controls the rate of decay of Y (REM-OFF) activity, was increased


by 40%. A better agreement was obtained between the predicted probabilities.


Table 7.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).


Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10
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Figure 7.1. Probability of being in Wake, REM, and NREM sleep
predicted using the original parameters of the Massaquoi and McCar-
ley model (blue), with the parameter c increased by 40% (green) and
with Basner’s Markov model (red).
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Another difference between the predictions of the two models is that the Massaquoi


and McCarley model predictions have oscillations in the probability of being in NREM


and REM sleep which Basner’s Markov model does not. These ultradian oscillations


are partly due to the assumption when performing the simulations that everyone falls


asleep at the same time. In one set of simulations it was assumed that everyone


retired at the same time (11:00 pm), and in another set of simulations the time to fall


asleep was varied randomly for each simulation according to a normal distribution


which had a mean start time of 11:00 pm and a standard deviation of 30 minutes. One


hundred simulations were conducted using Basner’s Markov model (Equation (4.1))


and the Massaquoi and McCarley model (Equations (5.47), (5.48), (5.49), (5.55),


(5.56), (5.57)). The results are shown in Figure 7.2. The ultradian cycles in the


predictions of the Massaquoi and McCarley model were smoothed out when the sleep


onset time was varied and the predictions were more similar to those of Basner’s


Markov model but with a less pronounced increase in REM towards the end of the


night.


While the overall trends in sleep stage predictions between the two models are


in agreement, the Massaquoi and McCarley model is not without limitations. One


limitation of the model is that awakenings or transitions to lighter sleep are not


predicted by the model during a REM sleep period. A transition from REM to Wake


and then back to REM cannot occur. In Figure 7.3, an example of a REM period


and transitions from REM sleep to Stage Wake and Stage 1 during that period for


one night of sleep, from the UK dataset, is shown. The Massaquoi and McCarley


model in its current form cannot predict awakenings during REM sleep because the


level of X (REM-ON) activity does not oscillate during a REM period. The level of


Y (REM-OFF) neuron activity is low when X (REM-ON) activity is high and will


not cause a large change in the level of X when an excitation occurs. An alternative
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Figure 7.2. Probability of being in Wake (light gray), REM (dark
gray), and NREM sleep (black) predicted using, (a) and (b) the Mas-
saquoi and McCarley model and (c) and (d) Basner’s Markov model.
(a) and (c) All individuals retired at 11:00 pm and (b) and (d) Gaus-
sian variation in sleep onset was assumed. Results based on 100 sim-
ulations.
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sleep stage scoring rule could be used in which an awakening is considered to occur


if the excitation term is greater than a certain value, instead of always scoring the


stage as REM when X is greater than 1.4. This type of approach was taken by


Comte, Schatzman, Ravassard, Luppi, and Salin (2006) when scoring sleep stages


using their model. However, an inadequacy of this approach is that an awakening


will not play a more dynamic role in the sleep process and whether an individual


awakens during REM sleep has been found to depend on ongoing brain activity and


whether an individual is in Phasic or Tonic REM sleep (Ermis, Krakow, and Voss,


2010).


0 50 100 150 200 250 300 350 400 450
Stage 4


Stage 3


Stage 2


Stage 1


REM


Wake


Time (min)


Last REM
   Cycle


Figure 7.3. Example of a REM sleep period and the change in sleep
stages within that period.


The second limitation of the Massaquoi and McCarley model is that it has slow


dynamics. While the model can predict the slow ultradian 90-100 minute oscillation


between NREM and REM sleep, it cannot be used to adequately predict brief awak-
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enings. To emphasize the slow dynamics, the equations of the REM sleep portion of


the model can be rewritten where the equation for REM promoting (X) activity is,


Ẋ + ωc1X = 0, (7.1)


ωc1 = b(X)Y − a(X)S1(X). (7.2)


The equation for REM inhibiting (Y ) activity can also be rewritten as,


Ẏ + ωc2Y = 0, (7.3)


ωc2 = c− dcircS2(Y )(X + E). (7.4)


Both equations have the form of a low pass filter with time varying cutoff frequencies.


In Figure 7.4 the variations in the two frequencies are shown. The majority of the


behavior of the model is on the order of hours not seconds. Dynamics on a timescale


of several seconds are needed to predict awakenings during REM periods.


In order to further examine the use of the Massaquoi and McCarley model for


predicting brief awakenings, simulations were conducted in which excitation events


(N(t)) were of equal spacing, amplitude, and duration. The duration of the impulses


was one minute, which is approximately the duration of an aircraft event, the ampli-


tude of the impulses was varied in increments of 1, from 1 to 10. For these simulations


the following equation was used for E,


Ė + kE = kN, (7.5)


where k was equal to 10, which is the value in the original Massaquoi and McCarley


model. The duration spent in NREM, REM, and Wake states were calculated for each
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Figure 7.4. The time varying frequencies of the Massaquoi and Mc-
Carley model. (a) X model and (b) Y model.
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simulation. In Figure 7.5 the results of two simulations, with low (Emax=2.4) and


high excitation levels (Emax=6.0) for 16 events are shown. The number of REM sleep


periods and the level of slow wave activity were found to decrease as the amplitude


of the events were increased. However, due to the sleep stage scoring thresholds of


the original model, the number of predicted awakenings did not increase when the


amplitude of the impulses was increased. In Figure 7.6 the duration of REM, NREM,


and Wake stages for various amplitudes of the excitation parameter (N(t)) are shown.


Simulations were also conducted for 64 events of varying amplitudes. The results


are shown for low amplitudes (Emax=1.8) and high amplitudes (Emax=3.6) in Figure


7.7 and the duration of REM, NREM and Wake stages for various amplitudes of the


excitation parameter are shown in Figure 7.8. As the amplitude of the noise events


was increased, the NREM and REM sleep cycles during the night disappeared and


there was still not a large increase in the number of predicted awakenings.


The addition of an excitation term to the equation for X (REM-ON) activity was


examined to determine if more variations in the level of activity and an increase in


the prediction of awakenings could be obtained without destroying the slow ultradian


cycling. One approach was to use the following equation,


Ẋ = a(X)S1(X)X − b(X)XY − EX. (7.6)


The term EX was added rather than just E alone in order to prevent the level of X


from becoming negative. The results for a simulation using this approach is shown


in Figure 7.9. The addition of the E term caused a decay in REM-ON (X) activity


which caused the ultradian cyclic behavior to end. Therefore, another approach in


which a saturation function (f(X)) was added was also examined, the equation for


which is,


Ẋ = a(X)S1(X)X − b(X)XY − f(X)EX. (7.7)
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Figure 7.5. Massaquoi and McCarley model predictions for 16 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=2.4, Nmax=4) and (b) high amplitude (Emax=6.0, Nmax=10)
impulses.
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Figure 7.6. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 16 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 30 minutes.
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Figure 7.7. Massaquoi and McCarley model predictions for 64 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=1.8, Nmax=3) and (b) high amplitude (Emax=3.6, Nmax=7)
impulses.
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Figure 7.8. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 64 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 7.5 minutes.
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In Figure 7.10 the saturation function is shown. The form of the saturation function


was chosen so the excitation term only affected X when the level of X was high. The


results for a simulation conducted with the added saturation function are shown in


Figure 7.11, where the labels A and B, in the Figure, indicate the decay in the X


activity due to the addition of the excitation term to the REM-ON (X) equation.


While awakenings were predicted during the REM periods this behavior is still not fast


enough for predicting awakenings during sleep, which can be as brief as 15 seconds.


Also not all simulations using this approach resulted in desirable results, such as the


example shown in Figure 7.12, in which the X and Y activity no longer appears


cyclic.
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Figure 7.9. Prediction of the Massaquoi and McCarley model when an
excitation term (EX) was introduced in the REM-ON (X) equation.
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Figure 7.10. Saturation function f(X) used in Equation (7.7) to turn
on E effects only when X > 1.3.
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Figure 7.11. Prediction of the Massaquoi and McCarley model when
an excitation term with a saturation function was added to the REM-
ON (X) equation. A and B mark times when there are awakenings
during the REM sleep period. (a) X (green) and Y (blue); (b) Pro-
cess S (green) and SWA (blue); (c) excitatory term (E) (filtered
rectangular pulses with uniformly distributed amplitudes and dura-
tions and exponentially distributed arrival times); and (d) sleep stage
classification.
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Figure 7.12. Prediction of the Massaquoi and McCarley model when
an excitation term with a saturation function was added to the REM-
ON (X) equation. Less desirable changes in sleep were obtained. (a)
X (green) and Y (blue); (b) Process S (green) and SWA (blue);
(c) excitatory term (E) (filtered rectangular pulses with uniformly
distributed amplitudes and durations and exponentially distributed
arrival times); and (d) sleep stage classification.
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The only approach that did result in fast oscillations in REM-ON (X) activity


was when a band-passed noise or sinusoidal noise term, denoted by (q) in Equation


(7.8) was added to the X equation,


Ẋ = a(X)S1(X)X − b(X)XY + qX. (7.8)


An example of the results obtained using this approach is shown in Figure 7.13. The


example results shown in Figure 7.13 (a) is for when q is equal to a sinusoidal term


with an amplitude of 40 and 4 oscillations per minute. For results shown in Figure


7.13 (b) q is uniformly distributed band passed noise with frequencies of oscillation


between 1 and 4 per minute and has an amplitudes between -50 and 50. While fast


oscillations were predicted, the impulsive, random occurrence of awakenings during


REM periods was not.


7.2 Altering Ultradian Oscillator-Slow REM Model


Based on the limitations of the Massaquoi and McCarley model, it was determined


that slow and fast activity during REM sleep needed to be modeled separately. There-


fore, instead of trying to manipulate the REM-ON and REM-OFF equations to obtain


oscillations in activity that could lead to awakenings using scoring rules, the REM-ON


and REM-OFF equations would be used for just controlling the ultradian cycling.


Having a slow term whose only role is to control the ultradian oscillations in the


model is not a new concept, Achermann, Beersma, and Borbély (1990) used a Van der


pol oscillator with the two-process model to control the ultradian oscillations between


NREM and REM sleep, which was defined by the equation,


Ẍ = a(b−X2)Ẋ − wX. (7.9)
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Figure 7.13. REM-ON activity (X) with (a) added sinusoidal noise
with frequency of 4 oscillations per minute and amplitude of 40. (b)
Added uniformly distributed (between -50 and 50) band-passed noise
between frequencies of 1 and 4 oscillations per minute.
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Wever (1980) used two coupled nonlinear oscillators one for circadian and one for


ultradian oscillations. The form of his equations are,


ÿ + ε1(y
2 − y−2 − a1)ẏ + ω1


2(y + g1y
2) = ω1


2(c1(ẍ+ ẋ+ x)), (7.10)


and


ẍ+ ε2(x
2 − x−2 − a2)ẋ+ ω2


2(x+ g2x
2) = ω2


2(c2(ÿ + ẏ + y)). (7.11)


The excitation term E in the REM-OFF equation of the Massaquoi and McCarley


REM model though will remain in the slow REM model. If the maximum amplitude


of the excitation is limited the loss of NREM-REM cycling will not occur as in the


the simulations in the previous sections. The reason for keeping the E term in a slow


REM model is that several researchers have found that the duration of sleep cycles


is affected by awakenings. Foret, Touron, Clodoré, and Bouard (1990) examined the


effect of forced awakenings on the duration of NREM sleep during one sleep cycle.


They interrupted sleep one time a night, for 3 nights. The time of the interruption


varied per test night and occurred at either 1:30, 3:30, or 5:30 am. The duration


of the interruption was 10 minutes. To calculate the effect of the interruption on


the NREM-REM timing they calculated what they called the inter-REM interval


which was the time between the start of one REM period until the start of the next


period, however the 10 minute interruption time was not included when calculating


the inter-REM interval duration. They found that compared to a baseline night, the


interruption caused a decrease in cycle duration if it occurred in the first half of the


cycle but it caused an increase in cycle duration if the interruption occurred in the


second half of the cycle.


Massaquoi and McCarley (1990) compared predictions using their model to the


data from the study conducted by Foret, Touron, Clodoré, and Bouard (1990). They
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applied excitations at various locations during a sleep cycle. Each pulse in the E term


in the model had a duration of one unit or 10.7 minutes. They examined the effect of


different amplitudes of excitation on the duration of a sleep cycle. They found that


the strength of the excitation does have an effect on the change in cycle length. A


strong excitation will result in a linear relationship between the time an excitation


occurs and the change in cycle duration. However, they found that moderate or weak


pulses have more of a curvilinear relationship.


7.3 Fast REM Model


The development of a fast REM sleep model is based on the notion that during REM


sleep the probability of awakening to a noise event is dependent on ongoing brain


activity and, in particular, whether an individual is in Tonic or Phasic REM sleep.


The Tonic and Phasic activity in the UK dataset was examined and used to develop


the model.


7.3.1 REM Density Calculation


While it might not be well understood yet what exactly is causing the variation in


stimulus response during REM sleep, what is clear is that response to auditory stimuli


cannot be assumed to be constant during this stage. Results from Wehrle et al. (2007)


indicate that a noise stimulus will be processed differently depending on whether an


individual is in Tonic or Phasic REM sleep, and this in turn affects whether they


awaken.


In order to evaluate the timing and duration of Phasic and Tonic REM sleep in


the data from the 1999 UK study, the density of rapid eye movements was calculated.


To calculate the density of rapid eye movements first the left and right EOG channels
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were bandpass filtered between 0.5 and 5 Hz by using a 4th order Butterworth filter.


The beginning and end of each REM period was identified. Within the defined REM


period the two EOG channels were segmented into 30 second segments. The corre-


lation between the two channels was calculated and then the process was repeated


moving in 1 second increments through time. If the correlation of the two channels


was below -0.2, rapid eye movements were considered to occur. A second method was


also used to identify rapid eye movement which was similar to an approach used by


Agarwal, Takeuchi, Laroche, and Gotman (2005). The inverse or negative of the left


EOG channel was multiplied by the Right EOG channel and then amplitudes greater


than 625 μV 2 were identified. A 2 second segment of both the right and left EOG


channel was obtained around each peak. The correlation between the 2 seconds of the


left and the 2 seconds of the right EOG channels was calculated. If the correlation


was below -0.2 and the peaks of the two channels were within 100 ms of one another,


then rapid eye movement was considered to occur. Then, for each 30 second segment,


the proportion of the segment that was occupied by rapid eye movement was calcu-


lated in order to obtain a measure of REM density. The measure of REM density


was again calculated for 30 second segments, moving 1 second in time. The results


for one REM period are shown in Figure 7.14. The REM Indicator is an indicator


of Phasic and Tonic REM activity, it is equal to 1 when the REM density is greater


than zero and Phasic REM sleep is occurring, and is equal to zero when Tonic REM


sleep is occurring. Tonic REM periods of less than 15 seconds duration were set equal


to Phasic REM sleep though, this approach has been used by others (Ermis, Krakow,


and Voss, 2010) to define Tonic and Phasic REM sleep.
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Figure 7.14. An example of rapid eye movement activity. (a) 30
second correlation between right and left EOG signals and the -0.2
threshold used (red dashed line), (b) REM density measurement-
proportion of the 30 second epoch occupied by rapid eye movement
activity, and (c) an indicator of Phasic and Tonic REM sleep.
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7.3.2 Form of Fast REM Model


A few researchers have tried to identify/model the process that causes the occurrence


of rapid eye movements. Trammell and Ktonas (2003) stated that the occurrence of


rapid eye movements may not be due to a random process. One method they used to


determine if the process that caused rapid eye movement bursts was deterministic or


stochastic was the correlation dimension. They calculated the correlation dimension


using the inter-REM periods or the time between rapid eye movements and found


values near 2. This indicated to Trammell and Ktonas (2003) that a low order non-


linear process may explain the intervals between rapid eye movements. Boukadoum


and Ktonas (1988) analyzed the probability density function of inter-REM intervals


between rapid eye movements. They categorized inter-REM periods according to two


criteria: (1) the time between rapid eye movements within a burst, (a burst is defined


if the inter-REM period is less than 2 seconds), and (2) inter-REM period between


isolated bursts of rapid eye movement. From the estimated probability density func-


tion they concluded that two separate processes may be involved in the occurrence of


rapid eye movements, one process controlling the brief bursts of activity and another


controlling the longer intervals between rapid eye movements. They stated that the


inter-REM intervals cannot be predicted by using an exponential distribution.


After examining the occurrence of Phasic and Tonic REM sleep in the UK data,


it seemed that the oscillation between the two states, along with the change to awake


states during REM sleep could be modeled using a Duffing equation with the harmonic


excitation in a region in which chaotic response behavior is possible. The form of the


Duffing equation with up to a 5th order stiffness term was examined (Li and Moon,


1990). This equation has the form,


ẍ+ δẋ+ β5x
5 + β4x


4 + β3x
3 + β2x


2 + β1x+ βo = Acos(ωt); (7.12)
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which can also be written as,


ẍ+ δẋ+ β(x− α1)(x− α2)(x− α3)(x− α4)(x− α5) = Acos(ωt); (7.13)


If the unforced case is considered the corresponding set of first order differential


equations are,


ẋ = y, (7.14)


ẏ = −δy − β5x
5 − β4x


4 − β3x
3 − β2x


2 − β1x− βo. (7.15)


There are 5 equilibrium points and they occur when,


y = 0, (7.16)


β5x
5 + β4x


4 + β3x
3 + β2x


2 + β1x+ βo = 0. (7.17)


The Duffing equation (usually with only a 3rd order polynomial rather than the


5th order shown here) has been used to model the behavior of an elastic beam which


is clamped vertically above magnets of fixed position. The entire system consisting of


the beam and the magnets are shaken horizontally. When the system is shaken with


a low amplitude the beam will oscillate about one of the magnets which are stable


equilibrium points. If the system is shaken with a large enough sinusoidal force, in


certain frequency and amplitude regions the beam will jump chaotically from magnet


to magnet (Moon and Holmes, 1979). This is illustrated in Figure 7.15 for a third


order nonlinearity and in Figure 7.16 for a fifth order nonlinearity.


For the Duffing equation with a 5th order stiffness term, three of the equilibrium


points are stable, the other two equilibrium points are saddle points and are unstable.


For the fast REM model, two of the stable points were considered to be Tonic and


Phasic REM sleep. The third stable point represents Stage 1/Wake. As research
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Figure 7.15. A Duffing oscillator with two stable points at 0.5 and
-0.5 and one unstable point at 0, δ = 0.06 and ω = 2π(0.1). (a) Beam
analogy, (b) potential function, (c) oscillations about one stable equi-
librium (A=0.01), (d) chaotic jumps between equilibrium (A=0.4),
and (e) periodic oscillations about both stable equilibria (A=0.6).
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Figure 7.16. (a) REM period model beam analogy. A Duffing oscil-
lator with 3 stable and 2 unstable equilibrium positions, (δ = 0.06,
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on auditory awakening thresholds have indicated that an individual is more likely to


awaken during Tonic than Phasic REM sleep, the awakening stable point was posi-


tioned closer to the stable point representing Tonic REM sleep. Also as awakenings


are less likely to occur than Phasic or Tonic REM sleep during a REM sleep period,


the distance between the Tonic and Wake stable point was greater than the distance


between the Tonic and Phasic stable point. The positions of the equilibrium points


for the baseline no-noise conditions are listed in Table 7.2. The phase plane and


position of the equilibrium points for the fast REM model is shown in Figure 7.17,


where, δ = 0.06.


Table 7.2. Positions of the equilibrium points for the baseline fast
REM sleep model.


Equilibrium Point Position
Phasic REM sleep 0.5
Tonic REM sleep -0.5
Wake -2.5
Unstable Point Between Tonic and Phasic 0
Unstable Point Between Wake and Tonic -2


To simulate awakenings due to noise events the position of the saddle point be-


tween the Wake stable point and Tonic stable point was allowed to vary and it moved


closer to the Tonic stable point when an excitation term occurred. The equation for


the model is,


ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt). (7.18)


where, (−2 + γw(t)), is the unstable saddle point which moves when an excitation


occurs. Here w(t) is an excitation, a different naming convention then the slow model
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Figure 7.17. Phase plane for Duffing equation. Unstable equilibrium
points (red/light gray), stable equilibrium points (black) (δ = 0.06,
ω = 2π(0.3), A=0.5), y = ẋ.







220


in which the excitations are labeled as (E) is used as the two may or may not have


the same form.


The term γw(t) is always positive so this impulsive excitation, which models brain


activity pushes the unstable equilibrium position at x = −2.0 toward the “Tonic”


equilibrium position at x = −0.5 making it easier for the beam to move to the Wake


equilibrium position at x = −2.5. In Figure 7.16 (b) w(t) = 0 and the unstable


equilibrium point is at -2.0 and in Figure 7.16 (c) there were 8 evenly spaced events


of 1 minute with (−2+γw(t))=-0.6 when events were occurring and equal to -2 when


events were not occurring (w(t) = 0). By moving the unstable equilibrium point the


likelihood of transitioning to an awake state increases as the noise level increases.


In Figure 7.18 the potential function of the Duffing equation is shown for different


positions of the unstable point between Wake (m3) and Tonic REM (m2); in Figure


7.18 (a) the potential function when the unstable point is at -2.0 is shown, if the beam


is close to m1 (Phasic REM) and m2 (Tonic REM) it would be difficult to jump out


of the well at lower amplitudes of excitation to reach m3 (Wake). In Figure 7.18 (b)


the unstable point is at -1.5 and you can see that escape from the m1-m2 region to m3


would be easier and in Figure 7.18 (c) when the unstable point is at -1.0 it would be


very easy to escape from the m1-m2 region to m3 and it would be difficult to escape


the m3 region to return to the m1-m2 region.


An example of the output of the model with awakenings is shown in Figure 7.19.


Here the unstable equilibrium point is defined as −2 + γN(t) and N(t) is a series


of impulses of duration 1 minute and are spaced 5 minutes apart. To classify sleep


states, a set of thresholds were defined. If the value of x is greater than 0 then Phasic


REM sleep occurs and if the value of x is less than zero then Tonic REM sleep is


occurring. However, there are exceptions used in order to eliminate very brief sleep


stage changes. If the peak value, when the signal is above zero, is never greater than
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Figure 7.18. The potential function for the 5th order stiffness Duffing
equation for different positions of the unstable equilibrium point be-
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m2, m3 represent the magnet locations in the beam system analogy
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tively.
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0.25, i.e. it never approaches the Phasic stable equilibrium point, which is at 0.5, then


the activity above zero was set equal to the previous classified state, a similar approach


was taken when activity is below zero but the minimum never approaches the Tonic


stable equilibrium or Wake stable equilibrium point. Wake states are classified if the


level of x is below -2.0 during an excitation. An example of scoring REM sleep stages


using these rules is shown in Figure 7.19.
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Figure 7.19. (a) Solution of the Duffing equation, oscillations are
about 3 stable equilibria, (red-dashed line) thresholds used to assign
sleep stages. (b) Unstable equilibrium position (−2 + γN) and (c)
classified sleep stages. The driving frequency ω = 2π(0.3), δ = 0.06
and the amplitude (A) was 0.5.


In order to determine the remaining parameters of the Duffing equation, simula-


tions were completed in which the frequency (ω) and the amplitude of the driving
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force (A) were varied in order to match the percentage of time spent in Tonic and


Phasic sleep and the inter-arrival time between Phasic activity as calculated based


on the 1999 UK data. For these simulations the location of the stable and unstable


points and the damping (δ) which was set equal to 0.06, remained constant. The


damping was set at a low enough value so that chaotic behavior could be obtained,


and it was not varied for the simulations as changing the amplitude and the damp-


ing would have similar effects. The initial conditions were randomized for each trial


between -0.5 and 0.5, and the drive frequency and amplitude were systematically var-


ied. One hundred simulations were conducted for each combination of parameters.


A reasonable agreement was found when the drive frequency was set equal to 0.3 Hz


and the amplitude of excitation was set equal to 0.5, the results are shown in Figure


7.20. The time t, also had to be scaled after each solution was obtained to match


values, t for the solutions was set equal to (1/5)t to obtain agreement between the


simulated and actual values.


Simulations using the fast REM model for different numbers, level, and duration


of excitations (w(t) = N(t)) were completed. For each combination of parameters,


25 simulations were completed, the initial conditions were varied for each simulation.


The average proportion of a REM period classified as Wake based on the simulation


results is shown in Figure 7.21 and the average proportion of a REM period classified


as Tonic and Phasic REM sleep is shown in Figure 7.22. The proportion of the REM


period classified as Wake increased with both excitation level and duration of the


event, while the proportion spent in Tonic and Phasic REM sleep both decreased.


The proportion of the REM period classified as Wake also increased with the number


of events. The probability of awakening to a noise event is shown in Figure 7.21,


and it increases with the duration of an event and the excitation level. From the


simulations it was found that an impulse that moved the unstable equilibrium point
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Figure 7.20. Statistics of Tonic and Phasic REM sleep for simula-
tions (red) and survey data (blue). (a) Inter-arrival time of Phasic
activity, (b) proportion of REM period (without awakenings) occu-
pied by Tonic REM sleep and (c) proportion of REM period (without
awakenings) occupied by Phasic REM sleep.
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to -1.6 will start to cause transitions to Stage Wake. The baseline position of the


unstable equilibrium between Wake and Tonic was set at -2 because at this location


the probability of moving to the Wake state without an excitation term is essentially


zero.
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Figure 7.21. Proportion of the REM period defined as awake for (a) 2,
(c) 4, and (e) 8 events as a function of level. Probability of awakening
to, (b) 2, (d) 4, and (f) 8 noise events as a function of level.
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Figure 7.22. Proportion of the REM period defined as Phasic REM
sleep for (a) 2, (c) 4, and (e) 8 events as a function of level. Proportion
of the REM period defined as Tonic REM sleep for (b) 2, (d) 4, and
(f) 8 events as a function of level.
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Based on simulations and the classification of Tonic and Phasic REM sleep in


the UK dataset, the Duffing equation appears to predict the behavior of fast REM


activity. The use of a Duffing type equation for modeling brain activity does have


support in the sleep literature. There have been many models developed for neuron


bursting activity. Phasic REM sleep can be thought of bursting activity. One of the


most commonly used models is the Hodgkin-Huxley model. This is a model of the


behavior of 3 channels through a neuron membrane: sodium, potassium and a leakage


channel (Gerstner and Kistler (1996); Izhikevich (2004)). Either a constant current


or a short current pulse is applied as input to the model and the output is the voltage


potential which may contain a spike.


A simplification of the Hodgkin-Huxley equations was made, that model is called


the Fitz-Hugh Nagumo model and consists of the following two equations (Gerstner


and Kistler, 1996),


ẋ = x− 1


3
x3 − y, (7.19)


ẏ = a+ bx− cy. (7.20)


The two equations can be combined to create a second order differential equation by


solving Equation (7.19) for y,


y = x− 1


3
x3 − ẋ, (7.21)


taking the derivative,


ẏ = ẋ− ẋx2 − ẍ, (7.22)
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and substituting them into Equation (7.20). The equation that is obtained is:


ẍ+ (1− c)


(
1


1− c
x2 − 1


)
ẋ+ (b− c)x+ c


1


3
x3 + a = 0, (7.23)


which with an applied sinusoidal force can be written as,


ẍ+ p(kx2 − 1)ẋ+ ω2
ox+ βx3 = ao + Acos(ωt). (7.24)


This equation has the same form as the Duffing Van der Pol equation. If k is zero then


the equation has the form of a Duffing oscillator. Curtco, Sakata, Marguet, Itskov,


and Harris (2009) modeled neuron activity in the auditory cortex when urethane-


anesthetized rats were exposed to auditory stimuli using the Fitz-Hugh Nagumo


equations, though the form of the Fitz-Hugh Nagumo model they used was slightly


different, in that the model had an x2 term in addition to the x and x3 in Equation


(7.19).


In addition to neuron bursting models, Zeeman (1976) discussed how there are


different scales at which to model brain activity. He described small-scale theory as


consisting of models of individual neurons, synapses, and nerve impulses. Large-scale


models are models of the end result like thinking and responding. He stated that


what is needed is a model of medium-scale behavior. The medium-scale model he


believes could be something like the Duffing oscillator because it has the oscillatory


behavior found in neurons and he stated that it would be expected that some neuron


activity would be stable and some would not.


The Duffing equation has also been used to model epileptic seizures as well as


visual evoked responses. Stevenson, Mesbah, Boylan, Colditz, and Boashash (2010)


wanted to create a model of newborns EEG activity including seizure activity. The


model developed consisted of a Duffing oscillator driven by Gaussian noise for the
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background EEG and a Duffing oscillator driven by impulsive noise to simulate the


seizure activity. The two signals output from the models were added in order to


obtain a simulated newborn’s EEG signal. Srebro (1995) used a Duffing equation


to model visual evoked potentials observed in EEG data. The visual stimulus that


was used consisted of a checkerboard pattern that was shown at intervals. Srebro


(1995) was mostly interested in modeling the response of the system to impulsive


perturbations and matching the increase and subsequent decay of the response to the


individual evoked potentials that were observed in experiments. They found that the


result with the Duffing oscillator was a better match to the evoked potentials then


what would be predicted by using a linear stiffness.


7.4 Model Parameter Estimation


Now that a fast REM sleep model has been developed and the fast dynamic behavior


limitations of the Massaquoi and McCarley model have been overcome, the parame-


ters of the different components of the sleep model needed to be estimated using the


1999 UK data. The methods used and the values of the estimated parameters for the


different components of the model are described.


7.4.1 The Homeostatic Process S Model


The term S in the Massaquoi and McCarley model represents the need for sleep


and decreases through the night. While there have been several variations in the


equation for this term, in its most basic form S is an exponentially decaying function


(Achermann and Borbély, 1990) of the form:


S = Soe
−gc t, (7.25)
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where the parameter gc controls the decay rate. While there is no direct measure-


ment of Process S, it can be estimated from the decay of slow wave activity (SWA).


Process S is an upper bound on the level of slow wave activity. To estimate the initial


value of S and the decay rate, first SWA during the night was calculated. Slow wave


activity was calculated in a manner similar to that used by Ferrillo, Donadio, De Carli,


Garbarino, and Nobili (2007). The EEG signals, from the 1999 UK study were seg-


mented into 30 second segments of sleep. This segmentation was repeated moving


through the signal in 1 second increments. Using the segment average (pWelch in


Matlab) the power spectral density was calculated. The 30 second segment was fur-


ther segmented into 4 second segments with 75% overlap. The total power between


0.5 and 4.5 Hz was calculated from the estimated power spectral density. To smooth


the result further, a moving average filter was used in which the averaging was per-


formed over three minute segments (Achermann, Dijk, Brunner, and Borbély, 1993).


The smoothed SWA estimate was then normalized by the mean of the SWA activity


for the entire night. This normalization was also done by Achermann, Dijk, Brunner,


and Borbély (1993).


Once the SWA estimate was smoothed and normalized then the 95th percentile of


SWA during each NREM period was calculated. Before performing this calculation,


though, first the boundaries of each REM period during the night had to be calculated.


To calculate these limits the original scored sleep stages from the 1999 UK study


for each subject were used. First, all stages scored as REM sleep during the night


were identified. Then, if there were less than 15 minutes duration of NREM sleep


or Wake between scored REM stages, the REM and intervening NREM stages were


considered to be in the same REM period. REM periods that were less than 5 minutes


in duration were ignored because REM periods should be greater than 5 minutes in
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duration (Achermann, Dijk, Brunner, and Borbély, 1993). An example of the scored


sleep stages during the night and the defined REM periods are shown in Figure 7.23.
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Figure 7.23. An example of Sleep Stages (blue) and identified REM
periods (red dashed line).


The 95th percentile of SWA levels for each intervening NREM period was then cal-


culated and the time of these points was determined. The 95th percentile rather than


the maximum level was used to reduce the likelihood that the point was associated


with an artifact. An exponential function was then fitted to the set of points. An


example of the estimated slow wave activity and the values used to to estimate the


exponential function are shown in Figure 7.24. The mean and standard deviation


for both the decay parameter gc and the amplitude at the start of the night (So)


estimated from the data are listed in Table 7.3.


The data from the 1999 UK study that was used to estimate the model parameters


comes from measurements of subjects between the ages of 30 and 40. Dijk, Beersma,


and van den Hoofdakker (1989) calculated the decay rate of Process S for two different


age groups, 20-28 and 42-56. They found a decay rate of -0.225 units/hour for the


younger group and -0.155 units/hour for the middle age group. The results listed in


Table 7.3 need to be scaled by 60 minutes/10.7 minutes, due to differences in time


scaling, however when rescaled the resulting decay rate based on the data from the


UK study is -0.1794 units/hour which is in-between the results found for the two age
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Figure 7.24. (a) Sleep Stages. The start of each REM period is
indicated by a red dot and the end of each REM period is marked by
a black dot. (b) Estimated SWA (blue), 95th percentile of SWA for
each NREM period (red dot) and the estimated Homeostatic Process
S (black-dashed line).
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groups by Dijk, Beersma, and van den Hoofdakker (1989). This gives an indication


of how the coefficients of Process S need to be varied in order to account for different


age groups.


7.4.2 Slow Wave Activity


The model for slow wave activity that is being used is not the model in Massaquoi and


McCarley (1992). The model in Achermann, Dijk, Brunner, and Borbély (1993) is


being used. The primary reason for this is that this model of SWA has separate terms


for controlling (1) the fall of SWA due to the onset of REM sleep and awakenings


and (2) the rise of the slow wave activity. The equations for the slow wave model are,


Ṡ = −gc SWA (7.26)


and


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−


fcw (SWA− SWAL)E.


(7.27)


The parameters in the slow wave activity equation were estimated using the 1999


UK data. The initial value of slow wave activity (SWAo), was determined by first


identifying the onset of sleep, which is the first occurrence of Stage 2, and then


calculating the mean of the slow wave activity for the first minute of sleep. The


method Achermann, Dijk, Brunner, and Borbély (1993) used to estimate SWAL was


used. They set the parameter SWAL, which is the lower bound for the level of slow


wave activity, equal to a value that is five percent lower than the lowest value of slow


wave activity observed during periods of REM sleep. The mean values and standard
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deviation for these two coefficients, estimated using the 1999 UK data, are listed in


Table 7.3.


To calculate the rise parameter (rc), the first 30 minutes of the slow wave activity


was extracted. The maximum value for the segment of SWA was calculated and


only the portion of the segment between the first point and the maximum value was


used to calculate rc. An example of SWA for one subject and the portion used to


calculate rc is shown in Figure 7.25 (a).
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Figure 7.25. SWA activity (blue), REM periods (black) and (a) por-
tion of segment used to calculate rc (red) and (b) portion of segment
used to calculate fc (red).


To calculate rc, a continuous time system identification approach/least squares


approach was used (Doughty, Davies, and Bajaj, 2002). When SWA is increasing


in level the second term in Equation (7.27), REMT , is equal to zero. Therefore the


equation is,


˙SWA = rc SWA (S − SWA) . (7.28)
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The value of ˙SWA was calculated by taking the derivative of the segment of SWA.


Taking the derivative of a signal can increase high frequency components therefore the


derivative was also low pass filtered. The value of S used was based on the estimated


value of S.


To calculate the fall parameter (fc), 15 minutes of the slow wave activity before


each REM period plus the slow wave activity within the first quarter of each REM


period was extracted. The maximum value of SWA for the segment was calculated


and only the portion of the segment between the maximum value and the last data


point was used to calculate fc. An example of SWA and the portion used to calculate


fc are shown in Figure 7.25 (b).


The value of fc can be calculated in a similar manner as rc in which the equation,


˙SWA− rc SWA (S − SWA) = −fc (SWA− SWAL), (7.29)


is solved for fc. The model parameters rc and fc were calculated in order to obtain an


estimate of the rise and fall of slow wave activity and to verify that the values in the


literature are also applicable to the UK data. However, real slow wave activity is more


variable than the slow wave activity simulated by using the model due to awakenings


and other ongoing activity, therefore, for all subject nights of data a reasonable single


rise and fall constant could not be calculated. As the mean values for rc and fc for


all subject nights was similar to the mean values reported in the literature, the mean


values were used in the combined model, but it should be noted that they actually


vary by subject and also probably by situation and are perhaps better characterized


by a distribution.


To estimate the characteristics that define the noise (n(t)) in the model Acher-


mann, Dijk, Brunner, and Borbély (1993) calculated the difference between a smooth


version of the slow wave activity and that of an unsmoothed version of the slow
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wave activity. The SWA activity within each 3 minute block of time was averaged


to obtain the smoothed SWAS. The noise time histories can be estimated for each


subject-night by using,


n =
SWA− SWAS


SWAS


, (7.30)


where SWA is the unsmoothed version of slow wave activity and SWAS is the


smoothed version of the slow wave activity. An example of the original SWA, the


smoothed SWA and the noise term n, that was calculated for one subject night using


the UK dataset is shown in Figure 7.26. A distribution of the amplitude of the noise


is shown in Figure 7.27. A Gaussian function was fit to this distribution data and is


shown for comparison. There appeared to be a skewness in the distribution of n(t).


A possible reason for this skew, maybe, is that while most large artifacts in the data


were removed perhaps smaller movement artifacts were not. To examine if this is the


reason for the positive skew, the mean, standard deviation, skewness, and kurtosis


for n(t) were calculated when only portions of the data were considered. The noise


(n(t)) data for each subject night was sorted and the lower and upper 0.5% of the


data was eliminated. The statistics of n were then calculated through time using a


sliding 30 minute segment. This procedure was repeated eliminating larger protions


of the lowest and highest values in the dataset up to an elimination of 5% (the upper


and lower 2.5%) of the data. The results for one subject night are shown in Figure


7.28. When portions of the data were removed, as expected, kurtosis is reduced but


a skew in the data is still prevelant. This is also clearly seen in the data, Figure 7.26


(a). The results for all subjects indicate a skewness in the data, the results of which


are shown in Figure 7.29. Therefore in the model to simulate n a skewed Gaussian


distribution was used based on the parameters in Table 7.3.
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Figure 7.26. (a) Estimated noise term ˜n(t), (b) the original SWA
(blue), and smoothed SWA (red).
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Figure 7.27. Probability density function of n(t) (black) and Gaussian
distribution resulting from a fit to the data (red).
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Figure 7.28. Statistics of n(t) with tails of the distribution removed.
Gray to black results from eliminating 1% to 5% of the tails of the
distribution of n(t) before calculating the statistics for each 30 minute
segment.
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Figure 7.29. Range of values for the (a) mean, (b) standard deviation,
(c) skewness, and (d) kurtosis for all subjects based on statistics cal-
culated from each moving 30 minute segment of the estimated random
noise term n(t). The results are shown as a boxplot: red line median,
edge of each box is the lower and upper quartile, the red plus signs
are outliers.
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The last parameter of the SWA model is the fall in slow wave activity due to


noise events (fcw). Achermann, Dijk, Brunner, and Borbély (1993) considered the


rate of fall in slow wave activity when awakenings occur to be four times faster than


the rate when a REM period occurs. However, they assumed that the wake term was


never larger than 1 in their model. A value for E other than 1 was used, and this


will be discussed in the following section. The value for fcw that was chosen was 2


times the value of fc.


Table 7.3. Coefficients of the SWA model estimated from data taken
from 76 subject nights of the 1999 UK study. Mean and standard
deviation of these estimates, based on the data, and original values
from Achermann, Dijk, Brunner, and Borbély (1993).


Coefficient Mean (std. dev) Original Values
gc 0.03 (0.01) 0.0893
fc 2.1 (1.0) 2.5252
rc 0.4 (0.1) 0.5368
So 3.7 (0.7) 3.138
SWAo 0.8 (0.3) 0.468
SWAL 0.17 (0.04) 0.1
nt−mean -0.017 (0.005) 0
nt− std 0.25 (0.04) 0.182
nt− skew 0.5 (0.1) 0
nt− kurtosis 3.0 (0.2) 3


7.4.3 The Wake Term


The characteristics of the excitation term E, that can lead to spontaneous non-noise


induced awakenings, was calculated by using the data from no noise laboratory nights


in the UK study. It was decided to use the power in the gamma band of the EEG


signal (activity between 25 and 35 Hz) to represent this term. The calculation of


activity in the different frequency bands of the EEG signal were described in Section
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6.4. It is noted that this band contains both movement activity and EEG activity,


however, as movements are an indicator of awakenings this was considered acceptable


activity to include in the Wake term. The time between the occurrence of these pulses


or the inter-arrival time was calculated. An example of the gamma activity and the


definition of duration, amplitude and inter-arrival time are shown in Figure 7.30 and


the distributions of these parameters are shown in Figure 7.31. The distribution for


the inter-arrival time appears to be exponential. The mean value for the inter-arrival


time was 6.1 minutes. The value used by Massaquoi and McCarley (1992) in their


model was 11.8 minutes, therefore, the inter-arrival time found in the UK dataset was


half the value of the original model.
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Figure 7.30. An example of gamma activity, arrows indicate inter-
arrival time, duration and amplitude of the excitations.


The values for the duration of N(t) ranged from 3 seconds to 1.2 minutes, with


a mean of 0.5 minutes and a standard deviation of 0.2 minutes. The minimum and


maximum values for the duration ofN(t) used in the original Massaquoi and McCarley


model were 2.7 minutes and 5.4 minutes. This range is obviously too high and does not


allow brief awakenings to be predicted. The amplitude of N(t) is difficult to determine


based on the gamma activity. There is not a direct relationship between the level


of the impulses in the model and the level of gamma activity. However, the current







242


0 20 40 60 80 100
0


0.05


0.1


0.15


Inter−arrival Time (min)


Pr
ob


ab
ili


ty
(a)


0 0.2 0.4 0.6 0.8 1 1.2 1.4
0


0.05


0.1


0.15


Duration Time (min)


Pr
ob


ab
ili


ty


(b)


1 2 3 4 5 6
0


0.05


0.1


0.15


Amplitude


Pr
ob


ab
ili


ty


(c)


Figure 7.31. (a) Distribution of inter-arrival times between estimated
N(t), (b) distribution of the duration of N(t), and (c) distribution of
the amplitude of N(t) in the UK dataset.
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approach used to estimate the amplitude was to take the log based 10 of the power


in the gamma band. The minimum value obtained was 2.0, the maximum value was


5.4, the mean was 3.1, and the standard deviation of the data was 0.65. A summary


of the parameters for the spontaneous wake model are in Table 7.4. To model N(t)


for spontaneous awakenings, the duration and amplitude was defined by Gaussian


distributions based on the statistics that were calculated and the inter-arrival time


was defined by an exponential distribution.


Table 7.4. Estimated values for the statistics of the impulsive excita-
tion (N(t)) that leads to the spontaneous wake model based on the
UK dataset and original values from Massaquoi and McCarley (1992).


Coefficient Estimated Value Original Values
mean inter-arrival time 6.1 minutes 11.8 minutes
minimum duration 3 seconds 2.7 minutes
maximum duration 1.2 minutes 5.4 minutes
mean duration 0.5 minutes 4.0 minutes


7.4.4 Slow REM Sleep


The Massaquoi and McCarley model (1992) contains two equations for defining REM


sleep, one representing REM-ON or REM promoting neuron activity (X) and one


representing REM-OFF or REM inhibiting neuron activity (Y ) (see Equations (5.47)


and (5.48)). The difficulty in estimating the parameters of the REM model is that the


UK dataset can be used to estimate the timing of REM sleep but not REM neuron


activity.


Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) tried to estimate the


parameters of the REM sleep model based on data. They calculated the parameters


for the Lotka-Volterra REM model by using a stochastic search of parameters and
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minimizing the difference between slow wave activity from their dataset and the slow


wave activity that was predicted. One problem with their parameter estimation


method is that they calculated only one set of parameters for the model, i.e. they


assumed that the duration of successive REM periods are the same.


From the UK dataset, the mean duration of REM and NREM sleep were calculated


for the first 4 REM periods based on 76 subject nights of data. The results are shown


in Figure 7.32. The mean duration of REM sleep does increase during the night while


the duration of NREM sleep decreases. Therefore, the assumptions made by Ferrillo,


Donadio, De Carli, Garbarino, and Nobili (2007) in estimating the parameters of their


model may be incorrect.
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Figure 7.32. (a) REM sleep duration and (b) NREM sleep duration.
Mean values and ± one standard deviation of the estimated mean,
estimated from the 1999 UK study.


A different approach than that of Ferrillo et al. (2007) was used to estimate the


REM model parameters. The parameters were estimated separately for each REM


period. Signals for REM-ON and REM-OFF activity were created based on the


timing of REM sleep in the UK data. The equations for the simplified REM model


were used and these are:


Ẋ = aX − bXY, (7.31)
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Ẏ = −cY + dXY. (7.32)


If an assumption is made that c and d are equal and a and b are equal, which is a


necessary step in order to create REM-ON and REM-OFF signals, then the equations


are,


Ẋ + aX(Y − 1) = 0, (7.33)


and


Ẏ + cY (1−X) = 0. (7.34)


When Y is varying slowly compared to X the solution is approximately of the form,


X = e−a(Y−1)t, (7.35)


and when X is varying slowly compared to Y then Y is approximately,


Y = e−c(1−X)t. (7.36)


Therefore, Y grows when X is greater than 1 and decays when X is less than 1, and


X grows when Y is less than 1 and decays when Y is greater than 1. The value


of X was set equal to one at the start of the REM period and at the end of the


REM period. The value of Y was set equal to 1 when X is at a maximum and it


reaches its maximum level at the end of the REM period. Based on these values, an


exponential function was used to create the rise and decay of each signal and where


the exponential functions join the transition was smoothed by rounding out the slope


of the signals. An example of the signals generated with this approach is shown in


Figure 7.33 (a) and the smoothed signals are shown in Figure 7.33 (b).
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Figure 7.33. An example of creating REM-ON (X) and REM-OFF
(Y ) signals based on the timing of REM sleep periods in the 1999 UK
study data and Equations (7.33) and (7.34).


To estimate the parameters of the X and Y model the derivative of both of the


constructed signals were calculated and then the following two linear equations in


parameters (a and b, and c and d):


Ẋ


X
= a− bY, (7.37)


Ẏ


Y
= −c+ dX, (7.38)
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were fitted to the data. An example of the estimated linear relationships for REM-ON


and REM-OFF activity are shown in Figure 7.34.


Using the estimated parameters, the REM-ON and REM-OFF activity was then


calculated by solving Equations (7.31) and (7.32) using ode45 in Matlab. Based on


the obtained solution, the value for the coefficient a was altered in order to align the


calculated REM-ON activity (when X is greater than 1) with the actual start of REM


sleep in the survey data. Similarly the value for c was altered, if needed, in order to


better match the duration of the calculated REM activity and the duration of REM


sleep in the UK data. The coefficients, a and c, were increased or decreased until the


error between the duration and start time of actual and simulated REM sleep, was


less than 2 minutes. However, sometimes a low error value could not be obtained


due to brief or long REM periods. The error for these values for all REM periods


in the UK dataset are shown in Figure 7.35. The duration of NREM sleep is the


duration prior to the start of a REM period, therefore it is related to the start time of


each REM period. An example of the agreement between a created signal for REM-


ON activity and the REM-ON activity, calculated using the estimated parameters, is


shown in Figure 7.36. The interest was in matching the start and end of each REM


signal, when the REM-ON signal is greater than 1.


The estimated coefficients are plotted against the duration of a REM sleep period


in Figure 7.37. The coefficients, c and d, decreased with REM duration. The decrease


in c with REM duration is partly due to the fact that it was systematically altered


so that the duration of the simulated REM sleep period matched the values derived


from the UK dataset. The estimated coefficients are plotted against the duration of


NREM sleep in Figure 7.38. The decrease in a with NREM sleep duration is again


partly due to the fact that it was altered so that there was agreement between the


simulated and actual start time of each REM sleep period.
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Figure 7.34. An example of the fitting of REM sleep model parameters
of (a) the REM-ON model and (b) the REM-OFF model. Blue line
is based on created signals and the red line is the linear model using
the estimated parameters.


The mean and standard deviation of the estimated coefficients for the first four


REM periods were also calculated and are shown in Figure 7.39. The coefficients


a and b show similar increasing trends while coefficients c and d both show similar


decreasing trends during the night. The change in all parameters though during


the night was small. Therefore, for the slow REM model, only a and b were varied


with time. The variations are modeled in a similar manner to that in the original


Massaquoi and McCarley model, i.e., with a sinusoidal term which has a period of 24


hours. The equation for which is,


dc = 1.55 + 0.8sin(0.0467t+ 4). (7.39)
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Figure 7.35. (a) Error between the estimated start time of each REM
sleep period and the value derived from the UK dataset. (b) Error
between the estimated duration of the REM sleep period and the
value derived from the UK study data. The NREM duration is for
the NREM period just before the REM period.


Note again that in the Massaquoi and McCarley model time is measured in units and


1 unit is equal to 10.7 minutes.
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Figure 7.36. The created REM signal based on data and a simplified
REM model (Equations 7.31 and 7.32) (blue/dark gray) and the simu-
lated REM signal (green/light gray) using model parameters obtained
from a linear fit to the study data.
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Figure 7.37. Estimated parameters of slow REM model versus the
duration of REM sleep.
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Figure 7.38. Estimated parameters of the slow REM model versus
the duration of the NREM sleep period prior to the REM period.
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Figure 7.39. Mean and standard deviation of the estimated REM
model parameters for each REM period.


7.5 Overview of The Model So Far


The complete nonlinear model is the result of all issues addressed and noted in this


chapter and what follows in this and the following sections. So far, to recap, the SWA,


S, the slow REM (X, Y ) model and the fast REM model have been described. These


models contain an impulsive term based on N(t). N(t) is a series of square pulses


whose amplitudes and durations are Gaussian distributed, and the inter-arrival time


has an exponential distribution. The parameters of these models have been estimated


based on the data from the UK study. The following issues, though, still need to be


resolved.
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1. The desire is to have a model that results in the prediction of sleep stages.


To calculate different stages, thresholds based on the level of SWA need to be


assigned.


2. How should a noise event impact the sleep model? One possibility is to increase


the number of excitations N(t) and this will be a function of the LAmax of the


noise event.


These issues will be addressed in the following sections.


7.6 Thresholds for Scoring Sleep Stages


The output of the model being developed includes REM sleep, slow wave activity


and awakenings. However, it is desired to also estimate different NREM stages (i.e.


Stage 2 and Stage 3/4). In order to determine at what level to set the thresholds


for this classification, first the mean, minimum and maximum level of SWA activity


associated with Stage 3/4, Stage 2, and Stage 1/Wake were calculated for the 76


subject nights of the UK study. The results are listed in Table 7.5. Based on these


levels a set of scoring rules were developed and are as follows:


1. Stage 3/4 was scored if SWA was greater than 2.75.


2. Stage Wake/1 was scored if SWA was less then 0.3.


3. Stage Wake/1 was scored if SWA was less than 1 and E was greater than 0.5.


4. At all other times when REM sleep was not occurring, stages were scored as


Stage 2 sleep.


To evaluate the accuracy of these thresholds, simulations of slow wave activity for


each subject night of data from the 1999 UK study, were completed using the model
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parameters estimated in the previous sections, and the timing of REM sleep. The


gamma activity for each subject was used to create the impulsive excitation term E.


The fast REM model was not used for these simulations as the focus was on setting


thresholds for scoring NREM sleep. Based on the thresholds and simulated levels of


SWA, sleep stages were assigned to each 30 second epoch. The agreement between


the actual scored sleep stages in the UK dataset and the simulated sleep stages was


calculated. The agreement was defined as the fraction of all stages that were correctly


identified. The overall agreement statistics are listed in Table 7.6 and the mean and


standard deviation of the fraction of correctly identifying stages for each sleep stage is


listed in Table 7.7. An example of the simulation that yielded the highest agreement


is shown in Figure 7.40, and the simulation that had the lowest agreement is shown


in Figure 7.41.


Table 7.5. Statistics of slow wave activity during different sleep stages
for 76 subject nights in the 1999 UK dataset.


Sleep Stage Mean (std. dev of data) Min. Max.
Stage Wake/1 0.42 (0.14) 0.14 1.24
Stage 2 1.06 (0.21) 0.67 1.53
Stage 3/4 3.41 (0.52) 1.86 5.08


Table 7.6. Overall statistics of the fraction of times there was agree-
ment in sleep stage classification between scoring of the original data
and automated scoring of simulated data for each of 76 subject nights.


mean 0.66
std. dev 0.07
max 0.79
min 0.43
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Figure 7.40. Best agreement between simulated and actual slow wave
activity for one subject night of the 1999 UK dataset, thresholds used
for scoring sleep stages (red-dashed lines).
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Figure 7.41. Worst agreement between simulated and actual slow
wave activity for one subject night of the 1999 UK dataset, thresholds
used for scoring sleep stages (red-dashed lines).
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Table 7.7. Statistics of the fraction of times that there was agreement
in sleep stage classification between scoring of the original data and
automated scoring of simulated data for each of the 76 subject nights,
for each sleep stage.


Sleep Stage Mean (std)
Wake/S1 0.43 (0.17)
Stage 2 0.73 (0.09)
Stage 3/4 0.51 (0.29)


7.7 Adding Noise Dependence to Model


As discussed N(t) is impulsive noise. The inter-arrival time of N(t) is exponentially


distributed and the amplitude and duration are both defined based on Gaussian


distributions. The N(t) term is low-pass filtered to obtain E which is used in the


slow wave model and as mentioned in Section 7.3, is rescaled and also used in the fast


REM model. Some of the examples shown for the fast REM model have used scaled


versions of N(t) (square impulses), not E. A diagram of the use of the impulsive


terms is shown in Figure 7.42. The concept for introducing noise into the model was


to create an excitation term for spontaneous (non-noise related excitations) and one


for aircraft noise related excitations. The two components, both non-noise induced


and noise induced excitations, are summed together and then fed into other parts of


the model.


In order to determine how to add a noise level dependence to the nonlinear dy-


namic model, the amplitude of E from the UK data, was examined when noise events


of different maximum levels occurred. Characteristics of E including the duration


and amplitude of the events were examined, for every aircraft event that occurred


during sleep Stage 2. Due to the limited amount of data, only two noise groups were


examined: events which had a noise level below 50 dB(A) and events that had a max-


imum level greater than 50 dB(A). A small difference in amplitude of E was found,
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Figure 7.42. Diagram of impulsive noise as used in nonlinear dynamic model.


however, the primary difference was in the number of events that elicited additional


impulses. Therefore, when modeling the effect of noise on sleep a linear relationship


between the percentage of the population that will have a response to the noise event


and the Indoor LAmax of an event was created. The equation used is,


fraction responding = 0.0084LAmax − 0.1256. (7.40)


Only LAmax levels above 35 dB(A) cause a change in the fraction responding. Re-


searchers have found from studies on aircraft noise and sleep that aircraft events with


a LAmax level below 35 dB(A) do not increase the probability of awakening (Bas-


ner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet, Müller, Müller, Plath, Quehl,


Samel, Schulze, Vejvoda, and Wenzel, 2004). The percent increase in response with


noise level was added based on existing awakening models (see Chapter 3 for more


information) because the data from the UK study was limited and could not be used


to create a reliable dose response relationship. The duration and height of N(t) is as-


signed randomly based on normal distributions with mean and standard deviation as
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defined in Table 7.8. Perhaps with more data, a variation in amplitude and duration


with noise level will be identified and can be added to the model.


7.8 Combined Model


The components of the nonlinear dynamic model that was developed include a fast


and a slow REM model, a SWA activity model, and impulsive excitations N(t) for


both spontaneous and noise induced awakenings. To simulate the sleep pattern of a


person for a single night the following steps are performed:


1. The spontaneous excitation term N(t) is generated based on an exponential


inter-arrival time and Gaussian duration and amplitude distributions and is


low-pass filtered to obtain E(t).


2. If aircraft noise is present, the additional noise excitation term is generated and


then the spontaneous and noise-induced excitation terms are summed together.


3. Both noise and spontaneous excitation terms are scaled to generate w(t) for the


fast REM model.


4. The excitation term E(t), that includes both spontaneous and noise induced


activity is fed into the slow REM activity model. The output of the slow REM


model is REM-ON and REM-OFF activity which is used to generate a REM


sleep indicator which is equal to 1 when the level of REM-ON X activity is


above a level of 1. This REM indicator defines the REM periods.


5. The REM indicator that is generated is used to signal when to model fast REM


activity. The term w(t) is fed into the fast REM model in order to predict


transitions to Stage Wake during a REM period.
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6. The REM indicator and excitation term (E(t)) are fed into the Slow Wave Ac-


tivity Model. For the SWA model, the rise and fall terms for the slow wave


activity (fc, rc), and the mean, standard deviation, and skewness of the noise


term (n(t)) are not varied for each simulation (one person night). The other pa-


rameters are varied according to Gaussian distributions, the mean and standard


deviations of which are listed in Table 7.8.


7. Based on the SWA, REM-Indicator, excitation terms, and fast REM model,


sleep stages are assigned for each 1 second. In order to compare predicted sleep


stages though to other existing models, the probability of being in each sleep


stage for each 30 second epoch is calculated from the 1-second sliding sleep


stage classification and then a sleep stage is assigned according to the highest


probability.


In Table 7.8 is a list of the model parameters and the values used in the simulations.


An example of the individual output components of the combined model are shown


in Figure 7.43. An example of sleep stages calculated from a simulation with and


without aircraft noise is shown in Figure 7.44. For the simulation with aircraft events,


there were 32 evenly spaced events with an LAmax of 60 dB(A). Note the additional


awakenings that occur during the REM sleep period.


The predictions of the nonlinear model were compared to those of Basner’s Base-


line Markov model (2006). Six hundred simulations, each simulation contains a differ-


ent choice of random variables for parameters that are described by distributions, for


baseline conditions without aircraft noise events were completed using the nonlinear


model. The probability of being in each sleep stage was calculated. For these simu-


lations the threshold used to assign Stage 3/4 was lowered to 2 instead of 2.75. The


reason is that perhaps the properties of N(t) are more time varying, with less excita-


tions occurring during Stage 3/4, this should be explored in the future. The results
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Figure 7.43. Example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM which is
the X or REM-ON activity, REM sleep period indicator, Fast REM
model and the spontaneous and noise induced excitation terms.
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Table 7.8. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution, + parameters varied according
to a uniform distribution, and x parameter varied according to an
exponential distribution.


SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean


std. dev 0.67 std. dev 0.1 inter-arr
6.1 min


*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min


*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min


SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0


fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65


fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0


rc 0.4 +Yo min 0.5
max 3.0


n(t) mean 0
std. dev 0.2
skewness 0.53


are shown in Figure 7.45. Similar predictions for time spent in Stage Wake/Stage


1 were obtained from both of the models. The Markov model did, however, predict


a higher probability of being in Stage 3/4 at the start of the night and the increase


in the probability of being in REM sleep toward the end of night was greater for


that model. However, the subjects in the UK study did have less Stage 3/4 sleep


than those in Basner’s study which might explain some of the difference in predicted


probabilities. Note that the nonlinear model has been tuned to the UK study data


and the Basner model to data from a laboratory study (Basner et al., 2004).


Simulations with the nonlinear model were also conducted for scenarios with 16


and 32 noise events of different noise levels. For each simulation, the noise events
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were all of the same level. Fifty simulations were conducted for each noise level which


ranged from 40 to 90 dB(A), LAmax. The increase in the predicted probability of being


awakened with noise level is shown in Figure 7.46 and the change in duration spent in


the Slow Wave, REM, and Wake states is shown in Figure 7.47. Fifty simulations for


each condition were also completed using Basner’s Markov model with added noise


level dependence (see Chapter 4). The probability of awakening predicted by the


nonlinear model did increase with noise level. Also an increase in duration spent in


Stage Wake and a reduction in time spent in Stage 3/4 was found, and the changes


were greater for nights when there were 32 events than for nights with only 16 events.


The change in REM sleep was less predicable in that it did not vary with noise level.


The results for the probability of awakening is in agreement with the modified version


of Basner’s Markov model. The nonlinear model does predict a higher duration spent


awake and a greater reduction in slow wave sleep. However, in Basner’s laboratory


study (Basner and Samel, 2005) when subjects were exposed to 32 noise events at


an LAmax of 70 dB a reduction in Slow Wave Sleep of 10.7 minutes was found, the


prediction of the nonlinear model is a reduction of 10 minutes. Also an increase


in duration of time spent awake of 11.4 minutes, for the same number and level of


events, was found in Basner’s Laboratory study while the nonlinear model predicts


12.6 minutes. It is not clear whether the the nonlinear dynamic model needs to


be altered to predict less change in sleep stage duration or if the altered version of


Basner’s Markov model needs to be modified further to predict a larger change in


duration, perhaps both modifications are needed.


7.9 Conclusions


The Massaquoi and McCarley sleep model had two primary limitations: it had slow


dynamics and could not predict brief awakenings during the night and it could not
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Figure 7.45. Probability of being in each sleep stage predicted for a
baseline no noise night using the developed nonlinear model (blue)
and Basner’s Markov model (red): (a) Wake/S1, (b) REM, (c) S2,
(d) S3/S4 Stages.
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Figure 7.46. Percent awakened predicted with the nonlinear dynamic
model developed in this research (blue/dark gray) and the modified
version of Basner’s Markov model (red/light gray).
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Figure 7.47. Change in duration of Wake/S1, SWS, and REM sleep
for (a,c,e) 16 evenly spaced events and (b,d,f) 32 evenly spaced events.
The nonlinear dynamic model predictions are shown in blue/dark gray
and the predictions from the modified version of Basner’s Markov
model are shown in red/light gray.
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predict awakenings during REM sleep. To overcome these challenges a modified


version of the Massaquoi and McCarley sleep model was developed. With this model


it is possible to predict spontaneous and noise induced awakenings, slow wave activity


and fast and slow REM sleep. The parameters of the developed model were estimated


using the data from the 1999 UK data. The predictions of changes in sleep stage


duration and increase in probability of awakening for events of different noise levels,


using the developed nonlinear model, was found to be similar to other sleep models.
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8. NOISE MODEL COMPARISONS FOR AIRPORT OPERATIONS


Data on flight operations from two US airports, aircraft and flight tracks, were ob-


tained. This was used as input to noise prediction software so that noise levels inside


houses could be estimated for each aircraft event. By using this information, it is


possible to compare sleep disturbance model predictions for different models and for


different flight operation scenarios. Comparisons of both awakening model predictions


and changes in sleep stages predicted using Basner’s Markov model and the nonlinear


dynamic sleep model developed in this research are described in this Chapter.


8.1 Airport Noise Modeling


Flight operations data were obtained for two US airports. The airports will be referred


to as Airport A and Airport B. The data included the arrival and departure flight


paths and the timing of aircraft events, whether they occurred during the day, evening,


or night. The specific time of each flight operation was obtained for one of the


airports. Information on type of aircraft and distance the aircraft was traveling was


also obtained.


A list of aircraft responsible for approximately 90 percent of the operations at


each airport was made, to reduce the amount of computation. This was not felt to


be a significant problem because a few aircraft made up the majority of operations.


By having a smaller number of aircraft it was feasible to calculate the noise for these


aircraft on many different flight paths. For Airport A there were 3 runways, 89 arrival


and 80 departure flight paths. For Airport B there were 4 runways, 44 arrival and 76


departure flight paths. The primary aircraft for Airport A are given in Table 8.1 and
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the primary aircraft for Airport B are listed in Table 8.2. The departure standard,


in both tables, refers to how far an aircraft is traveling. The higher the departure


standard the farther the aircraft is traveling. In general an aircraft that is flying


farther will be heavier at takeoff due to a greater amount of fuel and it will take


longer for the aircraft to reach higher altitudes. Therefore, for the same aircraft, as


the departure standard increases so do the noise levels on the ground.


Table 8.1. Aircraft at Airport A.


INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
7373B2 Boeing 737-300/CFM56-3B-2 1, 2, 3, 4
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 3, 4, 5
767300 Boeing 767-300/PW4060 1, 2, 3, 4
A300-622R Airbus A300-622R/PW4158 1, 2, 3, 4
BEC190 Beech 1900 1
CL601 CL601/CF34-3A 1
CNA560 Cessna 560 Citation V 1
EMB145 Embraer 145 ER/Allison AE3007 1
EMB170 Embraer EMB-170 1
FAL20 FALCON 20/CF700-2D-2 1
MD11GE MD-11/CF6-80C2D1F 1, 2
MD82 MD-82/JT8D-217A 1, 2
SD360 SD360 1


For the consolidated list of aircraft, the LAmax and SELA noise levels for single


event operations on every flight path were calculated by using the Federal Aviation


Administration’s Integrated Noise Model (INM) (FAA, 2007). The grid size used for


the calculations was 0.1 by 0.1 nautical mile. Different flight operation scenarios were


created based on the single event data and then sleep disturbance was predicted using
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Table 8.2. Aircraft at Airport B.


INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4, 5
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
767CF6 Boeing 767-200/CF6-80A 1, 2, 3, 4, 5, 6
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737400 Boeing 737-400/CFM56-3C-1 1, 2, 3, 4
737500 Boeing 737-500/CFM56-3C-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
737800 Boeing 737-800/CFM56-7B26 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 4, 7
767300 Boeing 767-300/PW4060 1, 2, 3, 4, 5, 6, 7
777200 Boeing 777-200ER/GE90-90B 1, 2, 3, 4, 7
A319-131 Airbus A319-131/V2522-A5 1, 2, 3, 4
A320-232 Airbus A320-232/V2527-A5 1, 2, 3, 4
A321-232 Airbus A321-232/IAE V2530-A5 1, 2, 3, 4
A340-211 Airbus A340-211/CFM 56-5C2 1, 2, 3, 4, 5, 6, 7
CL600 CL600/ALF502L 1
CLREGJ Canadair Regional Jet 1
DHC8 DASH 8-100/PW121 1
EMB14L Embraer 145 LR / Allison AE3007A1 1
EMB120 Embraer 120 ER 1


Pratt and Whitney PW118
MD82 MD-82/JT8D-217A 1, 2, 3, 4
MD83 MD-83/JT8D-219 1, 2, 3, 4
SF340 SF340B/CT7-9B 1


different models including the ANSI sleep model, Basner’s Markov Model, and the


nonlinear dynamic model developed in this research.


8.2 Awakening Model Comparisons


A baseline scenario for Airport A and Airport B was created. The scenario for Airport


A had 150 operations and the scenario for Airport B had 281 operations. These


numbers were the same for all the different scenarios investigated at each airport.
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The aircraft and flight paths used were assigned randomly after calculating usage


statistics for both airports. The percentage of the population awakened at least once


for the airport scenarios was predicted using the ANSI standard method, however


no time dependence was used, and different dose-response relationships were used


(see Chapter 3) in order to compare models in a more comprehensive manner. Also


as the sleep models are based on indoor noise levels and INM only predicts outdoor


levels, for all simulations an outdoor to indoor noise attenuation of 25 dB(A) was


used. In the future, it would be desirable to improve the outdoor-to-indoor prediction


using characteristics of typical houses, window opening habits, house orientation, etc.


This 25 dB(A) level of attenuation is similar to the reduction in noise level found in


numerous studies (WHO, 2009).


The results for the baseline scenario for Airport A is shown in Figure 8.1 (a,b,c)


for predictions calculated using the the ANSI (2008), FICAN (1997), and Basner et


al. (2004) awakenings models. The results in Figure 8.1 (d,e,f) are percent awakened


at least once predictions for a scenario in which 25 of the 150 operations were assigned


to the third cross runway. For comparison, the 40 and 55 dB(A) Lnight,outside contours


are shown. According to the WHO Night Noise Guidelines for Europe (2009) an


Lnight,outside of 40 dB(A) should not be exceeded in order to prevent adverse health


effects caused by noise. However, as this contour encompasses a large area and it


would be difficult to reduce noise levels below this level, reducing nighttime noise


to levels below an Lnight,outside of 55 dB(A) is the target goal. The ANSI standard


model was found to predict the lowest percent awakened at least once. This is due to


the fact that the model is based on behavioral awakening data. This low prediction


(compared to that of other models) is particularly noticeable for the scenario in which


there were 25 events on the cross runway.
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Figure 8.1. Gray-scale shading indicates percent awakened at least
once. Black to dark gray 75%, dark gray to light gray 50%, and
light gray to white 25%. (a,b,c) Scenario 1 and (d,e,f) Scenario 2 for
Airport A. (a,d) ANSI, (b,e) FICAN and (c,f) Basner et al. model.
Red contours are the 40 and 55 dB(A) Lnight,outside contours.
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The number of people predicted to be awakened in communities surrounding Air-


port A and Airport B was also calculated. Population data was obtained from the US


census and the number of people living within each 0.1 by 0.1 nautical mile block was


calculated. The number of people in each block was then multiplied by the percent


awakened at least once predicted using Basner et al.’s dose-response model. In Figure


8.2, the number of people living in each block for both Airport A and Airport B are


shown and in Figure 8.3 the number of people predicted to be awakened at least once


is shown. For comparison the Lnight,outside 40 to 55 dB(A) contours are also plotted.


People living outside the WHO guideline of 55 dB(A) are clearly still awakened, this


is especially noticeable at Airport B which has a larger population of people living


near the airport. Awakenings occurred out to the 40 dB(A) contour.


40


55 40


55


Figure 8.2. Population distribution living around the Airports. (a)
Airport A and (b) Airport B. Red contours are the 40 to 55 dB(A)
Lnight,outside contours.
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Figure 8.3. Number of people awakened at least once around the
Airports, predicted using Basner et al.’s awakening model. (a) Airport
A and (b) Airport B. Red contours are the 40 to 55 dB(A) Lnight,outside


contours.
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8.3 Sleep Disturbance Comparisons for Different Time Scenarios


Sleep disturbance predictions for different distributions of aircraft events during the


night were also examined. Comparisons of sleep disturbance predictions made us-


ing the ANSI standard model with time dependence, a modified version of Basner’s


Markov model and the nonlinear dynamic model developed in this research are dis-


cussed.


8.3.1 Addition of Quadratic Dependence on Noise Level to Markov Model


In Chapter 4, a linear dependence on noise level was added to Basner et al.’s Markov


model. For this analysis it was decided to add a quadratic dependence on level in


order to better match Basner et al.’s dose-response awakening model. The equation


for Basner et al.’s (2004) dose-response model is,


%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243. (8.1)


To determine how to change the coefficient values in the Markov model in order to


obtain this same relationship, simulations of the same person nights as in Basner’s


study were completed. Events were evenly spaced throughout the night and the model


coefficients, all denoted by a generic coefficient name c were varied for each simulation


according to the following:


c = NoNoisemodelCoeff+


(NoiseModelCoeff −NoNoiseModelCoeff)mult,


(8.2)


where mult is a multiplier. The coefficients associated with a dependence on time


t were not varied with noise level. The time dependence needed to stay as close


to the original model as possible, as the focus was on comparing predictions for
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different time scenarios, and the change in coefficients made for different noise levels


are based on assumptions and not actual data. The relationship between the predicted


percent awakened and different values of the multiplier mult are shown in Figure 8.4.


The value of the multiplier was then compared to the LAmax level (determined from


Basner’s dose-response relationship) that was associated with the same percent awake,


this is shown in Figure 8.4.
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Figure 8.4. (a) Percent awakened predicted when using Basner’s
Markov model for different values of the multiplier. (b) The rela-
tionship between LAmax and the multiplier, based on Basner’s field
dose-response relationship.


The data, shown in Figure 8.4 (b), was fit with a quadratic function, and the


obtained equation was:


mult = (−8.1508e−5)L2
Amax + (2.5274e−2)LAmax − 0.4321. (8.3)


To verify that this change in the Markov Model coefficient values resulted in the


desired percent awakened dose-response curve, a simulation was performed using the


coefficients with the added noise level dependence. Simulations of 50 person nights


with 32 evenly spaced noise events for each LAmax noise level from 35 to 90 dB(A) in


increments of 5 dB(A) were completed. The percent awakened was calculated for each


noise level based on the simulated dataset. This simulation process was than repeated
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100 times and the mean was calculated and variation of the results examined. The


results from this verification are shown in Figure 8.5.
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Figure 8.5. The obtained relationship between LAmax and the per-
cent awakened using the modified version of Basner’s Markov model.
Basner et al.’s (2004) dose-response curve is shown in blue,the mean
of the simulated results in (green/light gray), and the results of 100
simulations in black.


The equation for the probability of sleep stage transitions with the added quadratic


dependence on noise level has the form:


p(si|sj) = eX∑5
i=0 e


X
, (8.4)


where


X = A(si) + AN1(si)LAmax + AN2(si)L
2
Amax +Bt+ C(si, sj)


+CN1(si, sj)LAmax + CN2(si, sj)L
2
Amax.


(8.5)
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8.3.2 Time-Dependent Model Comparisons


Sleep disturbance, using different models, was predicted for 6 nighttime operation


scenarios. The distributions of aircraft events are shown in Figure 8.6. These time


scenarios were chosen in order to determine the largest difference in sleep disturbance


predictions that might be expected with various scenarios.
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Figure 8.6. The occurrence of events for six nighttime scenarios that
were examined. Each bar represents the number of events during an
hour of the night. There are eight bars per scenario representing each
hour from 11 pm to 7 am. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.


The average number of awakenings for the six scenarios was calculated using the


ANSI standard model with time dependence. The results are shown in Figure 8.7.


The ANSI standard has a time dependence which results in events at the beginning
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of the night having the lowest probability of causing an awakening and events at the


end of the night having the highest probability of causing an awakening. Scenarios


1, 2, 3 in which most of the events are in the middle of the night all caused similar


number of awakenings.


nmi


nm
i


(a)


−3 0 3
−10


0


10


nmi


nm
i


(b)


−3 0 3
−10


0


10


nmi


nm
i


(c)


−3 0 3
−10


0


10


nmi


nm
i


(d)


−3 0 3
−10


0


10


nmi


nm
i


(e)


−3 0 3
−10


0


10


nmi


nm
i


(f)


−3 0 3
−10


0


10


Figure 8.7. Average number of awakenings for the 6 time scenar-
ios predicted using the ANSI standard model with time dependence.
Black to dark gray 1.5, dark gray to light gray 1.0 and light gray
to white 0.5 awakenings. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.


Using Basner’s Markov model with the added quadratic dependence on noise level


described earlier in this chapter, the average number of awakenings in 50 simulations


at each grid point was calculated for the six time scenarios. The results are shown in
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Figure 8.8. The awakenings that are calculated are EEG, not behavioral awakenings,


they must occur within 90 seconds or three epoch of the start of the aircraft event


and the minimum duration of an awakening is 30 seconds. The results are opposite


to those of the ANSI standard model, more awakenings were predicted when most


events were at the beginning of the night. This difference in predictions is partly due


to the time dependent coefficients of the Markov model. While the baseline no-noise


model predicts an increase in awakenings, the time dependence coefficients of the first


and second noise models are negative. This decrease in awakening response to events


with time is supported by other models (Brink, Lercher, Eisenmann, and Schierz,


2008). In addition, more spontaneous awakenings tend to occur at the end of the


night and therefore more noise-induced and spontaneous awakenings may be jointly


occurring. In Figure 8.9, the results for the beginning of the night and end of the


night scenarios for both Basner’s Markov model and the ANSI Standard model with


time dependence are shown. The differences in percent awakened do appear small


for the two time scenarios. However, when the number of people living within each


contour are calculated the difference is more substantial, these results are given in


Table 8.3.


Table 8.3. Number of people within awakening contours for Airport
A, with 150 events during the night.


Average
Number of Basner Beginning Basner End ANSI Beginning ANSI End
Awakenings of the Night of the Night of the Night of the Night
Per Night
0.5 Awakenings 40,276 35,514 14,302 39,531
1.0 Awakenings 27,281 11,772 2,790 7,657
1.5 Awakenings 17,288 6,513 10 4,829
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Figure 8.8. Average number of awakenings for the 6 time scenarios
predicted using Basner’s Markov model with added quadratic depen-
dence on noise level. Black to dark gray 1.5, dark gray to light gray
1.0, and light gray to white 0.5 awakenings. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.9. Average number of awakenings for the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and end of the night (blue contours) for
(a) the ANSI standard model with time dependence and (b) Basner’s
Markov model with added quadratic dependence on noise level.







285


As the the use of Lnight, outside is advocated by WHO, contours for the scenario in


which most events occurred at the beginning of the night calculated using Basner’s


Markov model and the Lnight,outside contours is shown in Figure 8.10. In addition to


the WHO guidelines, recommendations have also been made based on the acceptable


number of awakenings per night such that 0.5 (Schrenkenberg, Meis, Kahl, Peschel,


and Eikmann, 2010) or 1.0 (Basner, Samel, and Isermann, 2006) additional awakening


on average should be prevented in order to protect communities from the adverse


effects of nighttime noise. Both limits, based on number of average awakenings, were


found to be more protective than the WHO Guideline of Lnight,outside=55 dB(A).


nmi


nm
i


−3 0 3
−10


−5


0


5


10


55


40


Figure 8.10. Predictions of the average number of awakenings using
Basner’s Markov model with added quadratic dependence on noise
level for the scenario in which most events are at the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and the Lnight,outside contours (red).


The change in duration of sleep stages predicted using the modified version of


Basner’s Markov model was also examined. The Sleep Quality Index (SQI) (Basner,
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2006) was calculated based on the duration of time spent in the different sleep stages.


The SQI is defined as,


SQI = 0.657 S2 + 0.840 REM + 0.879 S3 + S4, (8.6)


where S2, S3, S4, andREM are the duration of these stages in minutes. The equation


for SQI linearly weights the duration spent in different stages of sleep. The highest


weighting is for the duration spent in Stage 4 sleep and lowest is for Stage 2 sleep.


Time spent in Stage 1 and Wake are not included in the equation as they are not


restorative. A lower value of the SQI corresponds with worse sleep as REM , S3, and


S4 in the equation would have lower durations. The SQI values for the 6 nighttime


operation scenarios are shown in Figure 8.11. The scenario in which most events


were at the beginning of the night resulted in the lowest SQI values due to a greater


reduction in Stage 3 and 4 sleep. The reduction in Stage 3 and 4 sleep and the


increase in Stage Wake for the 6 time scenarios are also shown in Figures 8.12 and


8.13, respectively.


Due to increased computational complexity of the developed nonlinear model, full


contours for the six scenarios were not able to be generated with the model in time


for inclusion in this thesis. However, simulations for the six different scenarios for


a few grid points was completed. For each of these grid points, 50 simulations were


completed for each noise scenario. For each simulation a different set of random


parameters were selected as described in Chapter 7. For two grid points, the average


number of additional awakenings calculated by taking the difference between the


number of awakenings occurring when noise events are present and the number that


would occur at the same time spontaneously without noise present, are shown in


Figure 8.14.
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Figure 8.11. SQI predictions for the 6 nighttime flight operation
scenarios. (a) Peak in operations in two hours in the middle of the
night, (b) an even distribution, (c) most events in the middle of the
night, (d) a U-shaped distribution, (e) most events at the beginning
of the night, and (f) most events occurring at the end of the night.
Red contours are the 40 to 55 dB(A) Lnight,outside contours.
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Figure 8.12. Reduction in time spent (minutes) in slow wave sleep
for the 6 nighttime flight operation scenarios. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.13. Increase in time spent (minutes) in Wake for the 6 night-
time flight operation scenarios. (a) Peak in operations in two hours in
the middle of the night, (b) an even distribution, (c) most events in
the middle of the night, (d) a U-shaped distribution, (e) most events
at the beginning of the night, and (f) most events occurring at the
end of the night.
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As with modified version of Basner’s Markov model a greater number of additional


awakenings occurred when most of the events were at the beginning of the night


than when most events were at the end of the night. The change in sleep stage


durations, compared to nights without aircraft events, for the two grid points is shown


in Figure 8.15. The change in sleep stage durations did not vary greatly between the


six scenarios. The largest difference occurred between the scenario when most of the


events were at the end of the night and the scenario in which most events were at


the beginning of the night. When most events were at the beginning of the night,


there was a greater reduction in slow wave sleep. However, unlike with the modified


version of Basner’s Markov model predictions, there was not a greater increase in


Stage Wake. A possible reason for this result is that the events at the end of the


night, for the nonlinear dynamic model, might have caused a greater reduction in


slow wave activity than when the events were at the beginning of the night, which


might have increased the duration spent awake due to both spontaneous and noise


excitations.


8.4 Conclusions


Sleep disturbance in communities was predicted for realistic airport operations sce-


narios. Models based on behavioral awakenings were found to predict a low number


of awakenings compared to those based on polysomnography data and may, partic-


ularly, under-predict the impact of nighttime noise on communities for scenarios in


which there are only a few events on a runway or flight-path. For different distribu-


tions of aircraft events during the night, the ANSI standard model predicted opposite


results, in terms of the average number of awakenings, when compared to predictions


from Basner’s Markov model with added quadratic dependence on noise level and


the nonlinear model developed in this research. A possible explanation for this result
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Figure 8.14. Average number of awakenings for 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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Figure 8.15. Change in sleep stage durations for the 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.







293


is that the ANSI standard model does not take into account the difference between


normal and noise disturbed sleep. Also, while the differences in disturbance between


more events at the the beginning and more events at the end of the night scenarios


appeared small for predictions calculated using both the ANSI standard model and


the modified version of Basner’s Markov model when translated into the number of


people impacted differences were quite large for the two scenarios. Therefore, the


number of people awakened by noise as well as contour size should be considered


when evaluating sleep disturbance in communities.


While similar trends were found in the number of additional awakenings and the


reduction in slow wave sleep calculated using the nonlinear dynamic model and the


modified version of Basner’s Markov model, there were differences in the predicted


total duration of being awake due to noise events. For the Markov Model a noise


event impacts the model predictions for 3 epochs, while for the nonlinear model the


noise events can impact the predictions of sleep for a longer duration. This difference


and its impact on predictions needs to be examined further. In addition, methods


for increasing the computation speed of the nonlinear dynamic model need to be


examined so that, in the future, it can be used to predict sleep disturbance contours.
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9. SUMMARY, OUTCOMES AND RECOMMENDATIONS FOR FUTURE


WORK


Nighttime aircraft noise can disturb sleep in communities, causing a decrease in rapid


eye movement and slow wave sleep and an increase in the number of awakenings and


time spent awake. These changes in sleep may lead to both next day and long term


health effects. There have been several models developed to predict noise induced


sleep disturbance. Most of the models, however, are limited because they only predict


the number of awakenings and not a change in sleep structure which may be important


when relating noise-induced sleep disturbance to potential health effects. A Markov


model which can be used to predict changes in sleep structure has been developed


by Basner (2006). However, the model does not have a noise level dependence and


it has many coefficients which makes it difficult to validate due to a large amount of


data being needed to produce estimates of the model parameters.


Nonlinear dynamic models have been developed to predict normal, non-noise in-


duced sleep patterns. This type of model was examined to determine if it could be


used to predict noise induced sleep disturbance. The nonlinear models have limita-


tions: they cannot predict awakenings during REM sleep or brief awakenings during


both NREM and REM sleep as observed in data from sleep studies. Approaches to


modifying a nonlinear dynamic model in order to be able to predict this type of be-


havior was examined. This resulted in the development of a model that could predict


slow wave, and slow and fast REM activity.
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9.1 Outcomes of This Research


To determine how to introduce faster dynamics into the Massaquoi and McCar-


ley model, first a sleep stage classification algorithm was developed. This algo-


rithm includes methods for removing artifacts and for identifying specific features


of polysomnography data including rapid eye movement and sleep spindles. Based on


the extracted features, a sleep stage classification algorithm in which sleep stages are


classified for each 1 second in time was developed. The standard method for scoring


sleep is to assign a sleep stage to each 30 second epoch. The algorithm that was


developed provides a more continuous evaluation of sleep stages than this standard


method. While in this research 30 second epochs were used at 1 second intervals


(sliding through the data), the algorithm is flexible so that shorter or longer epochs


could be used and the amount of overlap of segments changed.


To predict brief awakenings during REM sleep using the Massaquoi and McCar-


ley model (1992), a fast REM activity model was added. The occurrence of rapid


eye movements, identified using the sleep stage classification algorithm, was used to


classify when an individual was awake, in Tonic REM or in Phasic REM sleep. Based


on this classification, the fast REM activity was modeled by using a Duffing equation


with a 5th order stiffness term, undergoing periodic excitations in a region where


chaotic responses are occurring. The Duffing system has 3 stable and 2 unstable


equilibrium positions. When responses were in the regions of the stable equilibria


sleep was classified as being in Stage Wake, Phasic REM, or Tonic REM. The unsta-


ble equilibrium position between Wake and Tonic stable equilbria is a function of the


impulsive excitation in the sleep model.


To introduce aircraft noise into the model, extra impulsive excitations were added.


The probability of having a non-zero excitation response to a noise event increased


from its no-noise/external stimulus level with the maximum A-weighted Sound Pres-
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sure Level (LAmax) of the noise event. The complete nonlinear model has 5 compo-


nents: fast and slow REM sleep, slow wave activity and spontaneous and aircraft-noise


induced excitation models. The parameters of this model were estimated by using


the 1999 UK sleep study data (Flindell et al., 2000). This model can predict similar


durations of sleep stages for baseline non-noise nights as other existing sleep stage


models.


To compare predictions of noise induced sleep disturbance for different models,


two approaches for adding a noise level dependence to Basner’s Markov model were


examined. The coefficients of the three noise models were made a function of the


maximum A-weighted indoor noise level during a noise event. Both a linear and


quadratic dependence on noise level were examined. By using the modified version


of Basner’s Markov Model, with a quadratic dependence on noise level, and the


nonlinear model developed in this research, changes in sleep structure were predicted


for different airport noise scenarios. Both models predicted an increase in awakenings


with noise level, and a decrease in time spent in slow wave sleep. However, the


magnitude of these changes varied between the two models. A further refinement of


the model parameters used in the nonlinear model, and further examination of the


coefficients of the Markov model is still needed.


It should be noted that Basner’s model was tuned using the data the he had


available, the data from the DLR laboratory study. The model developed in this


research was tuned to the 1999 UK study, a relatively small dataset. Therefore some


differences may be due to the unique conditions in the two studies. There is clearly


a need with both models to have data from more studies to make the models more


generally applicable. Having emphasized the differences between the Markov and


nonlinear model predictions in terms of absolute levels it should be noted that while


tuned with different study data, the trends predicted agree very well with each other,
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perhaps evidence that they are predicting more generally observable trends in sleep


behavior.


In summary, the nonlinear dynamic model developed in this research with further


refinement can be a useful tool for predicting sleep disturbance in communities around


airports. One of the advantages of this type of model is that model coefficients can be


related to specific physiological processes and unlike Markov models which require a


large amount of data to estimate the large number of model parameters, the parame-


ters of the nonlinear model can be estimated using data for each subject night. This


perhaps will allow sleep disturbance to be able to be predicted for different subgroups


of the populations such as children, elderly, and individuals with preexisting sleep


problems, by estimating and using a different set of model parameters for each group.


9.2 Recommendations for Future Work


There are many areas in which research on the development of sleep disturbance


models should be conducted. Suggested areas of future research are provided below.


1. Further validation of the nonlinear model. The nonlinear dynamic sleep model


was developed based on one dataset the 1999 UK sleep study. This model should


be further validated by estimating parameters using additional sleep datasets. In


addition, further work should be done on validating and defining the thresholds used


to score sleep stages.


2. Incorporate additional noise characteristics into the model. Only the maximum


indoor noise level was considered in the model. However, researchers examining


the effects of noise on sleep have found that the rise time of the event as well as


spectral characteristics of the sound affect whether an individual will be awakened.


The incorporation of these characteristics into the model through modification of the


excitation term should be explored.
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3. Examine use of the model for predicting sleep in different subgroups of the pop-


ulation. An advantage of the nonlinear dynamic model is that the parameters can


be changed on a more intuitive basis than those of Markov sleep models. For exam-


ple, as individuals age the depth of sleep lightens therefore the decay parameters for


slow wave activity can be altered to reflect these changes. In addition, individuals


with sleep apnea have more awakenings during the night which could potentially be


modeled by increasing the rate of the excitation term. An examination of how to


change the model parameters in order to predict sleep in different populations should


be examined.


4. Improve predictions of indoor noise levels. For the airport noise simulations that


were conducted, outdoor noise levels, LAmax and SELA, were predicted and an out-


door to indoor noise attenuation of 25 dB(A) was assumed. However, one-third octave


band levels can be predicted using noise prediction software, though it is computa-


tionally intensive. By using sound transmission software and housing construction


data, house transfer filters could be developed and perhaps a better prediction of in-


door noise levels could be obtained. Effects of house orientation and window opening


would be interesting issues to explore in communities around airports and this would


be possible with improved sound transmission models.


5. Perform simulations of surveys around airports. There are very few large aircraft


noise and sleep field studies and so there is a limited number of datasets that can be


used to further validate the developed models. As part of designing a future survey,


simulations of the outcomes of different survey designs together with predictions of


sleep disturbance from existing models for current airport operations should be com-


pleted. This will enable researchers/survey designers to determine if the resulting


datasets would provide robust estimates of the parameters of existing sleep models.
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E. Öhrström, E. Hadzibajramovic, M. Holmes, and H. Svensson. Effects of road
traffic noise on sleep: studies on children and adults. Journal of Environmental
Psychology, 26:116–126, 2006.


E. Olbrich and P. Achermann. Analysis of oscillatory patterns in the human sleep
EEG using a novel detection algorithm. Journal of Sleep Research, 14:337–346, 2005.


E. Olbrich and P. Achermann. Analysis of the temporal organization of sleep spindles
in the human sleep EEG using a phenomenological modeling approach. Journal of
Biological Physiology, 34:341–349, 2008.


J. B. Ollerhead, C. J. Jones, R. E. Cadoux, A. Woodley, B. J. Atkinson, J. A.
Horne, F. Pankhurst, L. Reyner, K. I. Hume, F. Van, I. D. Watson, A. Diamond,
P. Egger, D. Holmes, and J. McKean. Report of a field study of aircraft noise
and sleep disturbance. Technical report, Department of Safety, Environment, and
Engineering, Civil Aviation Authority, UK, 1992.


I. Oswald, A. M. Taylor, and M. Treisman. Discriminative responses to stimulation
during human sleep. Brain, 83:440–453, 1960.


W. Passchier-Vermeer, H. Vos, J. H. M. Steenbekkers, F. D. van der Ploeg, and
K. Froothuis-Oudshoorn. Sleep disturbance and aircraft noise exposure: Exposure-
effect relationships. Technical report, TNO, Leiden, the Netherlands, 2002.


K. S. Pearsons, D. S. Barber, B. G. Tabachnick, and S. Fidell. Predicting noise-
induced sleep disturbance. Journal of the Acoustical Society of America, 97(1):
331–338, 1995.


A. J. K. Phillips and P. A. Robinson. A quantitative model of sleep-wake dynamics
based on the physiology of the brainstem ascending arousal system. Journal of
Biological Rhythms, 22(2):167–179, 2007.


A. J. K. Phillips and P. A. Robinson. Sleep deprivation in a quantitative physiolog-
ically based model of the ascending arousal system. Journal of Theoretical Biology,
255:413–423, 2008.


C. M. Portas, K. Karakow, P. Allen, O. Josephs, J. L. Armony, and C. D. Frith.
Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI mon-
itoring in humans. Neuron, 28(3):991–999, 2000.


J. Quehl and M. Basner. Annoyance from nocturnal aircraft noise exposure: Labo-
ratory and field-specific dose-response curves. Journal of Environmental Psychology,
26(2):127–140, 2006.


L. B. Ray, S. M. Fogel, C. T. Smith, and K. R. Peters. Validating an automated
sleep spindle detection algorithm using an individualized approach. Journal of Sleep
Research, 19(2):374–378, 2010.


A. Rechtschaffen, P. Hauri, and M. Zeitlin. Auditory awakening thresholds in REM
and NREM sleep stages. Perceptual and Motor Skills, 22(3):927–942, 1966.


A. Rechtschaffen, A. Kales, R. J. Berger, W. C. Dement, A. Jacobson, L. C. Johnson,
M. Jouvet, L. J. Monroe, I. Oswald, H. P. Roffwarg, B. Roth, and R. D. Walter.
A Manual of Standardized Terminology, Techniques and Scoring System for Sleep
Stages of Human Subjects. Public Health Service, Washington, D. C., 1968.







310


M. J. Rempe, J. Best, and D. Terman. A mathematical model of the sleep/wake
cycle. Journal of Mathematical Biology, 60(5):615–644, 2010.


A. Sadeh, R. Gruber, and A. Raviv. Sleep, neurobehavioral functions, and behavior
problems in school-age children. Child Development, 73(2):405–417, 2002.


M. Sallinen, J. Kaartinen, and H. Lyytine. Processing of auditory stimuli during
tonic and phasic periods of REM sleep as revealed by event-related brain potentials.
Journal of Sleep Research, 5(4):220–228, 1996.


S. Sanei and J. A. Chambers. EEG Signal Processing. John Wiley & Sons, West
Sussex, England, 2007.


C. B. Saper, T. C. Chou, and T. E. Scammell. The sleep switch: Hypothalamic
control of sleep and wakefulness. TRENDS in Neurosciences, 24(12):726–731, 2001.
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Appendix A. Noise Metrics


The following are noise metrics that were used in this report.


Cumulative Metrics:


1. Day Night Average Sound Pressure Level (DNL or Ldn):


DNL = 10log10


[
1


24


(∫ 22:00


7:00


pA
2


po2
dt+ 10


∫ 7:00


22:00


pA
2


po2
dt


)]
, (A.1)


pA is the A-weighted sound pressure level.


2. Lnight:


Lnight = 10log10


[
1


8


(∫ 7:00


23:00


pA
2


po2
dt


)]
. (A.2)


Single Event Metrics:


1. LAmax: Maximum A-weighted noise level.


2. SELA: Sound Exposure Level:


SELA = 10log10


(∫ t2


t1


pA
2


po2
dt


)
, (A.3)


where t1 and t2 are defined in Figure A.1.
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Figure A.1. A-weighted noise level (dB(A)) of aircraft noise event.
The maximum noise level (LAmax) and the portion of the sound used
to calculate the Sound Exposure Level (SELA) (red arrow) are indi-
cated.
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Appendix B. Laboratory and Field Studies


This appendix contains tables which list the survey data available for laboratory and


field studies on the effects of aircraft noise on sleep.


Table B.1. Laboratory studies-sleep measurements.


Study # of am/pm Behav. Acti- Motility- Polysom-
People Surveys Awake metry Other nography


Basner et al. 128 X X X
(2004)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X
(1994)
Carter et al. 9 X
(2002)
Dinisi et al. 20 X X
(1990)
Flindell et al. 9 X X X
(2000)
Levere et al. 6 X
(1972) (EEG)
Levere & Davis 12 X X
(1977) (EEG, EOG)
Lukas & Kryter 6 X X
(1970) (EEG, EOG)
Lukas et al. 12 X X X
(1971)
Lukas & Dobbs 8 X X X
(1972)
Marks et al. 24 X X
(2008)
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Table B.2. Laboratory studies-additional measurements.


Study # of ECG Blood Hormone Sleepiness Perfor-
People Pressure Levels, (Objective) mance


etc
Basner et al. 128 X X PST X
(2004) (24)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X X
(1994)
Carter et al. 9 X X
(2002)
Dinisi et al. 20 X
(1990)
Flindell et al. 9 X MSLT X
(2000)
Levere et al. 6 X
(1972)
Levere & Davis 12
(1977)
Lukas & Kryter 6
(1970)
Lukas et al. 12
(1971)
Lukas & Dobbs 8
(1972)
Marks et al. 24 X X
(2008)
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Table B.3. Field studies-sleep measurements.


Study Location # of Social am/pm Behav. Acti-
People Survey Survey Awake metry


Basner Cologne- 64 X X
et al. Bonn
(2004)
Borksy JFK 1500 X
(1976)
Brink Zurich 60 X
et al.
(2008)
DORA Heathrow 4153 X
(1980) Gatwick
Fidell & LAX 1417 X
Jones
(1975)
Fidell Castle Air 85 X X
et al. Force Base
(1995) LAX
Fidell Stapleton 77 X X X
et al. Denver
(2000)
Fidell DeKalb- 22 X X X
et al. Peachtree
(2000)
Flindell Manchester 18 X X
et al.
(2000)
Haral- Athens 140 X
abidis Arlanda
et al. Heathrow
(2008) Malpensa
Ollerhead Heathrow 400- X X
et al. Gatwick Act.
(1992) Stansted 46-
Hume Manchester Poly.
et al. 1636-
(2003) Social


Survey
Passchier- Schiphol 418 X X X
Vermeer
et al.
(2002)
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Table B.4. Field studies-additional sleep measurements.


Study Motility- Polysom- ECG Blood Hormone Perfor-
Other nography Pressure Levels, mance


etc
Basner X X X X
et al.
(2004)
Borksy
(1976)
Brink X
et al.
(2008)
DORA
(1980)
Fidell &
Jones
(1975)
Fidell
et al.
(1995)
Fidell
et al.
(2000)
Fidell
et al.
(2000)
Flindell X X X
et al.
(2000)
Haral- X
abidis
et al.
(2008)
Ollerhead X
et al.
(1992)
Hume
et al.
(2003)
Passchier- X
Vermeer
et al.
(2002)
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Table B.5. Field studies-noise measurements.


Surveys Metrics- Measurement Measurement Noise
# of of of Metrics


Locations Outdoor Noise Indoor Noise
Basner et al. 64 X X A-weighted
(2004) time histories
Borksy 1500
(1976)
Brink et al. 60 X
(2008)
DORA 29 X LAeq, LAmax, SELA,
(1980) “number above” and


“level exceeded”
Fidell & 3 X Ldn


Jones (1975)
Fidell et al. 45 X X A-weighted time
(1995) histories, LAmax,


SELA
Fidell et al. 38 X X A-weighted time
(2000) histories, LAmax,


SELA
Fidell et al. 12 X X A-weighted time
(2000) histories, LAmax,


SELA
Flindell et al. 18 X X 1-sec A-weighted
(2000) time histories


Haralabidis 140 X A-weighted
et al. (2008) time histories
Ollerhead 8 X LAmax, SELA,
et al. (1992) Hourly LAeq


Hume
et al. (2003)
Passchier- 418 X X 1 sec A-weighted
Vermeer time histories
et al. (2002)
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Table B.6. Field studies-additional noise measurements.


Surveys Noise Recordings Flight Operations
(e.g. .wav) Data


Basner et al. X
(2004)
Borksy Distance from
(1976) airport
Brink et al. Played recordings
(2008) in each subject’s


home
DORA Flight paths,
(1980) Location of


surveyed areas
Fidell &
Jones (1975)
Fidell et al.
(1995)
Fidell et al.
(2000)
Fidell et al.
(2000)
Flindell et al. 10 sec .wav List of aircraft by
(2000) recordings for time of arrival


4 locations and departure
Haralabidis X
et al. (2008)
Ollerhead Maps indicating
et al. (1992) flight paths and
Hume study locations
et al. (2003)
Passchier- Obtained data from
Vermeer flight track monitoring
et al. (2002) system indicating


aircraft noise events
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Appendix C. Coefficients of Basner’s Markov Model


Table C.1. Coefficients for Basner’s Four Markov Models (2006).


Coefficient/sj si Baseline Noise 1 Noise 2 Noise 3
Intercept 0 1.2144 2.3013 0.7674 0.9691


1 -0.4702 -0.4125 -0.4415 -0.3739
3 -3.6542 -4.0295 -3.8388 -3.8809
4 -6.2984 -12.6277 -14.1409 -5.0150
5 -1.3717 -1.0818 -1.6914 -2.2264


S1 0 -2.7472 -1.8124 -2.9919 -2.8770
1 0.2838 0.4352 0.0584 -0.3877
3 -2.5433 -0.4452 -9.0011 -1.9712
4 -6.9807 -1.1678 -1.6087 -8.7818
5 -1.3017 -1.5643 -0.0583 -1.2233


S2 0 -4.8576 -3.5524 -3.8725 -4.6710
1 -4.6860 -3.3554 -4.2785 -4.7750
3 0.8986 1.6156 0.8650 1.2007
4 0.2586 4.8135 6.9155 -3.3496
5 -3.0316 -3.3679 -2.1935 -1.9309


S3 0 -3.4514 -2.4651 -2.9214 -3.2425
1 -6.7253 -3.6566 -4.7870 -4.9466
3 5.7615 5.9772 4.9008 5.8730
4 6.5807 12.6037 12.5687 4.9879
5 -3.8353 -4.9858 -5.2357 -2.6269


S4 0 -0.7784 -0.4093 -1.0691 -0.5785
1 -3.5858 -2.5576 -3.5520 -9.9189
3 6.5302 6.5707 5.6143 6.9644
4 11.5460 17.2381 17.5938 10.6345
5 -3.0085 -10.3476 -10.8294 -8.2248


REM 0 -1.0655 -0.9722 -0.8380 -1.0694
1 -1.2599 -0.3825 -1.2592 -1.5366
3 -2.0445 -9.1235 -8.4853 -8.2782
4 -6.1652 8.0627 -1.0821 -6.7936
5 4.5398 3.9654 4.6170 4.9946


Transition 0 0.000452 -0.00025 -0.00004 0.000401
1 -0.00026 -0.00030 -0.0013 0.000277
3 -0.00147 -0.00135 -0.00125 -0.00190
4 -0.00273 -0.00187 -0.00150 -0.00285
5 0.000869 0.000337 0.000822 0.000896
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Appendix D. Model Parameters Estimated for Each Subject


The model coefficient values listed in the following tables were calculated for 76


subject nights from the 1999 UK sleep study (Flindell et al., 2000). The methods


used to calculate these coefficients are discussed in Chapter 7. For the slow REM


sleep model, the coefficients were not calculated if the REM period defined in the


original dataset was less than 5 minutes in duration or if the NREM period before or


after a REM period was less than 15 minutes. Also the coefficients of the slow REM


model were not calculated if the duration of the prior NREM period or the duration


of the REM period was considered an outlier, which was defined as:


Lower Outliers < 25th percentile− 1.5(75th percentile− 25th percentile), (D.1)


Upper Outliers > 75th percentile+ 1.5(75th percentile− 25th percentile), (D.2)


here the 75th and 25th percentiles were calculated based on all NREM or REM


periods during the night for all 76 subject nights. The subject nights for which the


coefficients were not calculated are indicated by gray/blank entries in the following


tables.
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Table D.1. Estimated parameters for Process S and SWA models for
field subjects 1 through 12 in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


1 2 3.3365 0.0391 0.2384 0.1064 4.1062 1.5094
1 4 4.1180 0.0497 0.1725 0.2324 1.4241 1.0915
2 1 3.3673 0.0248 0.1094 0.4977 3.2499 0.8288
2 3 3.7074 0.0304 0.1411 0.3090 1.1422 1.1137
2 4 3.5105 0.0307 0.1501 0.3532 3.0706 0.9375
3 3 3.8628 0.0306 0.2220 0.2636 1.0852 0.9697
3 4 2.8551 0.0265 0.1641 0.8013 1.9962 0.5251
6 1 4.3358 0.0442 0.1103 0.2309 1.7047 1.0080
6 2 4.0398 0.0441 0.1010 0.2930 2.1427 1.1029
6 3 5.4750 0.0544 0.1075 0.1779 2.5459 1.1783
8 4 2.9164 0.0240 0.2467 0.3148 1.1791 0.9923
9 1 4.2406 0.0350 0.1879 0.2398 1.0777 0.9125
9 3 5.8348 0.0461 0.1513 0.2348 1.4101 0.6386
9 4 4.9060 0.0410 0.1532 0.3571 1.7851 0.6713
10 0 3.0004 0.0155 0.1751 0.5186 2.3834 0.7325
10 1 3.3971 0.0251 0.1691 0.3169 4.6552 1.0097
10 3 3.0035 0.0175 0.1817 0.4090 2.8392 0.8222
12 0 2.6382 0.0084 0.2029 0.6562 1.7541 0.6065
12 1 3.5689 0.0268 0.2300 0.2968 1.9174 0.6616
12 2 3.6195 0.0290 0.2220 0.3064 2.4094 0.6035
12 3 3.2195 0.0272 0.2102 0.3388 0.8993 0.8086
12 4 3.2789 0.0346 0.2216 0.5200 1.6621 0.6518
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Table D.2. Estimated parameters for Process S and SWA Models for
field subjects 13 through 18 in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


13 1 3.6619 0.0391 0.2099 0.3742 2.3962 0.9962
13 2 3.2038 0.0368 0.2127 0.6463 1.4571 1.0797
13 3 3.6877 0.0396 0.1749 0.4544 2.6606 0.9135
13 4 3.6919 0.0384 0.2346 0.3296 1.7203 0.8148
14 0 3.1813 0.0191 0.2252 0.5168 1.3479 0.4149
14 1 3.6535 0.0378 0.2081 0.3027 2.4437 0.4495
14 3 3.4100 0.0349 0.1948 0.4929 3.1263 0.4518
14 4 3.5922 0.0260 0.2182 0.4196 1.3223 0.3784
15 0 4.0728 0.0448 0.1920 0.2650 1.6454 0.8416
15 1 3.4671 0.0380 0.1849 0.4188 0.8472 0.8556
15 2 5.1299 0.0526 0.1491 0.2146 2.2660 1.0116
15 3 3.5554 0.0316 0.1909 0.3501 2.1493 0.8968
15 4 2.8822 0.0237 0.2099 0.3902 2.8141 0.9586
16 2 3.7999 0.0511 0.1885 0.3281 2.4172 0.6750
16 3 2.5900 0.0132 0.2515 0.4534 2.3607 0.7207
16 4 4.1062 0.0329 0.2400 0.4131 1.1499 0.6461
17 2 3.1666 0.0085 0.1984 0.6205 2.5602 0.1973
17 4 3.5993 0.0111 0.1903 0.2904 1.8888 0.7340
18 0 3.9134 0.0293 0.1481 0.5266 0.9661 0.3428
18 1 4.0829 0.0277 0.1769 0.4777 1.5498 0.6446
18 3 3.8975 0.0259 0.1720 0.5255 1.1675 1.3014
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Table D.3. Estimated parameters to define the random noise term
n(t) for field subjects 1 through 12 in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
1 2 -0.0137 0.2052 0.6424 3.1467
1 4 -0.0162 0.2376 0.7350 3.2077
2 1 -0.0249 0.3184 0.5866 3.0170
2 3 -0.0233 0.3076 0.5346 3.0197
2 4 -0.0270 0.3529 0.6954 3.0037
3 3 -0.0155 0.2619 0.6994 3.0650
3 4 -0.0183 0.2516 0.5569 3.1028
6 1 -0.0148 0.2358 0.4925 2.8902
6 2 -0.0163 0.2421 0.3801 2.7713
6 3 -0.0169 0.2414 0.4245 2.7671
8 4 -0.0131 0.2039 0.5482 3.0342
9 1 -0.0159 0.2125 0.4902 2.9049
9 3 -0.0153 0.2424 0.5413 3.0465
9 4 -0.0221 0.2908 0.4896 2.8882
10 0 -0.0166 0.2699 0.4735 3.0702
10 1 -0.0217 0.3305 0.5821 3.0052
10 3 -0.0231 0.2896 0.5359 2.9910
12 0 -0.0115 0.1989 0.4082 2.9315
12 1 -0.0126 0.2057 0.3081 2.8874
12 2 -0.0109 0.1999 0.4820 3.0699
12 3 -0.0127 0.2363 0.4677 2.8805
12 4 -0.0152 0.2335 0.5244 3.0019
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Table D.4. Estimated parameters to define the random noise term
n(t) for field subjects 13 through 18 in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
13 1 -0.0150 0.2333 0.4922 2.7396
13 2 -0.0126 0.2398 0.4638 2.7454
13 3 -0.0147 0.2262 0.4192 2.6815
13 4 -0.0117 0.2101 0.4216 2.7749
14 0 -0.0194 0.2653 0.6029 3.1969
14 1 -0.0188 0.2689 0.5385 3.2537
14 3 -0.0176 0.2690 0.6065 3.2100
14 4 -0.0171 0.2430 0.6088 3.3874
15 0 -0.0176 0.2389 0.5988 3.2506
15 1 -0.0148 0.2298 0.6067 2.9735
15 2 -0.0165 0.2028 0.5076 3.0437
15 3 -0.0144 0.2079 0.5460 2.9984
15 4 -0.0181 0.2209 0.6691 3.2496
16 2 -0.0152 0.2316 0.4356 2.7253
16 3 -0.0094 0.2039 0.3273 2.8323
16 4 -0.0110 0.2145 0.2778 2.7091
17 2 -0.0123 0.1875 0.3502 2.8473
17 4 -0.0113 0.1788 0.2057 2.7489
18 0 -0.0129 0.2000 0.4971 2.8332
18 1 -0.0187 0.2207 0.5803 3.1554
18 3 -0.0132 0.2158 0.5883 3.1180
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Table D.5. Estimated Slow REM parameters for the 1st REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.9449 0.3452 1.8029 2.2423
1 4 0.4772 0.3628 0.4370 1.0013
2 1
2 3
2 4 0.5625 0.3310 0.5577 1.2185
3 3
3 4
6 1 0.6171 0.3082 2.6341 2.1381
6 2 0.7395 0.2693 3.5046 2.1494
6 3 0.5880 0.5230 3.2306 2.8342
8 4 0.6009 0.3204 1.7271 1.9237
9 1 0.5630 0.2888 0.9491 1.4708
9 3 0.4375 0.3988 1.6747 1.8993
9 4 0.4624 0.2723 0.2468 0.7767
10 0 0.5033 0.2472 1.0223 1.4101
10 1 0.7957 0.2963 4.4418 2.4240
10 3
12 0 0.5003 0.2333 1.4639 1.4902
12 1 0.5599 0.3768 0.4808 1.1372
12 2 0.4742 0.3416 0.3624 0.8917
12 3 0.4671 0.3713 4.0835 2.3865
12 4
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Table D.6. Estimated Slow REM parameters for the 1st REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.8421 0.4053 1.3973 2.1578
13 2 0.3383 0.4697 2.9938 2.9428
13 3 0.6519 0.4009 1.3782 1.9353
13 4 0.5565 0.4542 1.5234 2.0760
14 0 0.4277 0.3275 1.0295 1.5120
14 1 0.5209 0.3732 0.8963 1.4355
14 3 0.6248 0.3588 1.7732 2.0457
14 4 0.4921 0.3768 0.9242 1.5152
15 0
15 1 0.4890 0.4508 2.9965 2.4623
15 2 0.4987 0.3260 2.5135 2.0515
15 3 0.4328 0.3804 0.5348 1.0644
15 4
16 2 0.5231 0.5728 4.9164 3.2492
16 3 0.5326 0.5202 1.2638 1.9961
16 4 0.6534 0.4220 2.8619 2.6845
17 2 0.4584 0.3948 2.1441 2.1096
17 4 0.4532 0.2789 0.3634 0.8962
18 0 0.4601 0.3255 1.6773 1.7843
18 1 0.4294 0.2975 0.9734 1.4024
18 3 0.5304 0.4369 1.0966 1.8001







330


Table D.7. Estimated Slow REM parameters for the 2nd REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.4639 0.3865 0.5274 1.0631
1 4 0.5053 0.3594 1.9105 1.9666
2 1 0.4896 0.4300 0.8211 1.4968
2 3 0.4815 0.3023 0.5093 1.0836
2 4 0.4277 0.2928 1.0524 1.4569
3 3 0.3494 0.2807 0.6846 1.1034
3 4 0.4522 0.2536 1.0486 1.3399
6 1 0.4283 0.4861 3.2037 3.1510
6 2 0.3507 0.3839 0.9261 1.3689
6 3 0.6365 0.3903 1.0005 1.7083
8 4 0.5400 0.3777 4.9061 2.5620
9 1
9 3 0.4857 0.2791 0.3239 0.9093
9 4 0.3462 0.3166 0.6968 1.1381
10 0 0.3200 0.2705 0.6440 1.0248
10 1 0.3870 0.3070 0.9110 1.3715
10 3 0.4808 0.4389 0.4637 0.9781
12 0 0.3189 0.3230 1.2159 1.4351
12 1
12 2 0.4674 0.3754 0.2581 0.7168
12 3
12 4
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Table D.8. Estimated Slow REM parameters for the 2nd REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5208 0.4153 0.6243 1.2152
13 2
13 3 0.5909 0.3677 2.7721 2.3193
13 4 0.5863 0.3894 0.2723 0.8640
14 0 0.4264 0.3666 0.5073 1.0169
14 1 0.4901 0.4151 0.5836 1.1526
14 3 0.4566 0.4687 0.8856 1.5078
14 4 0.4850 0.4171 0.6355 1.2381
15 0 0.4898 0.5628 2.7293 2.6201
15 1 0.5081 0.2515 0.2453 0.8591
15 2 0.5007 0.4217 0.1873 0.5431
15 3 0.4853 0.3430 0.3609 0.9168
15 4 0.3844 0.3957 0.3694 0.7949
16 2 0.5862 0.2872 0.1222 0.8035
16 3 0.7002 0.3297 0.1092 0.5507
16 4 0.5370 0.4100 0.7989 1.4283
17 2 0.5171 0.3613 1.2800 1.7625
17 4 0.3584 0.3965 0.8833 1.3490
18 0 0.4221 0.4101 0.5928 1.1745
18 1 0.3666 0.2230 0.2092 0.6277
18 3 0.5499 0.3413 0.3794 1.0031
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Table D.9. Estimated Slow REM parameters for the 3rd REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.5024 0.3216 1.1445 1.5797
1 4 0.4838 0.5494 0.6685 1.2813
2 1 0.5188 0.3152 0.2316 0.8083
2 3 0.4390 0.5583 0.4880 0.9656
2 4 0.4011 0.4044 1.7710 1.9035
3 3 0.4550 0.3972 4.6822 2.9365
3 4
6 1 0.7139 0.4861 3.2037 3.1510
6 2 0.4969 0.4907 1.1780 3.1510
6 3 0.5158 0.5850 0.9091 1.6064
8 4 0.4733 0.4081 1.4409 1.8836
9 1
9 3 0.3599 0.2662 0.4348 0.8829
9 4 0.4198 0.3390 0.3032 0.7564
10 0 0.5402 0.5777 0.1713 0.4179
10 1 0.3928 0.4597 0.9503 1.4718
10 3 0.6591 0.4520 0.1129 0.4489
12 0 0.4552 0.3867 0.2471 0.6599
12 1 0.4861 0.4889 1.9929 2.2783
12 2 0.4854 0.3978 0.6604 1.2595
12 3
12 4
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Table D.10. Estimated Slow REM parameters for the 3rd REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5238 0.4283 1.0469 1.7118
13 2 0.6365 0.4470 3.4673 2.7505
13 3 0.4666 0.3557 0.7078 1.2666
13 4 0.5455 0.4493 2.3287 2.3778
14 0 0.5051 0.4106 0.2837 0.7724
14 1 0.5639 0.4553 0.3234 0.8716
14 3 0.6588 0.5353 0.3121 0.9028
14 4
15 0 0.6721 0.4306 0.3627 1.1717
15 1 0.3238 0.2679 0.4875 0.8953
15 2 0.5598 0.4507 0.3937 1.0072
15 3 0.5276 0.6923 0.4838 0.9810
15 4 0.5040 0.4025 0.8526 1.4848
16 2 0.3968 0.3456 1.5555 1.7050
16 3 0.4699 0.4098 2.1466 2.1424
16 4 0.4970 0.2984 0.3987 0.9866
17 2 0.5683 0.5020 0.1770 0.5425
17 4 0.5104 0.4287 0.6854 1.3078
18 0 0.5262 0.4634 0.9469 1.6672
18 1 0.3623 0.3685 0.1945 0.4621
18 3 0.4293 0.3853 0.8116 1.4171
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Table D.11. Estimated Slow REM parameters for the 4th REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.5365 0.5782 0.2852 0.6619
1 4 1.5974 1.3901 0.1178 0.2581
2 1 0.6074 0.7519 0.3061 0.6471
2 3 1.4069 1.3761 0.1261 0.3670
2 4 0.8437 0.7795 0.1388 0.4083
3 3 0.8604 1.1212 0.3128 0.6724
3 4
6 1 0.6818 0.3391 0.1062 0.5235
6 2 0.5887 0.3292 0.4522 1.2172
6 3 0.7326 0.3834 0.8000 1.6670
8 4 0.5739 0.6394 0.6444 1.3707
9 1
9 3 0.3905 0.4391 0.3334 0.7305
9 4 0.5724 1.5681 1.2130 1.7177
10 0
10 1 0.5912 0.4784 0.7260 1.4171
10 3 0.8150 0.8238 0.3115 0.7617
12 0 0.7859 1.0489 0.3869 0.8025
12 1 0.6698 0.3620 0.1179 0.5445
12 2 0.5553 0.6585 2.5723 2.8309
12 3 0.7427 0.5116 0.4340 1.1898
12 4
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Table D.12. Estimated Slow REM parameters for the 4th REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5669 0.4338 1.0256 1.6158
13 2 0.6722 0.6984 0.5466 1.2074
13 3 0.4981 0.5578 3.3427 3.3730
13 4 0.6880 0.4682 0.1152 0.4618
14 0 0.8844 1.0687 0.2996 0.6810
14 1 0.6790 0.5767 0.2644 0.7689
14 3 0.6432 0.3055 0.6329 1.4333
14 4
15 0 0.5792 0.6659 2.1312 2.6890
15 1 0.4194 0.7760 3.5629 2.6521
15 2 0.7735 1.1726 0.6910 1.3673
15 3 0.8922 0.5190 0.6672 1.6873
15 4
16 2 1.1560 1.1883 0.1378 0.1548
16 3 0.5448 0.4312 0.4498 1.0866
16 4
17 2 0.6413 0.5223 1.2624 2.0347
17 4 0.5594 0.3957 0.2866 0.8331
18 0 0.8106 0.6671 0.1257 0.4598
18 1
18 3 0.5416 0.4163 0.2068 0.6370
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Table D.13. Estimated parameters for Process S and SWA Models
for laboratory subjects in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


19 0 4.4617 0.0388 0.1322 0.2723 2.7529 0.7880
19 1 4.1486 0.0416 0.1389 0.5287 2.3165 0.6207
19 2 4.4169 0.0377 0.1574 0.3119 1.8867 0.7717
20 1 3.7485 0.0301 0.1414 0.2021 1.2187 0.7005
20 2 4.4947 0.0510 0.1266 0.3502 1.9782 0.6344
20 3 4.5684 0.0447 0.1118 0.3991 0.9658 1.0292
22 0 3.6723 0.0302 0.1618 0.2413 0.8112 0.8331
22 1 2.7767 0.0224 0.1888 0.5033 0.6205 1.0756
22 2 2.9903 0.0215 0.1799 0.4356 3.9335 0.5538
22 3 3.3267 0.0247 0.1887 0.2465 0.5896 1.4638
22 4 3.2060 0.0299 0.1781 0.3031 1.4033 1.1598
23 0 4.3522 0.0437 0.1360 0.2274 1.5741 0.5255
23 1 3.6144 0.0427 0.1253 0.5919 3.0516 0.5897
23 2 3.5923 0.0458 0.1170 0.4904 3.2262 0.9388
23 3 3.9107 0.0403 0.1123 0.4474 0.7768 0.7866
23 4 4.2102 0.0408 0.0962 0.4243 5.2869 0.1287
24 1 3.7697 0.0262 0.1946 0.3005 1.2354 0.9240
24 2 3.6909 0.0287 0.1616 0.3345 1.2877 0.7526
24 3 3.5164 0.0242 0.1131 0.1927 2.1170 1.0128
24 4 3.3937 0.0310 0.1446 0.3861 2.5985 0.7584
25 0 4.4544 0.0408 0.1317 0.3577 3.0195 0.5270
25 1 5.5164 0.0423 0.1339 0.3528 1.8326 0.3762
25 3 4.1590 0.0326 0.1568 0.3428 1.7633 0.5745
25 4 4.6178 0.0388 0.1379 0.3817 4.4222 0.5808
26 0 4.1647 0.0367 0.2180 0.3898 1.8732 0.8575
26 1 3.5370 0.0251 0.1832 0.5734 2.5480 0.2611
26 2 3.5335 0.0148 0.2155 0.4978 3.5402 0.6858
26 3 3.0433 0.0285 0.2277 0.5752 1.0266 0.5940
26 4 3.3089 0.0247 0.1842 0.8444 3.5710 0.5459
27 0 3.7023 0.0310 0.1469 0.1939 2.1031 1.3816
27 1 4.2429 0.0291 0.1901 0.5101 2.4893 0.3781
27 2 3.6894 0.0174 0.1578 0.7144 3.8975 0.6864
27 3 2.2853 0.0092 0.1519 0.5768 1.3976 1.3098
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Table D.14. Estimated parameters to define the random noise term
n(t) for laboratory subjects in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
19 0 -0.0230 0.2976 0.4820 2.9347
19 1 -0.0238 0.3001 0.4651 3.0426
19 2 -0.0223 0.3166 0.7243 3.4013
20 1 -0.0248 0.3499 0.7557 3.2273
20 2 -0.0208 0.3163 0.6404 2.9809
20 3 -0.0282 0.3209 0.7196 3.2341
22 0 -0.0102 0.1855 0.3313 2.5732
22 1 -0.0122 0.2177 0.4288 2.6868
22 2 -0.0139 0.2222 0.3567 2.7088
22 3 -0.0089 0.2127 0.3329 2.5741
22 4 -0.0126 0.1957 0.3300 2.6127
23 0 -0.0230 0.2794 0.6314 3.2467
23 1 -0.0270 0.3284 0.6696 3.2777
23 2 -0.0264 0.3022 0.7096 3.3291
23 3 -0.0269 0.3437 0.7923 3.4239
23 4 -0.0259 0.3180 0.6423 3.3163
24 1 -0.0215 0.2784 0.5800 3.2364
24 2 -0.0209 0.2496 0.7014 3.3164
24 3 -0.0246 0.2742 0.5689 3.1053
24 4 -0.0183 0.2503 0.6000 3.1454
25 0 -0.0153 0.2173 0.4594 3.1641
25 1 -0.0179 0.2804 0.4747 2.9093
25 3 -0.0153 0.2127 0.5792 3.0931
25 4 -0.0148 0.2390 0.4520 2.9289
26 0 -0.0138 0.2104 0.6281 3.2015
26 1 -0.0168 0.2368 0.6540 3.1220
26 2 -0.0135 0.2158 0.5218 2.8605
26 3 -0.0119 0.1976 0.3841 2.7699
26 4 -0.0180 0.2549 0.5501 2.9491
27 0 -0.0156 0.2358 0.4369 2.8233
27 1 -0.0206 0.2284 0.4893 2.7561
27 2 -0.0200 0.2304 0.4844 2.8232
27 3 -0.0157 0.2285 0.4956 2.8772
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Table D.15. Estimated Slow REM parameters for the 1st REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0
19 1 0.4251 0.2834 4.9021 2.2987
19 2 0.3810 0.3050 1.0263 1.3982
20 1 0.6702 0.3544 0.9204 1.6302
20 2 0.7062 0.5900 0.1642 0.5507
20 3 0.6909 0.4573 0.3386 1.0201
22 0 0.6138 0.3478 1.1979 1.6893
22 1 0.9176 0.2900 4.8776 2.3368
22 2 0.7329 0.3431 4.3607 2.6913
22 3 0.4388 0.2721 0.1291 0.5678
22 4 0.7147 0.2939 0.7556 1.5869
23 0 0.4287 0.4356 2.5031 2.2213
23 1
23 2 0.6862 0.4797 4.3969 3.0872
23 3 0.4092 0.5104 1.0667 1.6152
23 4 0.6191 0.3796 2.6691 2.5219
24 1 0.3248 0.3053 0.6152 1.0414
24 2
24 3 0.3725 0.3171 1.0875 1.4275
24 4 0.3869 0.3413 2.1844 1.8916
25 0 0.5445 0.3723 2.8765 2.3358
25 1 0.4892 0.4575 1.4841 1.9746
25 3 0.4685 0.3327 1.5071 1.8612
25 4 0.6223 0.2788 1.5787 1.7070
26 0 0.3708 0.3830 1.7241 1.7961
26 1 0.4198 0.3258 3.5515 1.9850
26 2
26 3 0.4386 0.3382 1.7017 1.8136
26 4
27 0 0.6900 0.3382 2.0799 2.1056
27 1
27 2 0.5655 0.3170 1.3695 1.7208
27 3 0.7115 0.4085 0.4487 1.3780
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Table D.16. Estimated Slow REM parameters for the 2nd REM pe-
riod for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0 0.4803 0.5197 0.3091 0.6831
19 1 0.3598 0.3574 1.1256 1.4724
19 2 0.3997 0.3644 0.5559 1.0828
20 1 0.4260 0.2717 0.3975 0.9515
20 2 0.7553 0.4345 0.8170 1.7184
20 3 0.5803 0.3985 0.3900 1.0402
22 0 0.4607 0.4267 1.3724 1.8195
22 1 0.3668 0.5099 0.9374 1.4428
22 2 0.5261 0.7963 4.1544 3.5468
22 3 0.3817 0.4728 1.9004 2.0365
22 4 0.4082 0.4221 0.4460 0.9360
23 0 0.6101 0.4355 2.8321 2.7324
23 1 0.3572 0.2965 0.7228 1.1619
23 2 0.6739 0.5253 2.2173 2.7709
23 3 0.6715 0.3244 1.0515 1.6653
23 4 0.5010 0.4570 1.7549 2.1579
24 1 0.4336 0.4467 2.2907 2.2103
24 2 0.5105 0.3927 1.3382 1.8843
24 3 0.4776 0.3814 2.9425 2.2768
24 4 0.4261 0.3919 1.1084 1.5847
25 0 0.4851 0.4419 1.0678 1.7222
25 1 0.5728 0.3633 1.0387 1.5875
25 3 0.4326 0.4155 0.8186 1.4586
25 4 0.3923 0.3724 1.7375 1.8288
26 0 0.4667 0.2680 0.2915 0.8435
26 1 0.4088 0.2678 0.5056 1.0000
26 2 0.3176 0.2458 0.6736 1.0591
26 3 0.4307 0.3001 0.6203 1.1292
26 4 0.2989 0.4336 0.7549 1.1672
27 0 0.4469 0.3773 0.4208 0.9390
27 1 0.4478 0.4120 0.4503 0.9404
27 2
27 3 0.5702 0.5707 3.3406 3.4079
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Table D.17. Estimated Slow REM parameters for the 3rd REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0 0.6687 0.4552 0.3896 1.1010
19 1 0.4728 0.3570 0.3457 0.8511
19 2 0.4754 0.4595 0.6974 1.3590
20 1 0.3470 0.4226 0.9595 1.4112
20 2 0.5526 0.3769 1.1329 1.6898
20 3 0.5821 0.5023 0.2380 0.7116
22 0
22 1 0.6749 0.3394 1.3436 1.8864
22 2 0.8796 0.4257 0.3223 1.3819
22 3 0.6144 0.4661 0.4351 1.0741
22 4 0.5689 0.4450 0.4569 1.1015
23 0 0.5458 0.3444 0.4666 1.1157
23 1 0.4042 0.4423 0.5583 1.0675
23 2 0.6268 0.3094 0.6703 1.4387
23 3 0.4075 0.3986 0.8956 1.4221
23 4 0.5821 0.4232 1.0106 1.6091
24 1 0.5238 0.2789 0.2633 0.8962
24 2 0.5222 0.5068 0.5811 1.2142
24 3 0.5527 0.5264 0.6560 1.2955
24 4 0.5049 0.3868 0.3160 0.8776
25 0 0.5605 0.3765 0.5711 1.2564
25 1 0.4855 0.3871 0.4313 0.9964
25 3 0.5264 0.3732 0.6560 1.2955
25 4 0.4878 0.4818 0.8249 1.5370
26 0
26 1
26 2 0.6989 1.1090 0.2242 0.4263
26 3 0.4499 0.5123 0.3603 0.7970
26 4 0.6328 0.6036 0.4991 1.0923
27 0 0.5763 0.5844 4.0785 3.1609
27 1 0.5280 0.4658 1.5061 2.1693
27 2
27 3 0.7172 0.3840 1.1155 1.8699
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Table D.18. Estimated Slow REM parameters for the 4th REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0
19 1
19 2 0.6152 0.5341 0.6383 1.3189
20 1 0.5484 0.3193 1.1088 1.5594
20 2 0.5387 0.4948 0.3856 0.9102
20 3 0.7437 0.8210 0.6442 1.4124
22 0 0.6091 0.5014 2.0878 2.6806
22 1 0.5382 1.0653 0.7443 1.3323
22 2 0.6858 0.5499 0.1414 0.5037
22 3 0.5855 0.3806 0.1708 0.6939
22 4 0.7367 0.6174 0.1708 0.5800
23 0 0.5867 0.5784 0.2321 0.5851
23 1
23 2 0.3950 0.4652 1.0138 1.5328
23 3 0.6093 0.4891 3.8592 2.9005
23 4 0.5175 0.3944 0.8351 1.4474
24 1 0.4008 0.8642 1.2226 1.6379
24 2 0.6070 0.3593 0.2406 0.9023
24 3 0.6052 0.3211 0.1749 0.8150
24 4 0.5982 0.4042 3.5296 2.6082
25 0 0.4848 0.4690 0.9139 1.6335
25 1 0.4930 0.3682 0.3855 0.9550
25 3 0.5087 0.4269 0.4168 0.9627
25 4 0.6791 0.5020 0.115 0.5144
26 0 0.9384 0.8990 0.4220 1.0837
26 1
26 2
26 3 0.6516 0.4208 0.3062 0.9689
26 4
27 0 0.7471 0.6266 0.9356 1.8275
27 1 0.6651 0.5636 0.3960 1.0266
27 2 0.8620 0.4098 1.3385 2.1424
27 3 0.4858 0.4788 1.3242 1.8655
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Appendix E. Range for Nonlinear Model Parameters Estimated for Each Subject


Table E.1. Range of estimated parameter values for Process S and
SWA Models for all field subject nights in the 1999 UK study.


Range
min to max


So 2.5900 to 5.8348
gc 0.0084 to 0.0544
SWAL 0.1010 to 0.2515
rc 0.1064 to 0.8013
fc 0.8472 to 4.6552
SWAo 0.1973 to 1.5094


Table E.2. Range of estimated parameter values for n(t) for all field
subject nights in the 1999 UK study.


Range
min to max


mean -0.0094 to -0.0270
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7350
kurtosis 2.6815 to 3.3874


Table E.3. Range of estimated parameter values for the Slow REM
model for all field subject nights in the 1999 UK study.


REM a b c d
Period min to max min to max min to max min to max


1 0.3383 to 0.9449 0.2333 to 0.5728 0.2468 to 4.9164 0.7767 to 3.2492
2 0.3189 to 0.7002 0.2230 to 0.5628 0.1092 to 4.9061 0.5431 to 3.1510
3 0.3238 to 0.7139 0.2662 to 0.6923 0.1129 to 4.6822 0.4179 to 3.1510
4 0.3905 to 1.5974 0.3055 to 1.5681 0.1062 to 3.5629 0.1548 to 3.3730
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Table E.4. Range of estimated parameter values for Process S and
SWA Models for all laboratory subject nights in the 1999 UK study.


Range
min to max


So 2.2853 to 5.5164
gc 0.0092 to 0.0510
SWAL 0.0962 to 0.2277
rc 0.1927 to 0.8444
fc 0.5896 to 5.2869
SWAo 0.1287 to 1.4638


Table E.5. Range of estimated parameter values for n(t) for all labo-
ratory subject nights in the 1999 UK study.


Range
min to max


mean -0.0089 to -0.0282
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7923
kurtosis 2.5732 to 3.4239


Table E.6. Range of estimated parameter values for the Slow REM
model for all laboratory subject nights in the 1999 UK study.


REM a b c d
Period min to max min to max min to max min to max


1 0.3248 to 0.9176 0.2721 to 0.5900 0.1291 to 4.9021 0.5507 to 3.0872
2 0.2986 to 0.7553 0.2458 to 0.7963 0.2915 to 4.1544 0.6831 to 3.5468
3 0.3470 to 0.8796 0.2789 to 1.1090 0.2242 to 4.0785 0.4263 to 3.1609
4 0.3950 to 0.9384 0.3193 to 1.0653 0.1115 to 3.8592 0.5037 to 2.9005
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Appendix F. Equations and Coefficients of Nonlinear Dynamic Models


F.1 Massaquoi and McCarley Model


The Massaquoi and McCarley model (1992) has 4 main components. The first part of


the model is the reciprocal interaction REM model. The equation for REM promoting


neuron activity is,


Ẋ = a(X)S1(X)X − b(X)XY, (F.1)


and the equation for REM inhibiting neuron activity is,


Ẏ = −cY + dcircS2(Y )(X + E)Y, (F.2)


where,


dcirc = 0.975(1 + 0.125sin(0.0467 + 2.3)), (F.3)


and E is defined in Equation F.11. The equations for the coefficients of the REM


model are,


a(X) = 2− 1.8


(
1− 1


1 + e−4(X−0.5)


)
, (F.4)


b(X) =
2


1 + e−80(X−0.1)
, (F.5)


S1(X) = 1− 1.4


(
1


1 + e−0.8(X−2.5)


)
+ 0.167, (F.6)


S2(Y ) = 1− 1.5


(
1


1 + e−20(Y−2)


)
. (F.7)


The equations for the Process S and SWA models are:


˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t), (F.8)
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and


Ṡ = −gc SWA+ rs(1− S), (F.9)


where SWAmax is defined as,


SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05), (F.10)


and n(t) is a uniformly distributed random noise signal. The excitation term E in the


above equations is filtered Poisson noise (N) which has an exponentially distributed


arrival time, and uniformly distributed amplitude and duration, the equation for E


is,


Ė = N − kE. (F.11)


Sleep stages during the night are scored according to the following rules:


1. If X >1.4 score as stage REM,


2. If SWA <0.1 and E >0.5 score as Wake,


3. Else score as NREM sleep.


The values of the model parameters are in Table F.1. An example of the output of


the model is shown in Figure F.1.


F.2 The Nonlinear Model Developed as Part of This Research.


The following are the equations for the modified version of the Massaquoi and Mc-


Carley model that was developed as part of this research. The equations used for the


slow wave activity model are,


Ṡ = −gc SWA, (F.12)
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Figure F.1. An example of using Massaquoi and McCarley’s LCRIM/I
model to classify sleep stages, (a) REM-ON (X) (green) and REM-
OFF(X) (blue) activity, (b) Process S (green) and SWA (blue), (c)
Excitatory activity E, and (d) sleep stages. Thresholds used for scor-
ing sleep stages (red-dashed lines).


and


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−


fcw (SWA− SWAL)E,


(F.13)
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Table F.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).


Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10


and


SWA = SWA(1 + n(t)). (F.14)


The equations for the Slow REM model are similar to those of the Massaquoi and Mc-


Carley model but without the saturation functions. The equation for REM promoting


neuron activity is thus,


Ẋ = (aX − bXY )dc, (F.15)


where dc is a sinusoidal term with a period of 24 hours,


dc = 1.55 + 0.8sin(0.0467t+ 4), (F.16)
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where t is measured in units rather than seconds with 1 unit equal to 10.7 minutes.


The equation for the REM inhibiting neuron activity is,


Ẏ = −cY + d(X + eE)Y. (F.17)


The equation for the fast REM model is,


ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt), (F.18)


where w(t) in the equation is typically the excitation term E(t). An example of the


output of the model when noise events are occurring is shown in Figure F.2. The


model parameter values are listed in Table F.2. The following rules were used for


assigning NREM sleep stages:


1. If SWA >2.0 score as Stage 3/4,


2. If SWA <0.3 score as Stage Wake/1 ,


3. If SWA <1 and E >0.5 score as Stage Wake/1,


4. All other times when REM sleep is not occurring are scored as Stage 2 sleep.


The following rules were used to assign REM sleep stages according to the value of x


of the fast REM model:


1. If x >0 score as Phasic REM sleep,


2. If x <-2 and an excitation is occurring score as Wake,


3. All other times are scored as Tonic REM sleep.


REM sleep periods were defined by the level of REM promoting activity X in the


slow REM model. When X is greater than 1, REM sleep periods was considered to


be occurring.
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Figure F.2. An example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM, REM
sleep period indicator, fast REMmodel and the spontaneous and noise
induced excitation terms.
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Table F.2. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution and + parameters varied accord-
ing to a uniform distribution, x parameter varied with an exponential
distribution.


SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean


std. dev 0.67 std. dev 0.1 inter-arr
6.1 min


*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min


*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min


SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0


fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65


fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0


rc 0.4 +Yo min 0.5
max 3.0


n(t) mean 0
std. dev 0.2
skewness 0.53
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Appendix G. Code for Nonlinear Dynamic Model


The following is the Matlab program for the nonlinear dynamic sleep model that was


developed as part of this research. The components of the model are the slow and fast


REM model, slow wave activity model, and spontaneous and aircraft noise induced


excitation terms. Based on these components sleep stages are predicted. In Table


G.1 is a list of subroutines in this program and the functions they call.


Table G.1. Subroutines of the nonlinear dynamic model.


Subroutine Name Is Called By Makes Calls to
Input Parameters Model Main None
Create Aircraft Input Model Main None
Generate Random Input Variables Model Main None
Create Spontaneous Model Main None
Create Aircraft Awakenings Model Main None
E Calc Model Main None
REM Calc Model Main None
Create REM INPUT Model Main None
SWA Calc Model Main None
NREM Sleep Stage Classify Model Main None
Fast REM Main Model Main calc tonic phasic int


Phasic Tonic Calc
Phasic Tonic Calc Fast REM Main None
calc tonic phasic int Fast REM Main None
Calc 30 Sec Stages Model Main None


The following are the inputs to the model:


1. optionN: which is used if a noise scenario is being run,


2. position: the x,y grid position,


3. LAMAX: the maximum noise levels of sound events during the night. This term
is a vector and its length is equal to the length of the number of events during
the night,


4. Numpeople: is the number of people to simulate for each location point,


5. Timing: the time of each noise event during the night in minutes.
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An example of an input to the model is the following if the events were of all the


same noise level during the night,


optionN={’Noise’};%%Run for noise events


position=[0 0];%%X,Y position


LAMAX=40*ones(1,16);%%LAMAX and timing must be equal in length


Numpeople=50;%%Number of people at grid point


Timing=30:24:402;%%Time of events in minutes


Function Model Main: This is the main code for the nonlinear dynamic model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Model_Main


%%%Main code for the nonlinear dynamic sleep model


%%%Note 1 Unit in the model is equal to 10.7 minutes


%%%


%%%Input: LAMAX-noise level for each nighttime event


%%% Timing-timing of aircraft events in minutes


%%% Numpeople-number of people at a location point


%%% optionN: is used if a noise scenario is being run


%%% position: x,y location for grid point


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function Model_Main(LAMAX,Timing,Numpeople,optionN,position)


warning off;


len=48;


Fs=640;


[Data]=Input_Parameters;%%Obtain model parameter values


if strcmp(optionN,’Noise’)


%%Run simulation once for baseline conditions and once for


%%Noise event conditions


Repeat=2;


%%Create aircraft noise input


[Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople);


else


Repeat=1;


end


for ink=1:Numpeople


display(ink)


time=0:1/Fs:len;
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%%Relationship between NREM excitation amplitude


%%and fast REM sleep excitation amplitude


REM=[.5 1.45];


NREM=[.5 5];


pr=polyfit(NREM,REM,1);


%%Spontaneous awakenings


[Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr);


%%Limit amplitude of REM and NREM excitation terms


if max(NtREM)>1.45


I=find(NtREM>1.45);


NtREM(I)=1.45;


end


if max(Nt)>5


I=find(Nt>5);


Nt(I)=5;


end


[Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs);


for ii=1:Repeat


tic


if strcmp(optionN,’Noise’) && ii==2


%%Create excitation term (N(t)) for


%%noise-induced awakenings


[aircraftREM aircraft]=...


Create_Aircraft_Awakenings(Data,Timing,len,Fs,pr,ink,Events);


%%Add spontaneous and noise-induced excitation terms


Nt=Nt+aircraft;


NtREM=NtREM+aircraftREM;


if max(NtREM)>1.45


I=find(NtREM>1.45);


NtREM(I)=1.45;


end


if max(Nt)>5


I=find(Nt>5);


Nt(I)=5;


end


end


%%Low-pass filter N(t) to obtain E(t)


[T,Wake]=E_Calc(Nt,Fs,len);


[T,WakeREM]=E_Calc(NtREM,Fs,len);


%%Calculate REM promoting (X) and


%%REM inhibiting activity (Y)


[T,X]=REM_Calc(Data,Wake,Fs,len);


REM=X(:,1);%%REM-ON activity
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%%Create REM sleep indicator (REMT)


[REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len);


toc


%%Calculate SWA activity


tic


[T,X]=SWA_Calc(Data,REM_NEW,Wake,Fs,len);


SWA=X(:,1).*(1+nt(1:length(X(:,1))))’;


toc


%%Assign 1 second NREM sleep stages based on SWA and E(t)


Est_Stage=zeros(1,960);


tic


[Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW);


%%Calculate Fast REM activity and assign 1 second REM sleep stages


[Est_Stage]=Fast_REM_Main(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM);


%%Calculate 30 second sleep stages


[tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage);


toc


%%Calculate duration of each sleep stage


for jj=1:4


I=find(tempstage(1:960)==jj);


dur_stage(jj,ink,ii)=length(I)/2;


end


%%Calculate percent of events individual awakened


%%to during the night


if strcmp(optionN,’Noise’)


perawake1=0;


for jj=1:length(Timing)


I=find(tempstage(Timing(jj)*2:Timing(jj)*2+3)==1);


if length(I)>0 && tempstage(Timing(jj)*2-1)~=1


perawake1=perawake1+1;


end


end


perawake(ink,ii)=perawake1/length(Timing);


end


Full_Stages(1:length(tempstage30plot),ink,ii)=tempstage30plot’;


end


%%Calculate difference in sleep stage duration


%%and probability of awakening at the time of noise events


%%for (1) baseline no-noise nights and (2)


%%nights with aircraft noise exposure


if strcmp(optionN,’Noise’) && ii==2


change(1:4,ink)=dur_stage(:,ink,2)-dur_stage(:,ink,1);


changeperawake(ink)=(perawake(ink,2)-perawake(ink,1))


end
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end


%%Save data


if strcmp(optionN,’Noise’)


total_awake(1)=...


sum(perawake(1:Numpeople,1)*length(Timing))/(Numpeople*length(Timing));


total_awake(2)=...


sum(perawake(1:Numpeople,2)*length(Timing))/(Numpeople*length(Timing));


totalchangeper=mean(changeperawake)’;


totalchangedur(1:4)= mean(change’);


save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)


save([’Ntotalchangeper_LAmax’ num2str(LAMAX(1)) ....


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangeper’)


save([’Ntotalchangedur_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangedur’)


save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)


save([’Nchange_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’change’)


save([’Nchangeperawake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’changeperawake’)


end


save([’NFull_Stages_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’Full_Stages’)


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Input Parameters: This function contains the values for the parameters of


the model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Input_Parameters


%%%Contains values of most model inputs-these values are based on the 1999


%%%UK data


%%%


%%%Output: Data-contains model parameters used


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data]=Input_Parameters
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%%Noise n(t) model parameters


Data.ntmean=0;


Data.ntstd=0.20;


Data.ntskew=0.5269;


Data.ntkurtosis=3;


%%wt/E model parameters


%%divide by 10.7 to convert parameters from


%%minutes to units


Data.wtintarr=6.1/10.7;


Data.wtstddur=0.20/10.7;


Data.wtmeandur=0.5/10.7;


Data.wtmindur=0.05/10.7;


Data.wtminamp=0.5;


Data.wtmaxamp=5.0;


Data.wtmeanamp=3.0;


Data.wtstdamp=0.65;


%%Slow REM model parameters


Data.amean=0.47;


Data.astd=0.1;


Data.bmean=0.41;


Data.bstd=0.1;


Data.cmean=1.4;


Data.cstd=0.15;


Data.dmean=1.83;


Data.dstd=0.15;


Data.yomin=0.5;


Data.yomax=3;


Data.xomin=0.15;


Data.xomax=0.3;


%%SWA model parameters


Data.SWAL=0.2;


Data.fc=2.0;


Data.rc=0.4;


Data.fcw=2*Data.fc;


Data.Somean=3.75;


Data.Sostd=0.67;


Data.Somin=2.3;


Data.Somax=5.8;


Data.gcmax=0.05;


Data.gcmin=0.008;


Data.gcstd=0.011;


Data.gcmean=0.0320;


Data.SWAomin=0.13;


Data.SWAomax=1.51;


Data.SWAomean=0.78;


Data.SWAostd=0.29;


%%%----------------------------------------------------------------------%%
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%%%----------------------------------------------------------------------%%


Function Generate Random Input Variables: The following program is used to gen-


erate all model parameters for one person night based on uniform and Gaussian


distributions.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Generate_Random_Input_Variables


%%%Code for generating all random inputs to the model


%%%


%%%Input: Data-contains model parameters used


%%% len-length of night that is being simulated


%%% Fs-sampling rate


%%%


%%%Output: Data-contains model parameter values for subject


%%% nt-noise term applied to SWA


%%% initRx-initial xo values for fast REM model


%%% initRy-initial yo values for fast REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs)


%%Minimum and maximum values are used to


%%limit current range of parameters


%%note: acceptable range of parameters will be


%%further explored in the future


%%SWA and Process S model parameters


Data.SWAo=normrnd(Data.SWAomean,Data.SWAostd,1,1);


if Data.SWAo<Data.SWAomin


Data.SWAo=Data.SWAomin;


elseif Data.SWAo>Data.SWAomax


Data.SWAo=Data.SWAomax;


end


Data.So=normrnd(Data.Somean,Data.Sostd,1,1);


if Data.So<Data.Somin


Data.So=Data.Somin;


elseif Data.So>Data.Somax


Data.So=Data.Somax;


end


Data.gc=normrnd(Data.gcmean,Data.gcstd,1,1);


if Data.gc<Data.gcmin


Data.gc=Data.gcmin;


elseif Data.gc>Data.gcmax


Data.gc=Data.gcmax;
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end


%%More restrictive on range for


%%slow REM sleep models as certain


%%combinations of a,b,c,d will result


%%in no REM cycling


%%Slow REM sleep model parameters


Data.a=normrnd(Data.amean,Data.astd,1,1);


if Data.a<Data.amean-Data.astd


Data.a=Data.amean-Data.astd;


elseif Data.a>Data.amean+Data.astd


Data.a=Data.amean+Data.astd;


end


Data.b=normrnd(Data.bmean,Data.bstd,1,1);


if Data.b<Data.bmean-Data.bstd


Data.b=Data.bmean-Data.bstd;


elseif Data.b>Data.bmean+Data.bstd


Data.b=Data.bmean+Data.bstd;


end


Data.c=normrnd(Data.cmean,Data.cstd,1,1);


if Data.c<Data.cmean-Data.cstd


Data.c=Data.cmean-Data.cstd;


elseif Data.c>Data.cmean+Data.cstd


Data.c=Data.cmean+Data.cstd;


end


Data.d=normrnd(Data.dmean,Data.dstd,1,1);


if Data.d<Data.dmean-Data.dstd


Data.d=Data.dmean-Data.dstd;


elseif Data.d>Data.dmean+Data.dstd


Data.d=Data.dmean+Data.dstd;


end


%%Slow and Fast REM sleep model initial conditions


Data.yo=Data.yomin+(Data.yomax-Data.yomin)*rand(1,1);


Data.xo=Data.xomin+(Data.xomax-Data.xomin)*rand(1,1);


initRx=-1+2*rand(1,10);


initRy=-1+2*rand(1,10);


%%Random noise term n(t)


cc=pearsrnd(Data.ntmean,Data.ntstd,Data.ntskew,Data.ntkurtosis, 1,len*Fs);


[b,a]=butter(3,10/(Fs/2));


nt=filter(b,a,cc);


nt=nt*(max(cc)/max(nt));


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Create Aircraft Input: The following program is used to generate a matrix


which contains, for each person and aircraft event, the amplitude of the associated


excitation based on the maximum noise level of the event.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Aircraft_Input


%%%Code for assigning excitation values for aircraft events


%%%for every subject


%%%


%%%Input: Data-contains model parameters used


%%% LAMAX-noise level for each nighttime event


%%% Numpeople-number of people at location point


%%%


%%%Output: Events-amplitudes of excitation N for all subjects for all


%%% aircraft events during the night


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople)


%%linear relationship between noise level and


%%fraction responding


Noise=[35 80];%%Lamax level


per=[.17 .55];%%percent nonzero response(above baseline)


p=polyfit(Noise,per,1);


%%Cycle through for each noise event


for ii=1:length(LAMAX)


%%These are nonzero responses hence value not zero


rel=p(1)*LAMAX(ii)+p(2);


val = normrnd(Data.wtmeanamp,Data.wtstdamp,floor(Numpeople*rel),1);


I=find(val<Data.wtminamp);


%%Limit range of excitations


if length(I)>0


val(I)=val;


end


I=find(val>Data.wtmaxamp);


if length(I)>0


val(I)=Data.wtmaxamp;


end


%%Nonzero and zero aircraft responses


Total=[val(:); zeros(Numpeople,1)];


Total=Total(1:Numpeople);


rr=randperm(Numpeople);


for jj=1:length(rr)
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Events(jj,ii)=Total(rr(jj));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Create Spontaneous: The following program is used to generate N(t) for


spontaneous awakenings for one subject night.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Spontaneous


%%%Code for generating spontaneous excitations N(t)


%%%


%%%Input: Fs-sampling rate


%%% len-length of night that is being simulated


%%% Data-contains model parameters used


%%% pr-relationship between noise amplitudes during slow and


%%% fast models


%%%


%%%Output: Nt-amplitudes of excitation N(t) for slow models


%%% NtREM-amplitudes of excitation N(t) for fast REM model


%%%


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr)


delta=1/Fs;


time=0:delta:len;


Nt=zeros(1,1.1*len*Fs);


NtREM=zeros(1,1.1*len*Fs);


%%Create vectors of amplitudes and durations


Amp=normrnd(Data.wtmeanamp,Data.wtstdamp,1,length(time)*1.1);


I=find(Amp < Data.wtminamp);


Amp(I)=Data.wtminamp;


duration=normrnd(Data.wtmeandur,Data.wtstddur,1,length(time)*1.1);


I=find(duration < Data.wtmindur);


duration(I)=Data.wtmindur;


%%Time between pulses are exponentially distributed


int_arr=exprnd(Data.wtintarr,1,length(time)*1.1);


total_dur=0;


ii=1;


%%Create N(t) for slow models


%%Assuming inter-arrival time is between the start of each pulse


while (total_dur <len)
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beg=round(sum(int_arr(1:ii))/delta);


if beg==0


beg=1;


end


fin=beg+round(duration(ii)/delta);


Nt(beg:fin)=Nt(beg:fin)+Amp(ii).*ones(1,round(duration(ii)/delta)+1);


%%Create N(t) for fast models


Aramp=pr(1)*Amp(ii)+pr(2);


NtREM(beg:fin)=NtREM(beg:fin)+Aramp.*ones(1,round(duration(ii)/delta)+1);


ii=ii+1;


total_dur=sum(int_arr(1:ii))+duration(ii);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Create Aircraft Awakenings: The following program is used to generate


N(t) for aircraft noise events.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Aircraft_Awakenings


%%%Code for creating excitations N(t) associated with the occurrence


%%%of aircraft events


%%%


%%%Input: Data-contains model parameters used


%%% Timing-timing of aircraft events in minutes


%%% len-length of night that is being simulated


%%% Fs-sampling rate


%%% pr-relationship between noise amplitudes during slow and


%%% fast models


%%% ink-subject number


%%% Events-amplitudes of excitation N(t) for all subjects for all


%%% events during the night


%%%


%%%Output: aircraftREM-amplitudes of excitation N(t) for fast REM model for


%%% aircraft events


%%% aircraft-amplitudes of excitation N(t) for slow models


%%% aircraft events


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [aircraftREM aircraft]=Create_Aircraft_Awakenings(Data,Timing,...


len,Fs,pr,ink,Events)


aircraft=zeros(1,1.1*len*Fs);


aircraftREM=zeros(1,1.1*len*Fs);


for ii=1:length(Timing)


if Events(ink,ii)>0


dur=normrnd(Data.wtmeandur,Data.wtstddur,1,1);
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if dur<Data.wtmindur


dur(1)= Data.wtmindur;


end


%%Create N(t) for slow models


beg=round((Timing(ii)/10.7)*Fs);


fin=beg+round(dur*Fs);


aircraft(beg:fin)=aircraft(beg:fin)+Events(ink,ii).*ones(1,round(dur*Fs)+1);


%%Create N(t) for fast models


Aramp=pr(1)*Events(ink,ii)+pr(2);


aircraftREM(beg:fin)=aircraftREM(beg:fin)+Aramp.*ones(1,round(dur*Fs)+1);


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function E Calc: The following program is used to generate E(t) by low pass filtering


N(t), which is the summation of the aircraft noise induced and spontaneous excitation


terms.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function E_Calc


%%%Code for low-pass filtering the excitation term N(t)


%%%


%%%Input: Wake-this is the Poisson Noise (N(t))


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: T-time


%%% X-low pass filtered noise process E(t)


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=E_Calc(Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,Wake,Fs),1/Fs:1/Fs:len,[.001],options);


end


function dxdt=fun(t,x,Wt,Fs)


dxdt=zeros(1,1);


time=(0:1:(length(Wt)-1))/Fs;


w=interp1(time,Wt,t);


dxdt(1)=(64)*w-(64)*x(1);%%Lowpass below 10 seconds


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function REM Calc: The following program is used to calculate the slow REM ac-


tivity, both X REM promoting activity and Y REM inhibiting activity.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function REM_Calc


%%%Code for calculating slow REM activity-based on the Massaquoi and


%%%McCarley model.


%%%


%%%Reference:S. G. Massaquoi and R. W. McCarley. Extension of the limit


%%%cycle reciprocal interaction model of REM cycle control. An integrated


%%%sleep control model, 1:138-143,1992.


%%%


%%%Input: REM_Param-data for REM model


%%% Wake-excitation term E(t)


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: T-time


%%% X-slow REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=REM_Calc(REM_Param,Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,REM_Param,Wake,Fs),1/Fs:1/Fs:len,...


[REM_Param.xo REM_Param.yo],options );


end


function dxdt=fun(t,x,REM_Param,Wake,Fs)


dxdt=zeros(2,1);


time=(0:1:(length(Wake)-1))/Fs;


w=interp1(time,Wake,t);


dc2=(1.55+0.8*sin(.0467*t+4));%%24 hour circadian variation


dc=1;


%%REM-ON (X)


dxdt(1)=REM_Param.a*x(1)*dc2-x(1)*x(2)*REM_Param.b*dc2;


%%REM-OFF (Y)


dxdt(2)=-x(2)*REM_Param.c*dc+dc*(x(1)+(0.25/max(Wake))*w)*x(2)*REM_Param.d;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Create REM INPUT: The following program is used to calculate the start


and end of each REM period based on the level of X, REM-promoting activity, from


the slow REM model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_REM_INPUT


%%%Program for determining the beginning and end of each REM period


%%%based on the level of slow REM activity


%%%%


%%%Input: REM-slow REM model activity


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: st_new-start of each REM period


%%% ff_new-end of each REM period


%%% REM_NEW-REM-indicator, 1 during REM sleep and zero during NREM


%%% sleep


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len)


ii=1;


if max(REM)<1.5


valgreat=.5*(max(REM)-min(REM));


else


valgreat=1;


end


%%Calculate Multipliers


tempShift=REM;


Ind=find(tempShift>=valgreat);


st(ii)=Ind(1);


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift<valgreat);


maxval=max(tempShift(1:Ind(1)));


ff(ii)=Ind(1)+st(ii);


sc(ii)=1.5/maxval;


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift>=valgreat);


while(ff(ii)<len*Fs && length(Ind)>0)


ii=ii+1;


st(ii)=Ind(1)+ff(ii-1);


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift<valgreat);


if length(Ind)>0


maxval=max(tempShift(1:Ind(1)));


ff(ii)=Ind(1)+st(ii);


sc(ii)=1.5/maxval;
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tempShift=tempShift(Ind(1):length(tempShift));


else


ff(ii)=len*Fs ;


maxval=max(tempShift(1:length(tempShift)));


sc(ii)=1.5/maxval;


end


Ind=find(tempShift>=valgreat);


end


%%Cycle through and find start points for the scaled REM signal


REM_NEW=zeros(1,length(REM));


for ii=1:length(st)


if ii==1


temp=REM(1:ff(1)+(st(2)-ff(1))/2)*sc(ii);


Ind=find(temp>=1);


REM_NEW(Ind)=1;


st_new(ii)=Ind(1);


ff_new(ii)=Ind(length(Ind));


elseif ii<length(st)


temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:ff(ii)+(st(ii+1)-ff(ii))/2)*sc(ii);


Ind=find(temp>=1);


REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;


st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


else


temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:length(REM))*sc(ii);


Ind=find(temp>=1);


REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;


st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function SWA Calc: The following program is used to calculate the slow wave activity


(SWA) and Process S.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function SWA_Calc


%%%Program for calculating slow wave activity based on Achermann et al.’s


%%%model


%%%


%%%Reference: P. Achermann, D. J. Dijk, D. P. Brunner and A. A. Borbly. A


%%%model of human sleep homeostasis based on EEG slow-wave activity:


%%%Quantitative comparison of data and simulations. Brain Research


%%%Bulletin. 31: 97-113, 1993.


%%%
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%%%Input: Param-model parameters


%%% REM-indicator of REM periods


%%% Wake-aircraft and spontaneous excitations, E(t)


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%


%%%Output: T-time vector


%%% X-SWA and Process S


%%%


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=SWA_Calc(Param,REM,Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,Param,REM,Wake,Fs),1/Fs:1/Fs:len,...


[Param.SWAo Param.So],options);


end


function dxdt = fun(t,x,Param,REM,Wake,Fs)


dxdt=zeros(2,1);


timew=(0:1:(length(Wake)-1))/Fs;


timeR=(0:1:(length(REM)-1))/Fs;


w=interp1(timew,Wake,t);


R=interp1(timeR,REM,t);


%%dxdt(1) and x(1) is for SWA (slow wave activity)


%%dxdt(2) and x(2) is for process S


dxdt(1)=(Param.rc)*x(1)*x(2)*(1-x(1)/x(2))-(Param.fc)*(x(1)-Param.SWAL)*R...


-(x(1)-Param.SWAL)*(Param.fcw)*w;


dxdt(2)=-Param.gc*x(1);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function NREM Sleep Stage Classify: The following program is used to classify


NREM sleep stages based on the level of SWA and the excitation term E.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function NREM_Sleep_Stage_Classify


%%%Program for calculating NREM sleep stages based on SWA activity


%%%and excitation values


%%%


%%%Input: Est_Stage-empty vector for sleep stage assignment


%%% SWA-Slow wave activity


%%% Wake-excitation term


%%% REM-NEW-indicator of REM periods


%%%


%%%Output: Est_Stage-assigned NREM sleep stages
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW)


for ii=1:length(SWA)


if REM_NEW(ii)==0


if SWA(ii)>=2.0


Est_Stage(ii)=3;%%Stage 3/4


elseif SWA(ii)<1.0 && Wake(ii)>=.5


Est_Stage(ii)=1;%%Stage Wake/S1


elseif SWA(ii)<0.3


Est_Stage(ii)=1;%%Stage Wake/S1


else


Est_Stage(ii)=2;%%Stage 2


end


else


Est_Stage(ii)=5;%%Temporary place holder


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Fast REM Main: The following program is the main program for calculating


fast REM activity.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Fast_REM_Main


%%%Program for calculating fast REM activity


%%%


%%%


%%%Input: Est_Stage-vector containing sleep stages


%%% initRx-initial xo values for fast REM model


%%% initRy-initial yo values for fast REM model


%%% Fs-sampling rate


%%% st_new-start of each REM period


%%% ff_new-end of each REM period


%%% WakeREM-excitation term for fast REM model


%%%


%%%Output: Est_Stage-assigned sleep stages


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage]=Fast_REM_Main...


(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM)


%%Moving unstable equilibrium position


Eq_Wake=2-(WakeREM);


%%Cycle through for each REM period
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for ii=1:length(st_new)


Wake_Seg=Eq_Wake(st_new(ii):ff_new(ii));


%%t of fast REM model is on a different scale


t=0:1/Fs:(ff_new(ii)-st_new(ii))/Fs;


tnew=0:1/(10.7*Fs*5):(ff_new(ii)-st_new(ii))/Fs;


Wake_Seg_sp = spline(t,Wake_Seg,tnew);


lenT=(ff_new(ii)-st_new(ii)+1)/Fs*10.7*5;


initREM(1)=initRx(ii);


initREM(2)=initRy(ii);


delta=.06;


w=0.3*2*pi;


A=0.50;


%%Calculate Duffing oscillator solution


[T,X]=Phasic_Tonic_Calc(delta,w,Wake_Seg_sp,A,Fs,lenT-1,initREM);


%%Initial assignment of REM sleep stages


%%1-Tonic, 0-Phasic, -1-Wake


X=X(:,1);


REM_Stage=0;


I=find(X>=0);


REM_Stage(I)=1;


I=find(X<0 & X>-2);


REM_Stage(I)=0;


I=find(X<=-2);


for jj=1:length(I)


if Wake_Seg_sp(I(jj))<1.9


REM_Stage(I(jj))=-1;


else


REM_Stage(I(jj))=0;


end


end


[st, ff]=calc_tonic_phasic_int(REM_Stage);


REM_Stage_New=REM_Stage;


%%Correction for Tonic REM


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)


if min(X(st(jj):ff(jj)))>=-.25


REM_Stage_New(st(jj):ff(jj))=1;


end


end


end


[st, ff]=calc_tonic_phasic_int(REM_Stage_New);


%%Tonic REM period less than 15 seconds is equal to previous stage


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)
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if ff(jj)-st(jj)<.25*5*Fs && st(jj)>1


REM_Stage_New(st(jj):ff(jj))=REM_Stage_New(st(jj)-1);


end


end


end


%%Correct for Phasic period in which max is not near 0.5


TempREM_Phasic=ones(1,length(REM_Stage_New));


I=find(REM_Stage_New==1);


TempREM_Phasic(I)=zeros(1,length(I));


[st, ff]=calc_tonic_phasic_int(TempREM_Phasic);


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)


if max(X(st(jj):ff(jj)))<.25


REM_Stage_New(st(jj):ff(jj))=0;


end


end


end


%%Correct if awakening started during noise event-find its end


tempEvents=ones(1,length(REM_Stage_New));


I=find(Wake_Seg_sp<1.9);


tempEvents(I)=zeros(1,length(I));


[stN, ffN]=calc_tonic_phasic_int(tempEvents);


if ffN(1)~=0 && ffN(length(ffN))<length(X)


for jj=1:length(ffN)


if X(ffN(jj))<-2 && X(ffN(jj)+1)<-2


I=find(X(ffN(jj):length(X))>-2);


if length(I)~=0


REM_Stage_New(ffN(jj):ffN(jj)-1+I(1))=-1;


end


end


end


end


%%Determine sleep stage- five points for every one point in slow models.


stageREM=[-1 0 1];


REM_StageFinal=0;


for jj=1:length(X)/(5*10.7)


for kk=1:3


I=length(find(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7)==stageREM(kk)));


perseg(kk)=I/length(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7));


end


I=find(perseg==max(perseg));


REM_StageFinal(jj)=stageREM(I(1));


if REM_StageFinal(jj)==-1


Est_Stage(st_new(ii)+jj-1)=1;%%Stage Wake/S1


else


Est_Stage(st_new(ii)+jj-1)=5;%%Stage REM


end


end
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end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Phasic Tonic Calc: The following program is used to calculate the fast REM


activity based on the Duffing model with the 5th order stiffness term.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Phasic_Tonic_Calc


%%%Program for Duffings system with a 5th order stiffness term


%%%


%%%Reference:G. X. Li and F. C. Moon. Criteria for chaos of a three-well


%%%potential oscillator with homoclinic and heteroclinic orbits. Journal


%%%of Sound and Vibration. 136(1): 17-34, 1990.


%%%


%%%Input: delta-damping


%%% w-drive frequency


%%% Wake-spontaneous and aircraft excitations


%%% A-drive amplitude


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%% init-inital conditions


%%%


%%%Output: X-fast REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=Phasic_Tonic_Calc(delta,w,Wake,A,Fs,len,init)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,X) fun(t,X,delta,w,Wake,A,Fs),1/Fs:1/Fs:len,init,options);


end


function dxdt=fun(t,X,delta,w,Wake,A,Fs)


time=(0:1:(length(Wake)-1))/Fs;


m=interp1(time,Wake,t);


dxdt=zeros(2,1);


dxdt(1)=X(2);


dxdt(2)=-1*((X(1)-0.5)*(X(1)-0))*(X(1)+0.5)*(X(1)+m)*(X(1)+2.5)...


-delta*X(2)+A*cos(w*t);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Phasic Tonic Calc: The following program is used to calculate the inter-


arrival times of Phasic or Tonic REM sleep.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Phasic_Tonic_Calc


%%%Program for determing start and end points of certain activity, for


%%%example calculating the inter-arrival time of phasic activity


%%%


%%%Input: REM_Dens-fast REM model sleep stages


%%%


%%%Output: st-start


%%% ff-end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [st, ff]=calc_tonic_phasic_int(REM_Dens)


st=0;


ff=0;


ink(1:2)=1;%%ink(1) start, %%ink(2)=fin


for kk=1:length(REM_Dens)


if REM_Dens(kk)==0 && kk <length(REM_Dens)


if kk==1


st(ink(1))=kk;


ink(1)=ink(1)+1;


elseif REM_Dens(kk-1)~=0


st(ink(1))=kk;


ink(1)=ink(1)+1;


end


if REM_Dens(kk+1)~=0


ff(ink(2))=kk;


ink(2)=ink(2)+1;


end


elseif REM_Dens(kk)==0 && kk ==length(REM_Dens)


if REM_Dens(kk-1)~=0


st(ink(1))=kk;


ff(ink(2))=kk;


ink(1)=ink(1)+1;


ink(2)=ink(2)+1;


else


ff(ink(2))=kk;


ink(2)=ink(2)+1;


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Calc 30 Sec Stages: The following program is used to calculate 30 second


sleep stages.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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%%%Function Calc_30_Sec_Stages


%%%Program for calculating 30 second sleep stages


%%%


%%%Input: Est_Stage-1 second sleep stages


%%%


%%%Output: tempstage-30 second sleep stages


%%% tempstage30plot-30 second sleep stages for plotting


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage)


val=[1 2 3 5];


tempstage=0;


tempstage30plot=0;


for ii=1:length(Est_Stage)/(30)


for kk=1:length(val)


I=find(Est_Stage((ii-1)*30+1:ii*30-1)==val(kk));


per(ii,kk)=length(I)/(30);


end


maxval=max(per(ii,:));


I=find(per(ii,:)==maxval);


tempstage(ii)=I(1);


if tempstage(ii)==4


tempstage30plot(ii)=3;


elseif tempstage(ii)==3


tempstage30plot(ii)=1;


elseif tempstage(ii)==2


tempstage30plot(ii)=2;


elseif tempstage(ii)==1


tempstage30plot(ii)=4;


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Appendix H. Code for Feature Extraction and Sleep Stage Scoring


The following is the Matlab program used for extracting different features of the


polysomnography data and for scoring sleep stages. The first part of the program


extracts characteristics such as the occurrence of movement artifacts, level of EMG


activity, correlation of EOG channels, power in EEG frequency bands, and the fre-


quency with the lowest decay rate identified using Auto-Regressive modeling. An


example of some of the features that were extracted for one subject night is shown in


Figure H.1. Sleep stages are assigned for each second based on the extracted features


using a classification algorithm that was developed and the probability of being in


different sleep stages was calculated for each 30 seconds of scored sleep stages, an


example for one subject night is shown in Figure H.2. An overview of the subroutines


of the program is in Table H.1.


Table H.1. Subroutines of the feature extraction code and sleep stage
scoring algorithm.


Subroutine Name Is Called By Makes Calls to
Movement Artifacts Threshold Main Feature Calc None
Dominant Band AR Main Feature Calc None
Calc Correlation Main Feature Calc None
RLS Calc Main Feature Calc None
Amplitude Time Exceeded Main Feature Calc None
Per Power Main Feature Calc None
Power Welch Main Feature Calc None
Classify Stage None Calc REM Periods
Calc REM Periods Classify Stage None


Function Main Feature Calc: This is the main program for extracting features of


polysomnography data for later use. The data is saved and then imported into the


separate sleep stage classification program.
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Figure H.1. An example of some of the characteristics that are ex-
tracted including; (a) the percent of an epoch occupied by movement
artifacts, (b) the percent of an epoch occupied by Slow Wave Sleep
(SWS), (c) the frequency that has the lowest decay rate identified us-
ing an AR(4) model, (d) correlation between the right and left EOG
channels, and (e) the root-mean-square (RMS) of the EMG activity
for each epoch.







375


0 50 100 150 200 250 300 350 400 450
0


0.5


1
P


ro
b
.


W
a
k
e
/S


1


0 50 100 150 200 250 300 350 400 450
0


.5


1


P
ro


b
.


S
2


0 50 100 150 200 250 300 350 400 450
0


0.5


1


P
ro


b
.


S
3
/S


4


0 50 100 150 200 250 300 350 400 450
0


0.5


1


Time (min)


P
ro


b
.


R
E


M


Figure H.2. Probability of being in Stage Wake/S1, Stage 2, Stage
3/4, and REM sleep calculated using the developed sleep stage scoring
algorithm.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Main_Feature_Calc


%%%Main code for extracting and saving signal characteristics for later


%%%analysis


%%%Input: subject_num-subject number


%%% night_num-night number


%%% Seg_Len-length of moving signal (i.e. usually 15 or 30 seconds)


%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)


%%% Fs-sampling rate


%%% correct_option-’correct’ if EKG and EOG artifact corrections


%%% are going to be applied to the EEG data


%%% EKG_File-indicates whether the EKG file is usuable or not for


%%% correction, equal to 0 if it is fine to use, 1 if it contains


%%% artifacts


%%%


%%%Output: The data is saved as .mat files within this


%%% program


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function Main_Feature_Calc...


(subject_num, night_num,Seg_Len,inc_Len,Fs,correct_option,EKG_File)


%%Read in the Physiological Data from 1999 UK dataset


choice={’C4-A1’,’C3-A2’,’EMG’,’EOG-L’,’EOG-R’,’EKG’,’Stages’};


[Signals, Stages, Missing_Data]=Load_Signals(subject_num,night_num,choice);


%%For EOG and EKG Corrections


lambda = .9999; %%Forgetting Factor


delta = .01; %%Initial Value


M=3;%%Filter Order


%%Indentify movement artifacts


%%ART indicates whether a 1 second epoch was above the threshold (1 there


%%is an artifact and 0 there is not an artifact.)


%%Cycle through twice for both EEG channels


for ii=1:2


[ART_Thres(:,ii),ART_Thres_onesec(:,ii)]...


=Movement_Artifacts_Threshold(Signals(:,ii),Fs,inc_Len);


end


%%Frequency Bands


bandHigh= [ 2 4.5 4.5 8 12 16 25 35 45 15 14 45];


bandlow= [.5 2 .5 4.5 8 12 16 25 35 11 12 .5];


%%Save AR Model for every increment


Band=[.5 45];


Size=1;


for jj=1:2


[Damp_AR(:,jj) Freq_AR(:,jj)]=Dominant_Band_AR...


(Signals(:,jj),Band,floor(length(Signals(:,1))/(Fs)),Size,inc_Len,Fs);
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end


%%Incase I want to run for multiple segment lengths


for ink=1:length(Seg_Len)


%%Preallocate Space


SWS=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


ART=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


Pow=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);


Pow_Welch=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);


EOG_Corr=zeros((length(ART_Thres(:,1)))-Seg_Len,1);


maxEOG=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


EMG_RMS=zeros((length(ART_Thres(:,1)))-Seg_Len,1);


K_Complex=zeros((length(ART_Thres(:,1)))-Seg_Len,30,1);


inc=1;


for kk=1:(length(ART_Thres(:,1)))-Seg_Len


display(kk)


for jj=1:2%%Cycle twice for both EEG channels


Seg=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len(ink)*Fs,jj);


ART(kk,jj)=sum(ART_Thres((kk-1)*1+1:(kk-1)*1+Seg_Len(ink),jj));


EKG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,6);


EOGL=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,4);


EOGR=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,5);


EMG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,3);


if jj==1;%%Don’t need this step for both cycles through


Band=[.5 5];


Thresholds=[25 250];


%%Calculate EOG_Corr


[EOG_Corr(kk) maxEOG(kk,1:2)]=Calc_Correlation...


(EOGL,EOGR,Thresholds,Band,Fs);


%%Calculate EMG RMS


EMG_RMS(kk)=sqrt(mean(abs(EMG).^2));


end


%%If the EEG signal is going to be corrected for EKG and EOG artifacts


if strcmp(correct_option,’correct’)


%%if EKG signal is usuable && low amount of movement artifacts


if EKG_File==0 && ART(kk,jj)<15


%%For EKG Correction


%%Determine if segment contains EKG


[CC]=...


Calc_Correlation(Seg,EKG,[0 1.1*max([max(Seg) max(EKG)])],[.5 40],Fs);


if abs(CC)>=.2 %%If EEG and EKG are Correlated


%%EKG input signal measured in mV, EEG is measured in micro volts


u=EKG*1000;


d=Seg;%%Contaminated/desired EEG signal


%%use RLS to correct EEG signal


%%"Fixed Signal" is the output error of RLS


[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);


end


end
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%%For EOG Correction


%%Determine if segment contains eye mvmts


%%if eye Movement && low amount of EEG artifacts


if EOG_Corr(kk)<=-.2 && ART(kk,jj)<15


Band=[.5 5];


Thresholds=[25 250];


%%Corr between EEG and EOGL


[CCL]=Calc_Correlation(EOGL,Seg,Thresholds,Band,Fs);


%%Corr between EEG and EOGR


[CCR]=Calc_Correlation(EOGR,Seg,Thresholds,Band,Fs);


%%Determine if EEG and EOG signals are correlated


if abs(CCL)>=abs(CCR) && abs(CCL)>=.2%%Use Signal most correlated


u=EOGL;%%input signal


d=Seg;%%Contaminated/desired EEG signal


%%"Fixed Signal" is the output error of RLS


[Seg,w,h]=RLS(lambda,M,u,d,delta);


elseif abs(CCR)>=.2


u=EOGR;%%input signal


d=Seg;%%Contaminated desired EEG signal


[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);


end


end


end


%%Detect SWS


Threshold_SWS=[75 250];


[DataSWS]=Amplitude_Time_Exceeded(Seg,Threshold_SWS,[.5 2],Fs);


SWS(kk,jj)=sum(DataSWS.Time_Above)/DataSWS.Total_Time;


%%Power for segment


[Pow(kk,1:length(bandHigh),jj)]=Per_Power(Seg,bandHigh,bandlow,Fs);


%%Power using Welch Method


Band=[.5 45];


[Pow_Welch(kk,1:length(bandHigh),jj)]=...


Power_Welch(Seg,bandHigh,bandlow,Band,Fs);


end


end


end


%%Save files


save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’ ...


num2str(night_num) ’_Damp_ARburg.mat’],’Damp_AR’)


save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Freq_ARburg.mat’],’Freq_AR’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_SWS.mat’],’SWS’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...
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num2str(night_num) ’_EOG_Corr.mat’],’EOG_Corr’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART.mat’],’ART’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...


num2str(night_num) ’_EMG_RMS.mat’],’EMG_RMS’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Pow.mat’],’Pow’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Pow_Welch.mat’],’Pow_Welch’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_maxEOG.mat’],’maxEOG’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART_Thres.mat’],’ART_Thres’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART_Thres_onesec.mat’],’ART_Thres_onesec’)


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Movement Artifacts Threshold: This program is used to identify when


movement artifacts are occurring based on activity in the gamma frequency band


of the EEG signal.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Movement_Artifacts_Threshold


%%%Code for calculating thresholds which are used to identify movement


%%%artifacts. The method used is based on the work of Brunner et al.


%%%


%%%Reference: D. P. Brunner, R. C. Vasko, C. S. Detka, J. P. Monahan, C. F.


%%%Reynolds III and D. J. Kupfer. Muscle artifacts in the sleep EEG:


%%%Automated detection and effect on all-night EEG power spectra. J. Sleep


%%%Res. 5: 155-164, 1996.


%%%


%%%Input: Signal-typically the EEG channel


%%% Fs-is the sampling frequency


%%% inc_Len-size of increment in time (i.e. usually 1 for 1 second)


%%%


%%%Output: ART-indicator of artifacts, 1 if there is an artifact and 0 if


%%% there is not an artifact


%%% ART_Thres_re-threshold used for defining artifacts


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [ART,ART_Thres_re]=Movement_Artifacts_Threshold(Signal,Fs,inc_Len)


%%Consider only activity from 26 to 32 Hz


[b,a]=butter(4,[26 32]./(Fs/2),’bandpass’);


Filt_Signal=filtfilt(b,a,Signal);







380


%%Calculate average power every 4 seconds


meanval=zeros(1,length(Signal)/(4*Fs));


for ii=1:length(Signal)/(4*Fs)


meanval(ii)=mean(abs(Filt_Signal((ii-1)*4*Fs+1:ii*4*Fs)).^2);


end


pow_smooth=medfilt1(meanval,45); %%Brunner smoothed out the spectrum for the


%%threshold using the


%%surrounding three minutes


%%three minutes divided by 4 second epochs


%%is 45 points


ART_Thres_4sec=pow_smooth.*4;%%Brunner found that 4* the smoothed threshold


%%provided the best results


%%Resample threshold


len=length(Signal)/(inc_Len*Fs)-(4/inc_Len);


t=(0:1:length(ART_Thres_4sec)-1)*4;


tnew=(0:1:(len-1))*inc_Len;


ART_Thres_re=spline(t,ART_Thres_4sec,tnew);


%%Cycle through signal and and determine if the mean of the


%%signal is above the smoothed out threshold


for ii=1:length(ART_Thres_re)


meanval(ii)=mean(abs(Filt_Signal((ii-1)*inc_Len*Fs+1:ii*inc_Len*Fs)).^2);


if meanval(ii)> ART_Thres_re(ii)


ART(ii)=1;


else


ART(ii)=0;


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Dominant Band AR: This program is used to determine the frequency with


the lowest decay rate using an AR model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Dominant_Band_AR


%%%Code for calculating the frequencies that have the least damping


%%%identified using an AR model. The approach is based on Olbrich and


%%%Achermann.


%%%


%%%Reference: E. Olbrich and P. Achermann. Analysis of the temporal


%%%organization of sleep spindles in the human sleep EEG using a
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%%%phenomenological modeling approach. Journal of Biological Physiology,


%%%34:341349, 2008.


%%%


%%%Input: Signal-the EEG signal


%%% Band-frequency band limits for filtering


%%% Seg_Len-length of signal being used


%%% Size-length of sub-segment


%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)


%%% Fs-the sampling frequency


%%%


%%%Output: max_freq-frequency associated with the minimum damping


%%% max_damp-minimum damping value.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [max_damp,max_freq]=Dominant_Band_AR(Signal,Band,Seg_Len,Size,inc_Len,Fs)


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


Seg=filtfilt(b,a,Signal);


N=4;%%Order of AR filter


%%preallocate space


max_damp=zeros((Seg_Len/inc_Len)-Size,1);


max_freq=zeros((Seg_Len/inc_Len)-Size,1);


%%Determine frequency and damping


for ii=1:floor(Seg_Len/inc_Len)-Size


[a,e]=arburg(Seg((ii-1)*Fs*inc_Len+1:(ii-1)*Fs*inc_Len+1+Fs*Size),N);


damping=abs(roots(a));


freq=rad2deg(abs(angle(roots(a))))*(Fs/2)/180;


%%find maximum value


maxval=max(damping);


I=0;


I=find(damping==maxval);


if length(I)>1


I2=find(freq(I)>=.5 & freq(I)<45);


if length(I2)>0


freqval=min(freq(I(I2)));


else


freqval=min(freq(I));


end


else


freqval=freq(I(1));


end


if freqval>=Band(1) && freqval<Band(2)


max_damp(ii)=maxval;


max_freq(ii)=freqval;


else


max_damp(ii)=0;


max_freq(ii)=0;


end
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end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function RLS Calc: This program is used to create a Recursive Least Squares Filter


(RLS) for removing eye movement and ECG artifacts from EEG data.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function RLS_Calc


%%%Code for Recursive Least Squares Filter


%%%


%%%Reference: S. Haykin Adaptive Filter Theory. Prentice Hall, Upper Saddle


%%%River, New Jersey, 3rd edition, 1996.


%%%


%%%Input: Lambda=forgetting factor


%%% M = filter order


%%% x=input signal (ECG or EOG)


%%% d=desired signal (contaminated EEG)


%%% delta=initial value


%%%


%%%Output: e = error estimate (corrected signal)


%%% h = filter coefficients


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [e,w,h]=RLS_Calc(lambda,M,x,d,delta)


w=zeros(M,1);


P=eye(M)/delta;


x=x(:);


d=d(:);


len=length(x);


%%error vector


e=d;


for ii=M:len


x_est=x(ii:-1:ii-M+1);


k=P*x_est/(lambda+x_est’*P*x_est);


e(ii)=d(ii)-w’*x_est;


w=w+k*conj(e(ii));


h(:,ii)=w;


P=lambda^(-1)*P-lambda^(-1)*k*x_est’*P;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Calc Correlation: This program is used to calculate the correlation between


two signals.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Calc_Correlation


%%%Code for calculating the correlation between two signals


%%%


%%%Input: Seg1-Signal 1


%%% Seg2-Signal 2


%%% Thresholds-minimum and maximum amplitude of signal


%%% primarily used for EOG to eliminate artifacts


%%% Band-frequency band limits


%%% Fs-the sampling frequency


%%%


%%%Output: CC-correlation of the two channels


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [CC,maxval]=Calc_Correlation(Seg1,Seg2,Thresholds,Band,Fs)


if Band(1)~=0


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


temp1=filtfilt(b,a,Seg1);


temp2=filtfilt(b,a,Seg2);


else


[b,a]=butter(4,Band(2)./(Fs/2),’low’);


temp1=filtfilt(b,a,EOGL);


temp2=filtfilt(b,a,EOGR);


end


maxval(1)=max(abs(temp1));


maxval(2)=max(abs(temp2));


if maxval(1)<Thresholds(2) && maxval(2)<Thresholds(2) && ...


maxval(1)>Thresholds(1) && maxval(2)>Thresholds(1)


C=corrcoef(temp1,temp2);


CC=C(1,2);


else


CC=0;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Amplitude Time Exceeded: This program is used to calculate the percent


of each epoch occupied by slow wave sleep.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Amplitude_Time_Exceeded


%%%Code for calculating peak to peak amplitude critera


%%%


%%%Reference: H. Kuwahara, H. Higashi, Y. Mizuki, S. Matsunari, M. Tanaka,


%%%and K. Inanaga. Automatic real-time analysis of human sleep stages by


%%%an interval histogram method. Electroencephalography and Clinical


%%%Neurophysiology, 70: 220-229,1988.


%%%


%%%Input: Signal-either the EOG, EEG, or EMG signal


%%% Thresholds-vector containing the minimum and maxmium amplitude


%%% Band-frequency band limits


%%% Fs-sampling frequency


%%%


%%%Output: Data.Time_Above-time the signal is within the specified thresholds


%%% Data.Total_Time-total time of segment


%%% Data.Range-maximum value of signal between zero crossings


%%% Data.Duration-duration of the signal between zero crossings


%%% Data.Start_Time-start time of each zero crossing


%%% Data.End_Time-end time of each zero crossing


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data]= Amplitude_Time_Exceeded(Signal,Thresholds,Band,Fs)


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


Seg=filtfilt(b,a,Signal);


greater=[];


greater=find(Seg>=0);%%Find values greater then 0


incpos=1;


crossingpos=[];


incneg=1;


crossingneg=[];


%%Find all zero crossings


for ii=1:length(greater)


if (greater(ii)-1)>0 && (greater(ii)+1)<length(Seg)


if Seg(greater(ii)-1)<0 && Seg(greater(ii)+1)>0 %%make sure it is a crossing


crossingpos(incpos)=greater(ii);


incpos=incpos+1;


end


if Seg(greater(ii)+1)<0 && Seg(greater(ii)-1)>0


crossingneg(incneg)=greater(ii);


incneg=incneg+1;


end


end


end


%%Find the start, end, range, and duration for each crossing


ink=1;


if crossingpos(1)<crossingneg(1)
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lenval= length(crossingpos)-1;


else


lenval= length(crossingneg)-1;


end


for ii=1:lenval


if crossingpos(1)<crossingneg(1)


temp=abs(Seg(crossingpos(ii):crossingneg(ii)));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));


Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


temp=abs(Seg(crossingneg(ii):crossingpos(ii+1)));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii+1))));


Data.Duration(ink)=(crossingpos(ii+1)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii+1)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


else


temp=abs(Seg(crossingneg(ii):crossingpos(ii)));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));


Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


temp=abs(Seg(crossingpos(ii):crossingneg(ii+1)));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii+1))));


Data.Duration(ink)=(crossingneg(ii+1)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii+1)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


end


end


ii=length(crossingpos);


if crossingpos(1)<crossingneg(1) && length(crossingneg)==length(crossingpos)


temp=abs(Seg(crossingpos(ii):crossingneg(ii)));


tempSign=Seg(crossingpos(ii):crossingneg(ii));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));
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Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


Data.Range_Sign(ink)=tempSign(ind(1));


elseif length(crossingneg)==length(crossingpos)


temp=abs(Seg(crossingneg(ii):crossingpos(ii)));


tempSign=Seg(crossingneg(ii):crossingpos(ii));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));


Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


Data.Range_Sign(ink)=tempSign(ind(1));


end


%%Determine time when peak to peak amplitude is greater than the threshold


Data.Total_Time=sum(Data.Duration);


Data.Time_Above=zeros(1,length(Data.Range));


for ii=1:length(Data.Range)-1


if (Data.Range(ii)+Data.Range(ii+1))>=Thresholds(1) &&...


(Data.Range(ii)+Data.Range(ii+1))<=Thresholds(2)


%%Make sure that half of wave is not contributing to the entire peak to


%%peak amplitude


if Data.Range(ii)>=Thresholds(1)*.25 && Data.Range(ii+1)>=Thresholds(1)*.25


if (Data.Duration(ii)+Data.Duration(ii+1))>=1/Band(2) &&...


(Data.Duration(ii)+Data.Duration(ii+1))<=1/Band(1)


Data.Time_Above(ii)=Data.Duration(ii);


Data.Time_Above(ii+1)=Data.Duration(ii+1);


end


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Per Power: This program is used to calculate the root-mean-square value


for the power in each frequency band.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function: Per_Power


%%%Code for calculating RMS values for each frequency band


%%%


%%%Input: EEG-EEG segment
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%%% BandHigh-upper frequency band limit


%%% BandLow-lower frequency band limit


%%% Fs-sampling frequency


%%%


%%%Output: pow-RMS value for each of the specified frequency bands


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [pow]=Per_Power(EEG,bandHigh,bandlow,Fs)


pow=zeros(1,length(bandlow));


for ii=1:length(bandlow) %%Cycle through and calculate


[b,a]=butter(4,[bandlow(ii) bandHigh(ii)]./(Fs/2),’bandpass’);


temp=filtfilt(b,a,EEG);


pow(ii)=sqrt(mean(abs(temp).^2));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Power Welch: This program is used to calculate power in each frequency


band.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function: Power_Welch


%%%Code for calculating power spectral density


%%%


%%%Reference: F. Ferrillo, S. Donadio, F. De Carli, S. Gabarino, and


%%%L. Nobili. A model-based approach to homeostatic and ultradian


%%%aspects of nocturnal sleep structure in narcolepsy.


%%%Sleep, 30(2):157165, 2007.


%%%


%%%Input: EEG-EEG segment


%%% BandHigh-upper frequency band limits


%%% BandLow-lower frequency band limits


%%% Band-cutoff frequencies for filter


%%% Fs-sampling frequency


%%%


%%%Output: Pow-power for each of the specified frequency bands


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Pow]=Power_Welch(EEG,bandHigh,bandlow,Band,Fs)


%%Method is Similar to Ferrillo et al. Calculate PSD using


%%Welch method.


%%Filter EEG


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


EEG_filt=filtfilt(b,a,EEG);
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%%Calculate power spectra using the Welch method


%%Use 4 second segments, apply hamming window


%%Use 75% overlap


%%Sum power in each frequency band


window=4*Fs;


noverlap=.75*window;


nfft=2^(nextpow2(8*window));


[Sxx,f] = pwelch(EEG_filt,window,noverlap,nfft,Fs,’onesided’);


%%Calculate power in each frequency Band


for ii=1:length(bandHigh)


start=find(f>=bandlow(ii));


fin=find(f<bandHigh(ii));


Pow(ii)=sum(Sxx(start(1):fin(length(fin))));


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Calc REM Periods: This program is used to identify the start and end of


each REM period.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Calc_REM_Periods


%%%Code for calculating potential REM sleep periods as part of


%%%sleep stage classification algorithm


%%%


%%%Input: Stages-sleep stages


%%% inc_len-sliding increment used


%%%


%%%Output: start-start of each potential REM period


%%% fin-end of each potential REM period


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [start,fin]=Calc_REM_Periods(Stages,inc_len)


%%Find start and finish for each REM period


starti=[];


fini=[];


starti=0;


fini=0;


I=find(Stages==5);


starti(1)=I(1);


ink=1;


for kk=2:length(I);


durStage=length(find(Stages(I(kk-1):I(kk))<5));


%%definition need greater then 15 minutes


if durStage>15*floor(60/inc_len)%
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fini(ink)=I(kk-1);


ink=ink+1;


starti(ink)=I(kk);


end


end


%%Can happen if REM sleep period is at end of night


if length(starti)>length(fini)


fini(length(starti))=I(length(I));


end


%%Eliminate very brief REM sleep periods


start=[];


fin=[];


ink=1;


for kk=1:length(starti)


lenREM=length(find(Stages(starti(kk):fini(kk))==5));


if lenREM>=1*floor(60/inc_len) && fini(kk)-starti(kk)>=2.0*floor(60/inc_len)


start(ink)=starti(kk);


fin(ink)=fini(kk);


ink=ink+1;


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Classify Stage: This program is used to automatically classify sleep stages.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Classify_Stage


%%%Code for automatically classifying sleep stages


%%%


%%%Input: ART-artifact signal


%%% SWS-percent of epoch occupied by SWS


%%% EOG_Corr-correlation between left and right EOG channels


%%% EMG-RMS-root mean square of EMG activity


%%% Freq-AR-dominant frequency in the EEG signal


%%% Alpha-power in the alpha frequency band


%%% Delta-power in the delta frequency band


%%% Sigma-power in the sigma frequency band


%%% Theta-power in the theta frequency band


%%% Seg-Size-size of segment that sleep stages are being scored


%%% for


%%% inc_len-sliding increment used


%%%


%%%Output: Est_Stage-sleep stages for each time increment


%%% Per_Stage-probility of sleep stage


%%% Hyp-hypnogram for plotting


%%% Count_AR-percent of epoch dominated by each frequency
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage,Per_Stage,Hyp,Count_AR]=Classify_Stage...


(ART,SWS,EOG_Corr,EMG_RMS,Freq_AR,Alpha,Delta,Sigma,Theta,Seg_Size,inc_len)


I=find(EMG_RMS>0);


a=sort(EMG_RMS(I));


per_85=a(round(.85*length(a)));%%Most EMG_RMS is below 85 percentile


Est_Stage=85.*ones(1,length(SWS));


ink=1;


Est_Stage(1)=2;


jj=1;


Count_AR=0;


for ii=2:length(Alpha)


bandHigh= [ 4.5 8 12 16 25 35 ];


bandlow= [ .5 4.5 8 12 16 25 ];


for jj=1:length(bandlow)


tempFreq_Ar=Freq_AR(ii:ii+floor(Seg_Size/inc_len)-1);


I=find(tempFreq_Ar>=bandlow(jj) & tempFreq_Ar< bandHigh(jj));


if length(I)~=0


Count_AR(ii,jj)=length(I)/Seg_Size;


else


Count_AR(ii,jj)=0;


end


end


Count_AR(ii,:)=Count_AR(ii,:)./sum(Count_AR(ii,:));


if ART(ii,1)>=5 || Count_AR(ii,3)>=.5


Est_Stage(ii)=0;


%%If there is not an artifact


else


if EOG_Corr(ii)>-.2 %%no eye movements


%%.15 is from 2 standard deviations for Stage 2 sleep


if (SWS(ii)>=.15 || Delta(ii)>=0.7 )


Est_Stage(ii)=3;


elseif (SWS(ii)>=.05 && SWS(ii)<.15 ) || (Count_AR(ii,4)>=1/Seg_Size )


if Est_Stage(ii-1)==3 && Delta(ii)>=0.65 ...


&& Count_AR(ii,4)<=1/Seg_Size && Sigma(ii)<=1/Seg_Size


Est_Stage(ii)=3;


else


Est_Stage(ii)=2;


end


else


if Alpha(ii)/Theta(ii) >=1.5


Est_Stage(ii)=0;


elseif Est_Stage(ii-1)==5


if EMG_RMS(ii)<=per_85 && SWS(ii)<=1/Seg_Size && Delta(ii)<0.45


Est_Stage(ii)=5;


else
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Est_Stage(ii)=0;


end


else


Est_Stage(ii)=2;


end


end


%%Eye Movement


elseif EOG_Corr(ii)<=-.2


if EMG_RMS(ii)<=per_85 && (Alpha(ii)/Theta(ii))< 1.5 && Delta(ii)<0.45


Est_Stage(ii)=5;


else


Est_Stage(ii)=0;


end


end


end


end


%%Get rid of brief eye movements (single eye movements


%%with no other activity around it)


for ii=floor(61/inc_len):length(Est_Stage)-floor(60/inc_len)


I=find(Est_Stage(ii-floor(60/inc_len):ii+floor(60/inc_len))==5);


if length(I)<floor(3/inc_len) && Est_Stage(ii)==5


Est_Stage(ii)=0;


end


end


%%Correction for rapid eye movements at the beginning of the


%%night


I=find(Est_Stage(1:30*floor(60/inc_len))==5);


for ii=1:length(I)


if Est_Stage(I(ii)-1)==0


Est_Stage(I(ii))=0;


else


Est_Stage(I(ii))=2;


end


end


%%Correct for Stage 2 sleep during REM periods


[start,fin]=Calc_REM_Periods(Est_Stage,inc_len);


ink=1;


for ii=1:length(start)


for jj=start(ii):fin(ii)


if Est_Stage(jj)==2 && SWS(jj)<2/30 && Count_AR(jj,4)<=.05


Est_Stage(jj)=5;


elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Alpha(ii)/Theta(ii) >=1.5


Est_Stage(jj)=0;


elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Count_AR(jj,3)>Count_AR(jj,2)


Est_Stage(jj)=0;


end


end


end
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%%Get rid of eye movements not between end points


for ii=1:length(start)


if ii==1


I=find(Est_Stage(1:start(ii)-1)==5);


Est_Stage(I)=0;


elseif ii<=length(start)


I=find(Est_Stage(fin(ii-1)+1:start(ii)-1)==5);


Est_Stage(fin(ii-1)+I)=zeros(1,length(I));


end


end


if fin(length(fin))+1<length(Est_Stage)


I=find(Est_Stage(fin(length(fin))+1:length(Est_Stage))==5);


Est_Stage(fin(length(fin))+I)=0;


end


val=[0 2 3 5];


%%Calc_30 second sleep stages


for ii=1:length(Est_Stage)/floor(30/inc_len)


for jj=1:length(val)


Per_Stage(ii,jj)=...


length(find(Est_Stage((ii-1)*floor(30/inc_len)+1:ii*floor(30/inc_len))...


==val(jj)))/floor(30/inc_len);


end


maxval=max(Per_Stage(ii,:));


ind=find(Per_Stage(ii,:)==maxval);


if length(ind)>1


if ii~=1


Hyp(ii)=Hyp(ii-1);


else


Hyp(ii)=val(ind(1));


end


elseif length(ind)==1


Hyp(ii)=val(ind(1));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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7. NONLINEAR SLEEP MODEL DEVELOPMENT AND PARAMETER


ESTIMATION


After reviewing the literature on sleep models, the Massaquoi and McCarley nonlinear


dynamic model was found to be the best candidate for altering so it could be used to


predict the effect of aircraft noise on sleep. However, the model has slow dynamics


which makes it difficult to predict brief awakenings including those that occur due


to noise. To overcome this limitation additional components were introduced into


the models. These components include an additional excitation term which has a


dependence on noise level and a model that predicts faster dynamics during a REM


period. The parameter values for the modified model were estimated using the 1999


UK study data. This required developing parameter estimation methods and also


methods to process the polysomnography data to produce signals that are closely


related to the E, n(t), X, Y , SWA and S of the original Massaquoi and McCarley


model. Similarly, parameters in the new fast REM part of the model had to be


estimated from signals derived from the sleep study data. A method to determine


whether a person is in Tonic or Phasic REM sleep, based on the occurrence of Rapid


Eye Movement was also developed. The results of simulations using the model will


also be presented later in this chapter.


7.1 Limitations of Massaquoi and McCarley Model


Before determining how to add a noise level dependence to the Massaquoi and Mc-


Carley model, simulations were conducted using the original model to determine if it


could be used to predict trends in sleep stages similar to those observed with other
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models. The values of the coefficients of the model, used in the simulations, are listed


in Table 7.1 and the equations were provided in Chapter 5 (Equations (5.47), (5.48),


(5.49), (5.55), (5.56), (5.57)) . One hundred simulations were performed using the


model. The variability in the predictions for each simulation was due to the impulsive


excitation term E (filtered square waves) where each impulse has a random arrival


time, height, and duration (Massaquoi and McCarley, 1992). The probability of be-


ing in NREM, REM and Wake stages was calculated and the results were compared


to predictions using Basner’s Baseline Markov model (2006). The results are shown


in Figure 7.1. The Massaquoi and McCarley model predicted a higher probability of


being in NREM sleep than Basner’s model, and lower probability of being awake or in


REM sleep. In order to improve the predictions of the model the value of c (in Equa-


tion (5.48)), which controls the rate of decay of Y (REM-OFF) activity, was increased


by 40%. A better agreement was obtained between the predicted probabilities.


Table 7.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).


Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10
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Figure 7.1. Probability of being in Wake, REM, and NREM sleep
predicted using the original parameters of the Massaquoi and McCar-
ley model (blue), with the parameter c increased by 40% (green) and
with Basner’s Markov model (red).
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Another difference between the predictions of the two models is that the Massaquoi


and McCarley model predictions have oscillations in the probability of being in NREM


and REM sleep which Basner’s Markov model does not. These ultradian oscillations


are partly due to the assumption when performing the simulations that everyone falls


asleep at the same time. In one set of simulations it was assumed that everyone


retired at the same time (11:00 pm), and in another set of simulations the time to fall


asleep was varied randomly for each simulation according to a normal distribution


which had a mean start time of 11:00 pm and a standard deviation of 30 minutes. One


hundred simulations were conducted using Basner’s Markov model (Equation (4.1))


and the Massaquoi and McCarley model (Equations (5.47), (5.48), (5.49), (5.55),


(5.56), (5.57)). The results are shown in Figure 7.2. The ultradian cycles in the


predictions of the Massaquoi and McCarley model were smoothed out when the sleep


onset time was varied and the predictions were more similar to those of Basner’s


Markov model but with a less pronounced increase in REM towards the end of the


night.


While the overall trends in sleep stage predictions between the two models are


in agreement, the Massaquoi and McCarley model is not without limitations. One


limitation of the model is that awakenings or transitions to lighter sleep are not


predicted by the model during a REM sleep period. A transition from REM to Wake


and then back to REM cannot occur. In Figure 7.3, an example of a REM period


and transitions from REM sleep to Stage Wake and Stage 1 during that period for


one night of sleep, from the UK dataset, is shown. The Massaquoi and McCarley


model in its current form cannot predict awakenings during REM sleep because the


level of X (REM-ON) activity does not oscillate during a REM period. The level of


Y (REM-OFF) neuron activity is low when X (REM-ON) activity is high and will


not cause a large change in the level of X when an excitation occurs. An alternative
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Figure 7.2. Probability of being in Wake (light gray), REM (dark
gray), and NREM sleep (black) predicted using, (a) and (b) the Mas-
saquoi and McCarley model and (c) and (d) Basner’s Markov model.
(a) and (c) All individuals retired at 11:00 pm and (b) and (d) Gaus-
sian variation in sleep onset was assumed. Results based on 100 sim-
ulations.
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sleep stage scoring rule could be used in which an awakening is considered to occur


if the excitation term is greater than a certain value, instead of always scoring the


stage as REM when X is greater than 1.4. This type of approach was taken by


Comte, Schatzman, Ravassard, Luppi, and Salin (2006) when scoring sleep stages


using their model. However, an inadequacy of this approach is that an awakening


will not play a more dynamic role in the sleep process and whether an individual


awakens during REM sleep has been found to depend on ongoing brain activity and


whether an individual is in Phasic or Tonic REM sleep (Ermis, Krakow, and Voss,


2010).


0 50 100 150 200 250 300 350 400 450
Stage 4


Stage 3


Stage 2


Stage 1


REM


Wake


Time (min)


Last REM
   Cycle


Figure 7.3. Example of a REM sleep period and the change in sleep
stages within that period.


The second limitation of the Massaquoi and McCarley model is that it has slow


dynamics. While the model can predict the slow ultradian 90-100 minute oscillation


between NREM and REM sleep, it cannot be used to adequately predict brief awak-
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enings. To emphasize the slow dynamics, the equations of the REM sleep portion of


the model can be rewritten where the equation for REM promoting (X) activity is,


Ẋ + ωc1X = 0, (7.1)


ωc1 = b(X)Y − a(X)S1(X). (7.2)


The equation for REM inhibiting (Y ) activity can also be rewritten as,


Ẏ + ωc2Y = 0, (7.3)


ωc2 = c− dcircS2(Y )(X + E). (7.4)


Both equations have the form of a low pass filter with time varying cutoff frequencies.


In Figure 7.4 the variations in the two frequencies are shown. The majority of the


behavior of the model is on the order of hours not seconds. Dynamics on a timescale


of several seconds are needed to predict awakenings during REM periods.


In order to further examine the use of the Massaquoi and McCarley model for


predicting brief awakenings, simulations were conducted in which excitation events


(N(t)) were of equal spacing, amplitude, and duration. The duration of the impulses


was one minute, which is approximately the duration of an aircraft event, the ampli-


tude of the impulses was varied in increments of 1, from 1 to 10. For these simulations


the following equation was used for E,


Ė + kE = kN, (7.5)


where k was equal to 10, which is the value in the original Massaquoi and McCarley


model. The duration spent in NREM, REM, and Wake states were calculated for each
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Figure 7.4. The time varying frequencies of the Massaquoi and Mc-
Carley model. (a) X model and (b) Y model.
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simulation. In Figure 7.5 the results of two simulations, with low (Emax=2.4) and


high excitation levels (Emax=6.0) for 16 events are shown. The number of REM sleep


periods and the level of slow wave activity were found to decrease as the amplitude


of the events were increased. However, due to the sleep stage scoring thresholds of


the original model, the number of predicted awakenings did not increase when the


amplitude of the impulses was increased. In Figure 7.6 the duration of REM, NREM,


and Wake stages for various amplitudes of the excitation parameter (N(t)) are shown.


Simulations were also conducted for 64 events of varying amplitudes. The results


are shown for low amplitudes (Emax=1.8) and high amplitudes (Emax=3.6) in Figure


7.7 and the duration of REM, NREM and Wake stages for various amplitudes of the


excitation parameter are shown in Figure 7.8. As the amplitude of the noise events


was increased, the NREM and REM sleep cycles during the night disappeared and


there was still not a large increase in the number of predicted awakenings.


The addition of an excitation term to the equation for X (REM-ON) activity was


examined to determine if more variations in the level of activity and an increase in


the prediction of awakenings could be obtained without destroying the slow ultradian


cycling. One approach was to use the following equation,


Ẋ = a(X)S1(X)X − b(X)XY − EX. (7.6)


The term EX was added rather than just E alone in order to prevent the level of X


from becoming negative. The results for a simulation using this approach is shown


in Figure 7.9. The addition of the E term caused a decay in REM-ON (X) activity


which caused the ultradian cyclic behavior to end. Therefore, another approach in


which a saturation function (f(X)) was added was also examined, the equation for


which is,


Ẋ = a(X)S1(X)X − b(X)XY − f(X)EX. (7.7)
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Figure 7.5. Massaquoi and McCarley model predictions for 16 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=2.4, Nmax=4) and (b) high amplitude (Emax=6.0, Nmax=10)
impulses.
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Figure 7.6. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 16 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 30 minutes.
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Figure 7.7. Massaquoi and McCarley model predictions for 64 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=1.8, Nmax=3) and (b) high amplitude (Emax=3.6, Nmax=7)
impulses.
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Figure 7.8. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 64 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 7.5 minutes.
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In Figure 7.10 the saturation function is shown. The form of the saturation function


was chosen so the excitation term only affected X when the level of X was high. The


results for a simulation conducted with the added saturation function are shown in


Figure 7.11, where the labels A and B, in the Figure, indicate the decay in the X


activity due to the addition of the excitation term to the REM-ON (X) equation.


While awakenings were predicted during the REM periods this behavior is still not fast


enough for predicting awakenings during sleep, which can be as brief as 15 seconds.


Also not all simulations using this approach resulted in desirable results, such as the


example shown in Figure 7.12, in which the X and Y activity no longer appears


cyclic.
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Figure 7.9. Prediction of the Massaquoi and McCarley model when an
excitation term (EX) was introduced in the REM-ON (X) equation.
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an excitation term with a saturation function was added to the REM-
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arrival times); and (d) sleep stage classification.
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The only approach that did result in fast oscillations in REM-ON (X) activity


was when a band-passed noise or sinusoidal noise term, denoted by (q) in Equation


(7.8) was added to the X equation,


Ẋ = a(X)S1(X)X − b(X)XY + qX. (7.8)


An example of the results obtained using this approach is shown in Figure 7.13. The


example results shown in Figure 7.13 (a) is for when q is equal to a sinusoidal term


with an amplitude of 40 and 4 oscillations per minute. For results shown in Figure


7.13 (b) q is uniformly distributed band passed noise with frequencies of oscillation


between 1 and 4 per minute and has an amplitudes between -50 and 50. While fast


oscillations were predicted, the impulsive, random occurrence of awakenings during


REM periods was not.


7.2 Altering Ultradian Oscillator-Slow REM Model


Based on the limitations of the Massaquoi and McCarley model, it was determined


that slow and fast activity during REM sleep needed to be modeled separately. There-


fore, instead of trying to manipulate the REM-ON and REM-OFF equations to obtain


oscillations in activity that could lead to awakenings using scoring rules, the REM-ON


and REM-OFF equations would be used for just controlling the ultradian cycling.


Having a slow term whose only role is to control the ultradian oscillations in the


model is not a new concept, Achermann, Beersma, and Borbély (1990) used a Van der


pol oscillator with the two-process model to control the ultradian oscillations between


NREM and REM sleep, which was defined by the equation,


Ẍ = a(b−X2)Ẋ − wX. (7.9)
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Wever (1980) used two coupled nonlinear oscillators one for circadian and one for


ultradian oscillations. The form of his equations are,


ÿ + ε1(y
2 − y−2 − a1)ẏ + ω1


2(y + g1y
2) = ω1


2(c1(ẍ+ ẋ+ x)), (7.10)


and


ẍ+ ε2(x
2 − x−2 − a2)ẋ+ ω2


2(x+ g2x
2) = ω2


2(c2(ÿ + ẏ + y)). (7.11)


The excitation term E in the REM-OFF equation of the Massaquoi and McCarley


REM model though will remain in the slow REM model. If the maximum amplitude


of the excitation is limited the loss of NREM-REM cycling will not occur as in the


the simulations in the previous sections. The reason for keeping the E term in a slow


REM model is that several researchers have found that the duration of sleep cycles


is affected by awakenings. Foret, Touron, Clodoré, and Bouard (1990) examined the


effect of forced awakenings on the duration of NREM sleep during one sleep cycle.


They interrupted sleep one time a night, for 3 nights. The time of the interruption


varied per test night and occurred at either 1:30, 3:30, or 5:30 am. The duration


of the interruption was 10 minutes. To calculate the effect of the interruption on


the NREM-REM timing they calculated what they called the inter-REM interval


which was the time between the start of one REM period until the start of the next


period, however the 10 minute interruption time was not included when calculating


the inter-REM interval duration. They found that compared to a baseline night, the


interruption caused a decrease in cycle duration if it occurred in the first half of the


cycle but it caused an increase in cycle duration if the interruption occurred in the


second half of the cycle.


Massaquoi and McCarley (1990) compared predictions using their model to the


data from the study conducted by Foret, Touron, Clodoré, and Bouard (1990). They
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applied excitations at various locations during a sleep cycle. Each pulse in the E term


in the model had a duration of one unit or 10.7 minutes. They examined the effect of


different amplitudes of excitation on the duration of a sleep cycle. They found that


the strength of the excitation does have an effect on the change in cycle length. A


strong excitation will result in a linear relationship between the time an excitation


occurs and the change in cycle duration. However, they found that moderate or weak


pulses have more of a curvilinear relationship.


7.3 Fast REM Model


The development of a fast REM sleep model is based on the notion that during REM


sleep the probability of awakening to a noise event is dependent on ongoing brain


activity and, in particular, whether an individual is in Tonic or Phasic REM sleep.


The Tonic and Phasic activity in the UK dataset was examined and used to develop


the model.


7.3.1 REM Density Calculation


While it might not be well understood yet what exactly is causing the variation in


stimulus response during REM sleep, what is clear is that response to auditory stimuli


cannot be assumed to be constant during this stage. Results from Wehrle et al. (2007)


indicate that a noise stimulus will be processed differently depending on whether an


individual is in Tonic or Phasic REM sleep, and this in turn affects whether they


awaken.


In order to evaluate the timing and duration of Phasic and Tonic REM sleep in


the data from the 1999 UK study, the density of rapid eye movements was calculated.


To calculate the density of rapid eye movements first the left and right EOG channels
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were bandpass filtered between 0.5 and 5 Hz by using a 4th order Butterworth filter.


The beginning and end of each REM period was identified. Within the defined REM


period the two EOG channels were segmented into 30 second segments. The corre-


lation between the two channels was calculated and then the process was repeated


moving in 1 second increments through time. If the correlation of the two channels


was below -0.2, rapid eye movements were considered to occur. A second method was


also used to identify rapid eye movement which was similar to an approach used by


Agarwal, Takeuchi, Laroche, and Gotman (2005). The inverse or negative of the left


EOG channel was multiplied by the Right EOG channel and then amplitudes greater


than 625 μV 2 were identified. A 2 second segment of both the right and left EOG


channel was obtained around each peak. The correlation between the 2 seconds of the


left and the 2 seconds of the right EOG channels was calculated. If the correlation


was below -0.2 and the peaks of the two channels were within 100 ms of one another,


then rapid eye movement was considered to occur. Then, for each 30 second segment,


the proportion of the segment that was occupied by rapid eye movement was calcu-


lated in order to obtain a measure of REM density. The measure of REM density


was again calculated for 30 second segments, moving 1 second in time. The results


for one REM period are shown in Figure 7.14. The REM Indicator is an indicator


of Phasic and Tonic REM activity, it is equal to 1 when the REM density is greater


than zero and Phasic REM sleep is occurring, and is equal to zero when Tonic REM


sleep is occurring. Tonic REM periods of less than 15 seconds duration were set equal


to Phasic REM sleep though, this approach has been used by others (Ermis, Krakow,


and Voss, 2010) to define Tonic and Phasic REM sleep.
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Figure 7.14. An example of rapid eye movement activity. (a) 30
second correlation between right and left EOG signals and the -0.2
threshold used (red dashed line), (b) REM density measurement-
proportion of the 30 second epoch occupied by rapid eye movement
activity, and (c) an indicator of Phasic and Tonic REM sleep.
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7.3.2 Form of Fast REM Model


A few researchers have tried to identify/model the process that causes the occurrence


of rapid eye movements. Trammell and Ktonas (2003) stated that the occurrence of


rapid eye movements may not be due to a random process. One method they used to


determine if the process that caused rapid eye movement bursts was deterministic or


stochastic was the correlation dimension. They calculated the correlation dimension


using the inter-REM periods or the time between rapid eye movements and found


values near 2. This indicated to Trammell and Ktonas (2003) that a low order non-


linear process may explain the intervals between rapid eye movements. Boukadoum


and Ktonas (1988) analyzed the probability density function of inter-REM intervals


between rapid eye movements. They categorized inter-REM periods according to two


criteria: (1) the time between rapid eye movements within a burst, (a burst is defined


if the inter-REM period is less than 2 seconds), and (2) inter-REM period between


isolated bursts of rapid eye movement. From the estimated probability density func-


tion they concluded that two separate processes may be involved in the occurrence of


rapid eye movements, one process controlling the brief bursts of activity and another


controlling the longer intervals between rapid eye movements. They stated that the


inter-REM intervals cannot be predicted by using an exponential distribution.


After examining the occurrence of Phasic and Tonic REM sleep in the UK data,


it seemed that the oscillation between the two states, along with the change to awake


states during REM sleep could be modeled using a Duffing equation with the harmonic


excitation in a region in which chaotic response behavior is possible. The form of the


Duffing equation with up to a 5th order stiffness term was examined (Li and Moon,


1990). This equation has the form,


ẍ+ δẋ+ β5x
5 + β4x


4 + β3x
3 + β2x


2 + β1x+ βo = Acos(ωt); (7.12)
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which can also be written as,


ẍ+ δẋ+ β(x− α1)(x− α2)(x− α3)(x− α4)(x− α5) = Acos(ωt); (7.13)


If the unforced case is considered the corresponding set of first order differential


equations are,


ẋ = y, (7.14)


ẏ = −δy − β5x
5 − β4x


4 − β3x
3 − β2x


2 − β1x− βo. (7.15)


There are 5 equilibrium points and they occur when,


y = 0, (7.16)


β5x
5 + β4x


4 + β3x
3 + β2x


2 + β1x+ βo = 0. (7.17)


The Duffing equation (usually with only a 3rd order polynomial rather than the


5th order shown here) has been used to model the behavior of an elastic beam which


is clamped vertically above magnets of fixed position. The entire system consisting of


the beam and the magnets are shaken horizontally. When the system is shaken with


a low amplitude the beam will oscillate about one of the magnets which are stable


equilibrium points. If the system is shaken with a large enough sinusoidal force, in


certain frequency and amplitude regions the beam will jump chaotically from magnet


to magnet (Moon and Holmes, 1979). This is illustrated in Figure 7.15 for a third


order nonlinearity and in Figure 7.16 for a fifth order nonlinearity.


For the Duffing equation with a 5th order stiffness term, three of the equilibrium


points are stable, the other two equilibrium points are saddle points and are unstable.


For the fast REM model, two of the stable points were considered to be Tonic and


Phasic REM sleep. The third stable point represents Stage 1/Wake. As research
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on auditory awakening thresholds have indicated that an individual is more likely to


awaken during Tonic than Phasic REM sleep, the awakening stable point was posi-


tioned closer to the stable point representing Tonic REM sleep. Also as awakenings


are less likely to occur than Phasic or Tonic REM sleep during a REM sleep period,


the distance between the Tonic and Wake stable point was greater than the distance


between the Tonic and Phasic stable point. The positions of the equilibrium points


for the baseline no-noise conditions are listed in Table 7.2. The phase plane and


position of the equilibrium points for the fast REM model is shown in Figure 7.17,


where, δ = 0.06.


Table 7.2. Positions of the equilibrium points for the baseline fast
REM sleep model.


Equilibrium Point Position
Phasic REM sleep 0.5
Tonic REM sleep -0.5
Wake -2.5
Unstable Point Between Tonic and Phasic 0
Unstable Point Between Wake and Tonic -2


To simulate awakenings due to noise events the position of the saddle point be-


tween the Wake stable point and Tonic stable point was allowed to vary and it moved


closer to the Tonic stable point when an excitation term occurred. The equation for


the model is,


ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt). (7.18)


where, (−2 + γw(t)), is the unstable saddle point which moves when an excitation


occurs. Here w(t) is an excitation, a different naming convention then the slow model
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Figure 7.17. Phase plane for Duffing equation. Unstable equilibrium
points (red/light gray), stable equilibrium points (black) (δ = 0.06,
ω = 2π(0.3), A=0.5), y = ẋ.
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in which the excitations are labeled as (E) is used as the two may or may not have


the same form.


The term γw(t) is always positive so this impulsive excitation, which models brain


activity pushes the unstable equilibrium position at x = −2.0 toward the “Tonic”


equilibrium position at x = −0.5 making it easier for the beam to move to the Wake


equilibrium position at x = −2.5. In Figure 7.16 (b) w(t) = 0 and the unstable


equilibrium point is at -2.0 and in Figure 7.16 (c) there were 8 evenly spaced events


of 1 minute with (−2+γw(t))=-0.6 when events were occurring and equal to -2 when


events were not occurring (w(t) = 0). By moving the unstable equilibrium point the


likelihood of transitioning to an awake state increases as the noise level increases.


In Figure 7.18 the potential function of the Duffing equation is shown for different


positions of the unstable point between Wake (m3) and Tonic REM (m2); in Figure


7.18 (a) the potential function when the unstable point is at -2.0 is shown, if the beam


is close to m1 (Phasic REM) and m2 (Tonic REM) it would be difficult to jump out


of the well at lower amplitudes of excitation to reach m3 (Wake). In Figure 7.18 (b)


the unstable point is at -1.5 and you can see that escape from the m1-m2 region to m3


would be easier and in Figure 7.18 (c) when the unstable point is at -1.0 it would be


very easy to escape from the m1-m2 region to m3 and it would be difficult to escape


the m3 region to return to the m1-m2 region.


An example of the output of the model with awakenings is shown in Figure 7.19.


Here the unstable equilibrium point is defined as −2 + γN(t) and N(t) is a series


of impulses of duration 1 minute and are spaced 5 minutes apart. To classify sleep


states, a set of thresholds were defined. If the value of x is greater than 0 then Phasic


REM sleep occurs and if the value of x is less than zero then Tonic REM sleep is


occurring. However, there are exceptions used in order to eliminate very brief sleep


stage changes. If the peak value, when the signal is above zero, is never greater than
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0.25, i.e. it never approaches the Phasic stable equilibrium point, which is at 0.5, then


the activity above zero was set equal to the previous classified state, a similar approach


was taken when activity is below zero but the minimum never approaches the Tonic


stable equilibrium or Wake stable equilibrium point. Wake states are classified if the


level of x is below -2.0 during an excitation. An example of scoring REM sleep stages


using these rules is shown in Figure 7.19.
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Figure 7.19. (a) Solution of the Duffing equation, oscillations are
about 3 stable equilibria, (red-dashed line) thresholds used to assign
sleep stages. (b) Unstable equilibrium position (−2 + γN) and (c)
classified sleep stages. The driving frequency ω = 2π(0.3), δ = 0.06
and the amplitude (A) was 0.5.


In order to determine the remaining parameters of the Duffing equation, simula-


tions were completed in which the frequency (ω) and the amplitude of the driving







223


force (A) were varied in order to match the percentage of time spent in Tonic and


Phasic sleep and the inter-arrival time between Phasic activity as calculated based


on the 1999 UK data. For these simulations the location of the stable and unstable


points and the damping (δ) which was set equal to 0.06, remained constant. The


damping was set at a low enough value so that chaotic behavior could be obtained,


and it was not varied for the simulations as changing the amplitude and the damp-


ing would have similar effects. The initial conditions were randomized for each trial


between -0.5 and 0.5, and the drive frequency and amplitude were systematically var-


ied. One hundred simulations were conducted for each combination of parameters.


A reasonable agreement was found when the drive frequency was set equal to 0.3 Hz


and the amplitude of excitation was set equal to 0.5, the results are shown in Figure


7.20. The time t, also had to be scaled after each solution was obtained to match


values, t for the solutions was set equal to (1/5)t to obtain agreement between the


simulated and actual values.


Simulations using the fast REM model for different numbers, level, and duration


of excitations (w(t) = N(t)) were completed. For each combination of parameters,


25 simulations were completed, the initial conditions were varied for each simulation.


The average proportion of a REM period classified as Wake based on the simulation


results is shown in Figure 7.21 and the average proportion of a REM period classified


as Tonic and Phasic REM sleep is shown in Figure 7.22. The proportion of the REM


period classified as Wake increased with both excitation level and duration of the


event, while the proportion spent in Tonic and Phasic REM sleep both decreased.


The proportion of the REM period classified as Wake also increased with the number


of events. The probability of awakening to a noise event is shown in Figure 7.21,


and it increases with the duration of an event and the excitation level. From the


simulations it was found that an impulse that moved the unstable equilibrium point
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Figure 7.20. Statistics of Tonic and Phasic REM sleep for simula-
tions (red) and survey data (blue). (a) Inter-arrival time of Phasic
activity, (b) proportion of REM period (without awakenings) occu-
pied by Tonic REM sleep and (c) proportion of REM period (without
awakenings) occupied by Phasic REM sleep.
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to -1.6 will start to cause transitions to Stage Wake. The baseline position of the


unstable equilibrium between Wake and Tonic was set at -2 because at this location


the probability of moving to the Wake state without an excitation term is essentially


zero.
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Figure 7.21. Proportion of the REM period defined as awake for (a) 2,
(c) 4, and (e) 8 events as a function of level. Probability of awakening
to, (b) 2, (d) 4, and (f) 8 noise events as a function of level.
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Figure 7.22. Proportion of the REM period defined as Phasic REM
sleep for (a) 2, (c) 4, and (e) 8 events as a function of level. Proportion
of the REM period defined as Tonic REM sleep for (b) 2, (d) 4, and
(f) 8 events as a function of level.
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Based on simulations and the classification of Tonic and Phasic REM sleep in


the UK dataset, the Duffing equation appears to predict the behavior of fast REM


activity. The use of a Duffing type equation for modeling brain activity does have


support in the sleep literature. There have been many models developed for neuron


bursting activity. Phasic REM sleep can be thought of bursting activity. One of the


most commonly used models is the Hodgkin-Huxley model. This is a model of the


behavior of 3 channels through a neuron membrane: sodium, potassium and a leakage


channel (Gerstner and Kistler (1996); Izhikevich (2004)). Either a constant current


or a short current pulse is applied as input to the model and the output is the voltage


potential which may contain a spike.


A simplification of the Hodgkin-Huxley equations was made, that model is called


the Fitz-Hugh Nagumo model and consists of the following two equations (Gerstner


and Kistler, 1996),


ẋ = x− 1


3
x3 − y, (7.19)


ẏ = a+ bx− cy. (7.20)


The two equations can be combined to create a second order differential equation by


solving Equation (7.19) for y,


y = x− 1


3
x3 − ẋ, (7.21)


taking the derivative,


ẏ = ẋ− ẋx2 − ẍ, (7.22)
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and substituting them into Equation (7.20). The equation that is obtained is:


ẍ+ (1− c)


(
1


1− c
x2 − 1


)
ẋ+ (b− c)x+ c


1


3
x3 + a = 0, (7.23)


which with an applied sinusoidal force can be written as,


ẍ+ p(kx2 − 1)ẋ+ ω2
ox+ βx3 = ao + Acos(ωt). (7.24)


This equation has the same form as the Duffing Van der Pol equation. If k is zero then


the equation has the form of a Duffing oscillator. Curtco, Sakata, Marguet, Itskov,


and Harris (2009) modeled neuron activity in the auditory cortex when urethane-


anesthetized rats were exposed to auditory stimuli using the Fitz-Hugh Nagumo


equations, though the form of the Fitz-Hugh Nagumo model they used was slightly


different, in that the model had an x2 term in addition to the x and x3 in Equation


(7.19).


In addition to neuron bursting models, Zeeman (1976) discussed how there are


different scales at which to model brain activity. He described small-scale theory as


consisting of models of individual neurons, synapses, and nerve impulses. Large-scale


models are models of the end result like thinking and responding. He stated that


what is needed is a model of medium-scale behavior. The medium-scale model he


believes could be something like the Duffing oscillator because it has the oscillatory


behavior found in neurons and he stated that it would be expected that some neuron


activity would be stable and some would not.


The Duffing equation has also been used to model epileptic seizures as well as


visual evoked responses. Stevenson, Mesbah, Boylan, Colditz, and Boashash (2010)


wanted to create a model of newborns EEG activity including seizure activity. The


model developed consisted of a Duffing oscillator driven by Gaussian noise for the
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background EEG and a Duffing oscillator driven by impulsive noise to simulate the


seizure activity. The two signals output from the models were added in order to


obtain a simulated newborn’s EEG signal. Srebro (1995) used a Duffing equation


to model visual evoked potentials observed in EEG data. The visual stimulus that


was used consisted of a checkerboard pattern that was shown at intervals. Srebro


(1995) was mostly interested in modeling the response of the system to impulsive


perturbations and matching the increase and subsequent decay of the response to the


individual evoked potentials that were observed in experiments. They found that the


result with the Duffing oscillator was a better match to the evoked potentials then


what would be predicted by using a linear stiffness.


7.4 Model Parameter Estimation


Now that a fast REM sleep model has been developed and the fast dynamic behavior


limitations of the Massaquoi and McCarley model have been overcome, the parame-


ters of the different components of the sleep model needed to be estimated using the


1999 UK data. The methods used and the values of the estimated parameters for the


different components of the model are described.


7.4.1 The Homeostatic Process S Model


The term S in the Massaquoi and McCarley model represents the need for sleep


and decreases through the night. While there have been several variations in the


equation for this term, in its most basic form S is an exponentially decaying function


(Achermann and Borbély, 1990) of the form:


S = Soe
−gc t, (7.25)
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where the parameter gc controls the decay rate. While there is no direct measure-


ment of Process S, it can be estimated from the decay of slow wave activity (SWA).


Process S is an upper bound on the level of slow wave activity. To estimate the initial


value of S and the decay rate, first SWA during the night was calculated. Slow wave


activity was calculated in a manner similar to that used by Ferrillo, Donadio, De Carli,


Garbarino, and Nobili (2007). The EEG signals, from the 1999 UK study were seg-


mented into 30 second segments of sleep. This segmentation was repeated moving


through the signal in 1 second increments. Using the segment average (pWelch in


Matlab) the power spectral density was calculated. The 30 second segment was fur-


ther segmented into 4 second segments with 75% overlap. The total power between


0.5 and 4.5 Hz was calculated from the estimated power spectral density. To smooth


the result further, a moving average filter was used in which the averaging was per-


formed over three minute segments (Achermann, Dijk, Brunner, and Borbély, 1993).


The smoothed SWA estimate was then normalized by the mean of the SWA activity


for the entire night. This normalization was also done by Achermann, Dijk, Brunner,


and Borbély (1993).


Once the SWA estimate was smoothed and normalized then the 95th percentile of


SWA during each NREM period was calculated. Before performing this calculation,


though, first the boundaries of each REM period during the night had to be calculated.


To calculate these limits the original scored sleep stages from the 1999 UK study


for each subject were used. First, all stages scored as REM sleep during the night


were identified. Then, if there were less than 15 minutes duration of NREM sleep


or Wake between scored REM stages, the REM and intervening NREM stages were


considered to be in the same REM period. REM periods that were less than 5 minutes


in duration were ignored because REM periods should be greater than 5 minutes in
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duration (Achermann, Dijk, Brunner, and Borbély, 1993). An example of the scored


sleep stages during the night and the defined REM periods are shown in Figure 7.23.
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Figure 7.23. An example of Sleep Stages (blue) and identified REM
periods (red dashed line).


The 95th percentile of SWA levels for each intervening NREM period was then cal-


culated and the time of these points was determined. The 95th percentile rather than


the maximum level was used to reduce the likelihood that the point was associated


with an artifact. An exponential function was then fitted to the set of points. An


example of the estimated slow wave activity and the values used to to estimate the


exponential function are shown in Figure 7.24. The mean and standard deviation


for both the decay parameter gc and the amplitude at the start of the night (So)


estimated from the data are listed in Table 7.3.


The data from the 1999 UK study that was used to estimate the model parameters


comes from measurements of subjects between the ages of 30 and 40. Dijk, Beersma,


and van den Hoofdakker (1989) calculated the decay rate of Process S for two different


age groups, 20-28 and 42-56. They found a decay rate of -0.225 units/hour for the


younger group and -0.155 units/hour for the middle age group. The results listed in


Table 7.3 need to be scaled by 60 minutes/10.7 minutes, due to differences in time


scaling, however when rescaled the resulting decay rate based on the data from the


UK study is -0.1794 units/hour which is in-between the results found for the two age







232


0 50 100 150 200 250 300 350
S4
S3
S2
S1


REM
Wake


Time (min)


(a)


0 50 100 150 200 250 300 350
0


2


4


SW
A


Time (min)


(b)


Figure 7.24. (a) Sleep Stages. The start of each REM period is
indicated by a red dot and the end of each REM period is marked by
a black dot. (b) Estimated SWA (blue), 95th percentile of SWA for
each NREM period (red dot) and the estimated Homeostatic Process
S (black-dashed line).
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groups by Dijk, Beersma, and van den Hoofdakker (1989). This gives an indication


of how the coefficients of Process S need to be varied in order to account for different


age groups.


7.4.2 Slow Wave Activity


The model for slow wave activity that is being used is not the model in Massaquoi and


McCarley (1992). The model in Achermann, Dijk, Brunner, and Borbély (1993) is


being used. The primary reason for this is that this model of SWA has separate terms


for controlling (1) the fall of SWA due to the onset of REM sleep and awakenings


and (2) the rise of the slow wave activity. The equations for the slow wave model are,


Ṡ = −gc SWA (7.26)


and


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−


fcw (SWA− SWAL)E.


(7.27)


The parameters in the slow wave activity equation were estimated using the 1999


UK data. The initial value of slow wave activity (SWAo), was determined by first


identifying the onset of sleep, which is the first occurrence of Stage 2, and then


calculating the mean of the slow wave activity for the first minute of sleep. The


method Achermann, Dijk, Brunner, and Borbély (1993) used to estimate SWAL was


used. They set the parameter SWAL, which is the lower bound for the level of slow


wave activity, equal to a value that is five percent lower than the lowest value of slow


wave activity observed during periods of REM sleep. The mean values and standard
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deviation for these two coefficients, estimated using the 1999 UK data, are listed in


Table 7.3.


To calculate the rise parameter (rc), the first 30 minutes of the slow wave activity


was extracted. The maximum value for the segment of SWA was calculated and


only the portion of the segment between the first point and the maximum value was


used to calculate rc. An example of SWA for one subject and the portion used to


calculate rc is shown in Figure 7.25 (a).
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Figure 7.25. SWA activity (blue), REM periods (black) and (a) por-
tion of segment used to calculate rc (red) and (b) portion of segment
used to calculate fc (red).


To calculate rc, a continuous time system identification approach/least squares


approach was used (Doughty, Davies, and Bajaj, 2002). When SWA is increasing


in level the second term in Equation (7.27), REMT , is equal to zero. Therefore the


equation is,


˙SWA = rc SWA (S − SWA) . (7.28)
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The value of ˙SWA was calculated by taking the derivative of the segment of SWA.


Taking the derivative of a signal can increase high frequency components therefore the


derivative was also low pass filtered. The value of S used was based on the estimated


value of S.


To calculate the fall parameter (fc), 15 minutes of the slow wave activity before


each REM period plus the slow wave activity within the first quarter of each REM


period was extracted. The maximum value of SWA for the segment was calculated


and only the portion of the segment between the maximum value and the last data


point was used to calculate fc. An example of SWA and the portion used to calculate


fc are shown in Figure 7.25 (b).


The value of fc can be calculated in a similar manner as rc in which the equation,


˙SWA− rc SWA (S − SWA) = −fc (SWA− SWAL), (7.29)


is solved for fc. The model parameters rc and fc were calculated in order to obtain an


estimate of the rise and fall of slow wave activity and to verify that the values in the


literature are also applicable to the UK data. However, real slow wave activity is more


variable than the slow wave activity simulated by using the model due to awakenings


and other ongoing activity, therefore, for all subject nights of data a reasonable single


rise and fall constant could not be calculated. As the mean values for rc and fc for


all subject nights was similar to the mean values reported in the literature, the mean


values were used in the combined model, but it should be noted that they actually


vary by subject and also probably by situation and are perhaps better characterized


by a distribution.


To estimate the characteristics that define the noise (n(t)) in the model Acher-


mann, Dijk, Brunner, and Borbély (1993) calculated the difference between a smooth


version of the slow wave activity and that of an unsmoothed version of the slow
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wave activity. The SWA activity within each 3 minute block of time was averaged


to obtain the smoothed SWAS. The noise time histories can be estimated for each


subject-night by using,


n =
SWA− SWAS


SWAS


, (7.30)


where SWA is the unsmoothed version of slow wave activity and SWAS is the


smoothed version of the slow wave activity. An example of the original SWA, the


smoothed SWA and the noise term n, that was calculated for one subject night using


the UK dataset is shown in Figure 7.26. A distribution of the amplitude of the noise


is shown in Figure 7.27. A Gaussian function was fit to this distribution data and is


shown for comparison. There appeared to be a skewness in the distribution of n(t).


A possible reason for this skew, maybe, is that while most large artifacts in the data


were removed perhaps smaller movement artifacts were not. To examine if this is the


reason for the positive skew, the mean, standard deviation, skewness, and kurtosis


for n(t) were calculated when only portions of the data were considered. The noise


(n(t)) data for each subject night was sorted and the lower and upper 0.5% of the


data was eliminated. The statistics of n were then calculated through time using a


sliding 30 minute segment. This procedure was repeated eliminating larger protions


of the lowest and highest values in the dataset up to an elimination of 5% (the upper


and lower 2.5%) of the data. The results for one subject night are shown in Figure


7.28. When portions of the data were removed, as expected, kurtosis is reduced but


a skew in the data is still prevelant. This is also clearly seen in the data, Figure 7.26


(a). The results for all subjects indicate a skewness in the data, the results of which


are shown in Figure 7.29. Therefore in the model to simulate n a skewed Gaussian


distribution was used based on the parameters in Table 7.3.







237


0 100 200 300 400
−1


0


1


2


ñ


(a)


Time (min)


0 100 200 300 400
0


5


10


SW
A


Time (min)


(b)


Figure 7.26. (a) Estimated noise term ˜n(t), (b) the original SWA
(blue), and smoothed SWA (red).
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Figure 7.27. Probability density function of n(t) (black) and Gaussian
distribution resulting from a fit to the data (red).
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Figure 7.28. Statistics of n(t) with tails of the distribution removed.
Gray to black results from eliminating 1% to 5% of the tails of the
distribution of n(t) before calculating the statistics for each 30 minute
segment.
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Figure 7.29. Range of values for the (a) mean, (b) standard deviation,
(c) skewness, and (d) kurtosis for all subjects based on statistics cal-
culated from each moving 30 minute segment of the estimated random
noise term n(t). The results are shown as a boxplot: red line median,
edge of each box is the lower and upper quartile, the red plus signs
are outliers.
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The last parameter of the SWA model is the fall in slow wave activity due to


noise events (fcw). Achermann, Dijk, Brunner, and Borbély (1993) considered the


rate of fall in slow wave activity when awakenings occur to be four times faster than


the rate when a REM period occurs. However, they assumed that the wake term was


never larger than 1 in their model. A value for E other than 1 was used, and this


will be discussed in the following section. The value for fcw that was chosen was 2


times the value of fc.


Table 7.3. Coefficients of the SWA model estimated from data taken
from 76 subject nights of the 1999 UK study. Mean and standard
deviation of these estimates, based on the data, and original values
from Achermann, Dijk, Brunner, and Borbély (1993).


Coefficient Mean (std. dev) Original Values
gc 0.03 (0.01) 0.0893
fc 2.1 (1.0) 2.5252
rc 0.4 (0.1) 0.5368
So 3.7 (0.7) 3.138
SWAo 0.8 (0.3) 0.468
SWAL 0.17 (0.04) 0.1
nt−mean -0.017 (0.005) 0
nt− std 0.25 (0.04) 0.182
nt− skew 0.5 (0.1) 0
nt− kurtosis 3.0 (0.2) 3


7.4.3 The Wake Term


The characteristics of the excitation term E, that can lead to spontaneous non-noise


induced awakenings, was calculated by using the data from no noise laboratory nights


in the UK study. It was decided to use the power in the gamma band of the EEG


signal (activity between 25 and 35 Hz) to represent this term. The calculation of


activity in the different frequency bands of the EEG signal were described in Section
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6.4. It is noted that this band contains both movement activity and EEG activity,


however, as movements are an indicator of awakenings this was considered acceptable


activity to include in the Wake term. The time between the occurrence of these pulses


or the inter-arrival time was calculated. An example of the gamma activity and the


definition of duration, amplitude and inter-arrival time are shown in Figure 7.30 and


the distributions of these parameters are shown in Figure 7.31. The distribution for


the inter-arrival time appears to be exponential. The mean value for the inter-arrival


time was 6.1 minutes. The value used by Massaquoi and McCarley (1992) in their


model was 11.8 minutes, therefore, the inter-arrival time found in the UK dataset was


half the value of the original model.
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Figure 7.30. An example of gamma activity, arrows indicate inter-
arrival time, duration and amplitude of the excitations.


The values for the duration of N(t) ranged from 3 seconds to 1.2 minutes, with


a mean of 0.5 minutes and a standard deviation of 0.2 minutes. The minimum and


maximum values for the duration ofN(t) used in the original Massaquoi and McCarley


model were 2.7 minutes and 5.4 minutes. This range is obviously too high and does not


allow brief awakenings to be predicted. The amplitude of N(t) is difficult to determine


based on the gamma activity. There is not a direct relationship between the level


of the impulses in the model and the level of gamma activity. However, the current
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Figure 7.31. (a) Distribution of inter-arrival times between estimated
N(t), (b) distribution of the duration of N(t), and (c) distribution of
the amplitude of N(t) in the UK dataset.
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approach used to estimate the amplitude was to take the log based 10 of the power


in the gamma band. The minimum value obtained was 2.0, the maximum value was


5.4, the mean was 3.1, and the standard deviation of the data was 0.65. A summary


of the parameters for the spontaneous wake model are in Table 7.4. To model N(t)


for spontaneous awakenings, the duration and amplitude was defined by Gaussian


distributions based on the statistics that were calculated and the inter-arrival time


was defined by an exponential distribution.


Table 7.4. Estimated values for the statistics of the impulsive excita-
tion (N(t)) that leads to the spontaneous wake model based on the
UK dataset and original values from Massaquoi and McCarley (1992).


Coefficient Estimated Value Original Values
mean inter-arrival time 6.1 minutes 11.8 minutes
minimum duration 3 seconds 2.7 minutes
maximum duration 1.2 minutes 5.4 minutes
mean duration 0.5 minutes 4.0 minutes


7.4.4 Slow REM Sleep


The Massaquoi and McCarley model (1992) contains two equations for defining REM


sleep, one representing REM-ON or REM promoting neuron activity (X) and one


representing REM-OFF or REM inhibiting neuron activity (Y ) (see Equations (5.47)


and (5.48)). The difficulty in estimating the parameters of the REM model is that the


UK dataset can be used to estimate the timing of REM sleep but not REM neuron


activity.


Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) tried to estimate the


parameters of the REM sleep model based on data. They calculated the parameters


for the Lotka-Volterra REM model by using a stochastic search of parameters and
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minimizing the difference between slow wave activity from their dataset and the slow


wave activity that was predicted. One problem with their parameter estimation


method is that they calculated only one set of parameters for the model, i.e. they


assumed that the duration of successive REM periods are the same.


From the UK dataset, the mean duration of REM and NREM sleep were calculated


for the first 4 REM periods based on 76 subject nights of data. The results are shown


in Figure 7.32. The mean duration of REM sleep does increase during the night while


the duration of NREM sleep decreases. Therefore, the assumptions made by Ferrillo,


Donadio, De Carli, Garbarino, and Nobili (2007) in estimating the parameters of their


model may be incorrect.


1 2 3 4
15


20


25


30


REM Period


D
ur


at
io


n 
(m


in
)


(a)


1 2 3 4
40


60


80


NREM Period


D
ur


at
io


n 
(m


in
)


(b)


Figure 7.32. (a) REM sleep duration and (b) NREM sleep duration.
Mean values and ± one standard deviation of the estimated mean,
estimated from the 1999 UK study.


A different approach than that of Ferrillo et al. (2007) was used to estimate the


REM model parameters. The parameters were estimated separately for each REM


period. Signals for REM-ON and REM-OFF activity were created based on the


timing of REM sleep in the UK data. The equations for the simplified REM model


were used and these are:


Ẋ = aX − bXY, (7.31)
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Ẏ = −cY + dXY. (7.32)


If an assumption is made that c and d are equal and a and b are equal, which is a


necessary step in order to create REM-ON and REM-OFF signals, then the equations


are,


Ẋ + aX(Y − 1) = 0, (7.33)


and


Ẏ + cY (1−X) = 0. (7.34)


When Y is varying slowly compared to X the solution is approximately of the form,


X = e−a(Y−1)t, (7.35)


and when X is varying slowly compared to Y then Y is approximately,


Y = e−c(1−X)t. (7.36)


Therefore, Y grows when X is greater than 1 and decays when X is less than 1, and


X grows when Y is less than 1 and decays when Y is greater than 1. The value


of X was set equal to one at the start of the REM period and at the end of the


REM period. The value of Y was set equal to 1 when X is at a maximum and it


reaches its maximum level at the end of the REM period. Based on these values, an


exponential function was used to create the rise and decay of each signal and where


the exponential functions join the transition was smoothed by rounding out the slope


of the signals. An example of the signals generated with this approach is shown in


Figure 7.33 (a) and the smoothed signals are shown in Figure 7.33 (b).
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Figure 7.33. An example of creating REM-ON (X) and REM-OFF
(Y ) signals based on the timing of REM sleep periods in the 1999 UK
study data and Equations (7.33) and (7.34).


To estimate the parameters of the X and Y model the derivative of both of the


constructed signals were calculated and then the following two linear equations in


parameters (a and b, and c and d):


Ẋ


X
= a− bY, (7.37)


Ẏ


Y
= −c+ dX, (7.38)
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were fitted to the data. An example of the estimated linear relationships for REM-ON


and REM-OFF activity are shown in Figure 7.34.


Using the estimated parameters, the REM-ON and REM-OFF activity was then


calculated by solving Equations (7.31) and (7.32) using ode45 in Matlab. Based on


the obtained solution, the value for the coefficient a was altered in order to align the


calculated REM-ON activity (when X is greater than 1) with the actual start of REM


sleep in the survey data. Similarly the value for c was altered, if needed, in order to


better match the duration of the calculated REM activity and the duration of REM


sleep in the UK data. The coefficients, a and c, were increased or decreased until the


error between the duration and start time of actual and simulated REM sleep, was


less than 2 minutes. However, sometimes a low error value could not be obtained


due to brief or long REM periods. The error for these values for all REM periods


in the UK dataset are shown in Figure 7.35. The duration of NREM sleep is the


duration prior to the start of a REM period, therefore it is related to the start time of


each REM period. An example of the agreement between a created signal for REM-


ON activity and the REM-ON activity, calculated using the estimated parameters, is


shown in Figure 7.36. The interest was in matching the start and end of each REM


signal, when the REM-ON signal is greater than 1.


The estimated coefficients are plotted against the duration of a REM sleep period


in Figure 7.37. The coefficients, c and d, decreased with REM duration. The decrease


in c with REM duration is partly due to the fact that it was systematically altered


so that the duration of the simulated REM sleep period matched the values derived


from the UK dataset. The estimated coefficients are plotted against the duration of


NREM sleep in Figure 7.38. The decrease in a with NREM sleep duration is again


partly due to the fact that it was altered so that there was agreement between the


simulated and actual start time of each REM sleep period.
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Figure 7.34. An example of the fitting of REM sleep model parameters
of (a) the REM-ON model and (b) the REM-OFF model. Blue line
is based on created signals and the red line is the linear model using
the estimated parameters.


The mean and standard deviation of the estimated coefficients for the first four


REM periods were also calculated and are shown in Figure 7.39. The coefficients


a and b show similar increasing trends while coefficients c and d both show similar


decreasing trends during the night. The change in all parameters though during


the night was small. Therefore, for the slow REM model, only a and b were varied


with time. The variations are modeled in a similar manner to that in the original


Massaquoi and McCarley model, i.e., with a sinusoidal term which has a period of 24


hours. The equation for which is,


dc = 1.55 + 0.8sin(0.0467t+ 4). (7.39)
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Figure 7.35. (a) Error between the estimated start time of each REM
sleep period and the value derived from the UK dataset. (b) Error
between the estimated duration of the REM sleep period and the
value derived from the UK study data. The NREM duration is for
the NREM period just before the REM period.


Note again that in the Massaquoi and McCarley model time is measured in units and


1 unit is equal to 10.7 minutes.
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Figure 7.36. The created REM signal based on data and a simplified
REM model (Equations 7.31 and 7.32) (blue/dark gray) and the simu-
lated REM signal (green/light gray) using model parameters obtained
from a linear fit to the study data.
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Figure 7.37. Estimated parameters of slow REM model versus the
duration of REM sleep.
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Figure 7.38. Estimated parameters of the slow REM model versus
the duration of the NREM sleep period prior to the REM period.
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Figure 7.39. Mean and standard deviation of the estimated REM
model parameters for each REM period.


7.5 Overview of The Model So Far


The complete nonlinear model is the result of all issues addressed and noted in this


chapter and what follows in this and the following sections. So far, to recap, the SWA,


S, the slow REM (X, Y ) model and the fast REM model have been described. These


models contain an impulsive term based on N(t). N(t) is a series of square pulses


whose amplitudes and durations are Gaussian distributed, and the inter-arrival time


has an exponential distribution. The parameters of these models have been estimated


based on the data from the UK study. The following issues, though, still need to be


resolved.
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1. The desire is to have a model that results in the prediction of sleep stages.


To calculate different stages, thresholds based on the level of SWA need to be


assigned.


2. How should a noise event impact the sleep model? One possibility is to increase


the number of excitations N(t) and this will be a function of the LAmax of the


noise event.


These issues will be addressed in the following sections.


7.6 Thresholds for Scoring Sleep Stages


The output of the model being developed includes REM sleep, slow wave activity


and awakenings. However, it is desired to also estimate different NREM stages (i.e.


Stage 2 and Stage 3/4). In order to determine at what level to set the thresholds


for this classification, first the mean, minimum and maximum level of SWA activity


associated with Stage 3/4, Stage 2, and Stage 1/Wake were calculated for the 76


subject nights of the UK study. The results are listed in Table 7.5. Based on these


levels a set of scoring rules were developed and are as follows:


1. Stage 3/4 was scored if SWA was greater than 2.75.


2. Stage Wake/1 was scored if SWA was less then 0.3.


3. Stage Wake/1 was scored if SWA was less than 1 and E was greater than 0.5.


4. At all other times when REM sleep was not occurring, stages were scored as


Stage 2 sleep.


To evaluate the accuracy of these thresholds, simulations of slow wave activity for


each subject night of data from the 1999 UK study, were completed using the model
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parameters estimated in the previous sections, and the timing of REM sleep. The


gamma activity for each subject was used to create the impulsive excitation term E.


The fast REM model was not used for these simulations as the focus was on setting


thresholds for scoring NREM sleep. Based on the thresholds and simulated levels of


SWA, sleep stages were assigned to each 30 second epoch. The agreement between


the actual scored sleep stages in the UK dataset and the simulated sleep stages was


calculated. The agreement was defined as the fraction of all stages that were correctly


identified. The overall agreement statistics are listed in Table 7.6 and the mean and


standard deviation of the fraction of correctly identifying stages for each sleep stage is


listed in Table 7.7. An example of the simulation that yielded the highest agreement


is shown in Figure 7.40, and the simulation that had the lowest agreement is shown


in Figure 7.41.


Table 7.5. Statistics of slow wave activity during different sleep stages
for 76 subject nights in the 1999 UK dataset.


Sleep Stage Mean (std. dev of data) Min. Max.
Stage Wake/1 0.42 (0.14) 0.14 1.24
Stage 2 1.06 (0.21) 0.67 1.53
Stage 3/4 3.41 (0.52) 1.86 5.08


Table 7.6. Overall statistics of the fraction of times there was agree-
ment in sleep stage classification between scoring of the original data
and automated scoring of simulated data for each of 76 subject nights.


mean 0.66
std. dev 0.07
max 0.79
min 0.43







256


0 50 100 150 200 250 300 350
0


5
E


(a)


0 50 100 150 200 250 300 350
0


0.5
1


R
E


M


(b)


0 50 100 150 200 250 300 350
0
2
4


SW
A


E
st


im
at


ed


(c)


0 50 100 150 200 250 300 350
0
2
4


SW
A


O
ri


gi
na


l (d)


0 50 100 150 200 250 300 350
S3/S4


S2
REM


Wake/S1


E
st


im
at


ed


(e)


0 50 100 150 200 250 300 350
S3/S4


S2
REM


Wake/S1


Time (min)


O
ri


gi
na


l


(f)


Figure 7.40. Best agreement between simulated and actual slow wave
activity for one subject night of the 1999 UK dataset, thresholds used
for scoring sleep stages (red-dashed lines).
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Figure 7.41. Worst agreement between simulated and actual slow
wave activity for one subject night of the 1999 UK dataset, thresholds
used for scoring sleep stages (red-dashed lines).
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Table 7.7. Statistics of the fraction of times that there was agreement
in sleep stage classification between scoring of the original data and
automated scoring of simulated data for each of the 76 subject nights,
for each sleep stage.


Sleep Stage Mean (std)
Wake/S1 0.43 (0.17)
Stage 2 0.73 (0.09)
Stage 3/4 0.51 (0.29)


7.7 Adding Noise Dependence to Model


As discussed N(t) is impulsive noise. The inter-arrival time of N(t) is exponentially


distributed and the amplitude and duration are both defined based on Gaussian


distributions. The N(t) term is low-pass filtered to obtain E which is used in the


slow wave model and as mentioned in Section 7.3, is rescaled and also used in the fast


REM model. Some of the examples shown for the fast REM model have used scaled


versions of N(t) (square impulses), not E. A diagram of the use of the impulsive


terms is shown in Figure 7.42. The concept for introducing noise into the model was


to create an excitation term for spontaneous (non-noise related excitations) and one


for aircraft noise related excitations. The two components, both non-noise induced


and noise induced excitations, are summed together and then fed into other parts of


the model.


In order to determine how to add a noise level dependence to the nonlinear dy-


namic model, the amplitude of E from the UK data, was examined when noise events


of different maximum levels occurred. Characteristics of E including the duration


and amplitude of the events were examined, for every aircraft event that occurred


during sleep Stage 2. Due to the limited amount of data, only two noise groups were


examined: events which had a noise level below 50 dB(A) and events that had a max-


imum level greater than 50 dB(A). A small difference in amplitude of E was found,
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Figure 7.42. Diagram of impulsive noise as used in nonlinear dynamic model.


however, the primary difference was in the number of events that elicited additional


impulses. Therefore, when modeling the effect of noise on sleep a linear relationship


between the percentage of the population that will have a response to the noise event


and the Indoor LAmax of an event was created. The equation used is,


fraction responding = 0.0084LAmax − 0.1256. (7.40)


Only LAmax levels above 35 dB(A) cause a change in the fraction responding. Re-


searchers have found from studies on aircraft noise and sleep that aircraft events with


a LAmax level below 35 dB(A) do not increase the probability of awakening (Bas-


ner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet, Müller, Müller, Plath, Quehl,


Samel, Schulze, Vejvoda, and Wenzel, 2004). The percent increase in response with


noise level was added based on existing awakening models (see Chapter 3 for more


information) because the data from the UK study was limited and could not be used


to create a reliable dose response relationship. The duration and height of N(t) is as-


signed randomly based on normal distributions with mean and standard deviation as
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defined in Table 7.8. Perhaps with more data, a variation in amplitude and duration


with noise level will be identified and can be added to the model.


7.8 Combined Model


The components of the nonlinear dynamic model that was developed include a fast


and a slow REM model, a SWA activity model, and impulsive excitations N(t) for


both spontaneous and noise induced awakenings. To simulate the sleep pattern of a


person for a single night the following steps are performed:


1. The spontaneous excitation term N(t) is generated based on an exponential


inter-arrival time and Gaussian duration and amplitude distributions and is


low-pass filtered to obtain E(t).


2. If aircraft noise is present, the additional noise excitation term is generated and


then the spontaneous and noise-induced excitation terms are summed together.


3. Both noise and spontaneous excitation terms are scaled to generate w(t) for the


fast REM model.


4. The excitation term E(t), that includes both spontaneous and noise induced


activity is fed into the slow REM activity model. The output of the slow REM


model is REM-ON and REM-OFF activity which is used to generate a REM


sleep indicator which is equal to 1 when the level of REM-ON X activity is


above a level of 1. This REM indicator defines the REM periods.


5. The REM indicator that is generated is used to signal when to model fast REM


activity. The term w(t) is fed into the fast REM model in order to predict


transitions to Stage Wake during a REM period.
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6. The REM indicator and excitation term (E(t)) are fed into the Slow Wave Ac-


tivity Model. For the SWA model, the rise and fall terms for the slow wave


activity (fc, rc), and the mean, standard deviation, and skewness of the noise


term (n(t)) are not varied for each simulation (one person night). The other pa-


rameters are varied according to Gaussian distributions, the mean and standard


deviations of which are listed in Table 7.8.


7. Based on the SWA, REM-Indicator, excitation terms, and fast REM model,


sleep stages are assigned for each 1 second. In order to compare predicted sleep


stages though to other existing models, the probability of being in each sleep


stage for each 30 second epoch is calculated from the 1-second sliding sleep


stage classification and then a sleep stage is assigned according to the highest


probability.


In Table 7.8 is a list of the model parameters and the values used in the simulations.


An example of the individual output components of the combined model are shown


in Figure 7.43. An example of sleep stages calculated from a simulation with and


without aircraft noise is shown in Figure 7.44. For the simulation with aircraft events,


there were 32 evenly spaced events with an LAmax of 60 dB(A). Note the additional


awakenings that occur during the REM sleep period.


The predictions of the nonlinear model were compared to those of Basner’s Base-


line Markov model (2006). Six hundred simulations, each simulation contains a differ-


ent choice of random variables for parameters that are described by distributions, for


baseline conditions without aircraft noise events were completed using the nonlinear


model. The probability of being in each sleep stage was calculated. For these simu-


lations the threshold used to assign Stage 3/4 was lowered to 2 instead of 2.75. The


reason is that perhaps the properties of N(t) are more time varying, with less excita-


tions occurring during Stage 3/4, this should be explored in the future. The results
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Figure 7.43. Example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM which is
the X or REM-ON activity, REM sleep period indicator, Fast REM
model and the spontaneous and noise induced excitation terms.
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Table 7.8. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution, + parameters varied according
to a uniform distribution, and x parameter varied according to an
exponential distribution.


SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean


std. dev 0.67 std. dev 0.1 inter-arr
6.1 min


*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min


*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min


SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0


fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65


fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0


rc 0.4 +Yo min 0.5
max 3.0


n(t) mean 0
std. dev 0.2
skewness 0.53


are shown in Figure 7.45. Similar predictions for time spent in Stage Wake/Stage


1 were obtained from both of the models. The Markov model did, however, predict


a higher probability of being in Stage 3/4 at the start of the night and the increase


in the probability of being in REM sleep toward the end of night was greater for


that model. However, the subjects in the UK study did have less Stage 3/4 sleep


than those in Basner’s study which might explain some of the difference in predicted


probabilities. Note that the nonlinear model has been tuned to the UK study data


and the Basner model to data from a laboratory study (Basner et al., 2004).


Simulations with the nonlinear model were also conducted for scenarios with 16


and 32 noise events of different noise levels. For each simulation, the noise events
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were all of the same level. Fifty simulations were conducted for each noise level which


ranged from 40 to 90 dB(A), LAmax. The increase in the predicted probability of being


awakened with noise level is shown in Figure 7.46 and the change in duration spent in


the Slow Wave, REM, and Wake states is shown in Figure 7.47. Fifty simulations for


each condition were also completed using Basner’s Markov model with added noise


level dependence (see Chapter 4). The probability of awakening predicted by the


nonlinear model did increase with noise level. Also an increase in duration spent in


Stage Wake and a reduction in time spent in Stage 3/4 was found, and the changes


were greater for nights when there were 32 events than for nights with only 16 events.


The change in REM sleep was less predicable in that it did not vary with noise level.


The results for the probability of awakening is in agreement with the modified version


of Basner’s Markov model. The nonlinear model does predict a higher duration spent


awake and a greater reduction in slow wave sleep. However, in Basner’s laboratory


study (Basner and Samel, 2005) when subjects were exposed to 32 noise events at


an LAmax of 70 dB a reduction in Slow Wave Sleep of 10.7 minutes was found, the


prediction of the nonlinear model is a reduction of 10 minutes. Also an increase


in duration of time spent awake of 11.4 minutes, for the same number and level of


events, was found in Basner’s Laboratory study while the nonlinear model predicts


12.6 minutes. It is not clear whether the the nonlinear dynamic model needs to


be altered to predict less change in sleep stage duration or if the altered version of


Basner’s Markov model needs to be modified further to predict a larger change in


duration, perhaps both modifications are needed.


7.9 Conclusions


The Massaquoi and McCarley sleep model had two primary limitations: it had slow


dynamics and could not predict brief awakenings during the night and it could not
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Figure 7.45. Probability of being in each sleep stage predicted for a
baseline no noise night using the developed nonlinear model (blue)
and Basner’s Markov model (red): (a) Wake/S1, (b) REM, (c) S2,
(d) S3/S4 Stages.
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Figure 7.46. Percent awakened predicted with the nonlinear dynamic
model developed in this research (blue/dark gray) and the modified
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Figure 7.47. Change in duration of Wake/S1, SWS, and REM sleep
for (a,c,e) 16 evenly spaced events and (b,d,f) 32 evenly spaced events.
The nonlinear dynamic model predictions are shown in blue/dark gray
and the predictions from the modified version of Basner’s Markov
model are shown in red/light gray.
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predict awakenings during REM sleep. To overcome these challenges a modified


version of the Massaquoi and McCarley sleep model was developed. With this model


it is possible to predict spontaneous and noise induced awakenings, slow wave activity


and fast and slow REM sleep. The parameters of the developed model were estimated


using the data from the 1999 UK data. The predictions of changes in sleep stage


duration and increase in probability of awakening for events of different noise levels,


using the developed nonlinear model, was found to be similar to other sleep models.
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8. NOISE MODEL COMPARISONS FOR AIRPORT OPERATIONS


Data on flight operations from two US airports, aircraft and flight tracks, were ob-


tained. This was used as input to noise prediction software so that noise levels inside


houses could be estimated for each aircraft event. By using this information, it is


possible to compare sleep disturbance model predictions for different models and for


different flight operation scenarios. Comparisons of both awakening model predictions


and changes in sleep stages predicted using Basner’s Markov model and the nonlinear


dynamic sleep model developed in this research are described in this Chapter.


8.1 Airport Noise Modeling


Flight operations data were obtained for two US airports. The airports will be referred


to as Airport A and Airport B. The data included the arrival and departure flight


paths and the timing of aircraft events, whether they occurred during the day, evening,


or night. The specific time of each flight operation was obtained for one of the


airports. Information on type of aircraft and distance the aircraft was traveling was


also obtained.


A list of aircraft responsible for approximately 90 percent of the operations at


each airport was made, to reduce the amount of computation. This was not felt to


be a significant problem because a few aircraft made up the majority of operations.


By having a smaller number of aircraft it was feasible to calculate the noise for these


aircraft on many different flight paths. For Airport A there were 3 runways, 89 arrival


and 80 departure flight paths. For Airport B there were 4 runways, 44 arrival and 76


departure flight paths. The primary aircraft for Airport A are given in Table 8.1 and
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the primary aircraft for Airport B are listed in Table 8.2. The departure standard,


in both tables, refers to how far an aircraft is traveling. The higher the departure


standard the farther the aircraft is traveling. In general an aircraft that is flying


farther will be heavier at takeoff due to a greater amount of fuel and it will take


longer for the aircraft to reach higher altitudes. Therefore, for the same aircraft, as


the departure standard increases so do the noise levels on the ground.


Table 8.1. Aircraft at Airport A.


INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
7373B2 Boeing 737-300/CFM56-3B-2 1, 2, 3, 4
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 3, 4, 5
767300 Boeing 767-300/PW4060 1, 2, 3, 4
A300-622R Airbus A300-622R/PW4158 1, 2, 3, 4
BEC190 Beech 1900 1
CL601 CL601/CF34-3A 1
CNA560 Cessna 560 Citation V 1
EMB145 Embraer 145 ER/Allison AE3007 1
EMB170 Embraer EMB-170 1
FAL20 FALCON 20/CF700-2D-2 1
MD11GE MD-11/CF6-80C2D1F 1, 2
MD82 MD-82/JT8D-217A 1, 2
SD360 SD360 1


For the consolidated list of aircraft, the LAmax and SELA noise levels for single


event operations on every flight path were calculated by using the Federal Aviation


Administration’s Integrated Noise Model (INM) (FAA, 2007). The grid size used for


the calculations was 0.1 by 0.1 nautical mile. Different flight operation scenarios were


created based on the single event data and then sleep disturbance was predicted using
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Table 8.2. Aircraft at Airport B.


INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4, 5
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
767CF6 Boeing 767-200/CF6-80A 1, 2, 3, 4, 5, 6
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737400 Boeing 737-400/CFM56-3C-1 1, 2, 3, 4
737500 Boeing 737-500/CFM56-3C-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
737800 Boeing 737-800/CFM56-7B26 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 4, 7
767300 Boeing 767-300/PW4060 1, 2, 3, 4, 5, 6, 7
777200 Boeing 777-200ER/GE90-90B 1, 2, 3, 4, 7
A319-131 Airbus A319-131/V2522-A5 1, 2, 3, 4
A320-232 Airbus A320-232/V2527-A5 1, 2, 3, 4
A321-232 Airbus A321-232/IAE V2530-A5 1, 2, 3, 4
A340-211 Airbus A340-211/CFM 56-5C2 1, 2, 3, 4, 5, 6, 7
CL600 CL600/ALF502L 1
CLREGJ Canadair Regional Jet 1
DHC8 DASH 8-100/PW121 1
EMB14L Embraer 145 LR / Allison AE3007A1 1
EMB120 Embraer 120 ER 1


Pratt and Whitney PW118
MD82 MD-82/JT8D-217A 1, 2, 3, 4
MD83 MD-83/JT8D-219 1, 2, 3, 4
SF340 SF340B/CT7-9B 1


different models including the ANSI sleep model, Basner’s Markov Model, and the


nonlinear dynamic model developed in this research.


8.2 Awakening Model Comparisons


A baseline scenario for Airport A and Airport B was created. The scenario for Airport


A had 150 operations and the scenario for Airport B had 281 operations. These


numbers were the same for all the different scenarios investigated at each airport.
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The aircraft and flight paths used were assigned randomly after calculating usage


statistics for both airports. The percentage of the population awakened at least once


for the airport scenarios was predicted using the ANSI standard method, however


no time dependence was used, and different dose-response relationships were used


(see Chapter 3) in order to compare models in a more comprehensive manner. Also


as the sleep models are based on indoor noise levels and INM only predicts outdoor


levels, for all simulations an outdoor to indoor noise attenuation of 25 dB(A) was


used. In the future, it would be desirable to improve the outdoor-to-indoor prediction


using characteristics of typical houses, window opening habits, house orientation, etc.


This 25 dB(A) level of attenuation is similar to the reduction in noise level found in


numerous studies (WHO, 2009).


The results for the baseline scenario for Airport A is shown in Figure 8.1 (a,b,c)


for predictions calculated using the the ANSI (2008), FICAN (1997), and Basner et


al. (2004) awakenings models. The results in Figure 8.1 (d,e,f) are percent awakened


at least once predictions for a scenario in which 25 of the 150 operations were assigned


to the third cross runway. For comparison, the 40 and 55 dB(A) Lnight,outside contours


are shown. According to the WHO Night Noise Guidelines for Europe (2009) an


Lnight,outside of 40 dB(A) should not be exceeded in order to prevent adverse health


effects caused by noise. However, as this contour encompasses a large area and it


would be difficult to reduce noise levels below this level, reducing nighttime noise


to levels below an Lnight,outside of 55 dB(A) is the target goal. The ANSI standard


model was found to predict the lowest percent awakened at least once. This is due to


the fact that the model is based on behavioral awakening data. This low prediction


(compared to that of other models) is particularly noticeable for the scenario in which


there were 25 events on the cross runway.
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Figure 8.1. Gray-scale shading indicates percent awakened at least
once. Black to dark gray 75%, dark gray to light gray 50%, and
light gray to white 25%. (a,b,c) Scenario 1 and (d,e,f) Scenario 2 for
Airport A. (a,d) ANSI, (b,e) FICAN and (c,f) Basner et al. model.
Red contours are the 40 and 55 dB(A) Lnight,outside contours.
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The number of people predicted to be awakened in communities surrounding Air-


port A and Airport B was also calculated. Population data was obtained from the US


census and the number of people living within each 0.1 by 0.1 nautical mile block was


calculated. The number of people in each block was then multiplied by the percent


awakened at least once predicted using Basner et al.’s dose-response model. In Figure


8.2, the number of people living in each block for both Airport A and Airport B are


shown and in Figure 8.3 the number of people predicted to be awakened at least once


is shown. For comparison the Lnight,outside 40 to 55 dB(A) contours are also plotted.


People living outside the WHO guideline of 55 dB(A) are clearly still awakened, this


is especially noticeable at Airport B which has a larger population of people living


near the airport. Awakenings occurred out to the 40 dB(A) contour.


40


55 40


55


Figure 8.2. Population distribution living around the Airports. (a)
Airport A and (b) Airport B. Red contours are the 40 to 55 dB(A)
Lnight,outside contours.
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Figure 8.3. Number of people awakened at least once around the
Airports, predicted using Basner et al.’s awakening model. (a) Airport
A and (b) Airport B. Red contours are the 40 to 55 dB(A) Lnight,outside


contours.
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8.3 Sleep Disturbance Comparisons for Different Time Scenarios


Sleep disturbance predictions for different distributions of aircraft events during the


night were also examined. Comparisons of sleep disturbance predictions made us-


ing the ANSI standard model with time dependence, a modified version of Basner’s


Markov model and the nonlinear dynamic model developed in this research are dis-


cussed.


8.3.1 Addition of Quadratic Dependence on Noise Level to Markov Model


In Chapter 4, a linear dependence on noise level was added to Basner et al.’s Markov


model. For this analysis it was decided to add a quadratic dependence on level in


order to better match Basner et al.’s dose-response awakening model. The equation


for Basner et al.’s (2004) dose-response model is,


%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243. (8.1)


To determine how to change the coefficient values in the Markov model in order to


obtain this same relationship, simulations of the same person nights as in Basner’s


study were completed. Events were evenly spaced throughout the night and the model


coefficients, all denoted by a generic coefficient name c were varied for each simulation


according to the following:


c = NoNoisemodelCoeff+


(NoiseModelCoeff −NoNoiseModelCoeff)mult,


(8.2)


where mult is a multiplier. The coefficients associated with a dependence on time


t were not varied with noise level. The time dependence needed to stay as close


to the original model as possible, as the focus was on comparing predictions for
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different time scenarios, and the change in coefficients made for different noise levels


are based on assumptions and not actual data. The relationship between the predicted


percent awakened and different values of the multiplier mult are shown in Figure 8.4.


The value of the multiplier was then compared to the LAmax level (determined from


Basner’s dose-response relationship) that was associated with the same percent awake,


this is shown in Figure 8.4.
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Figure 8.4. (a) Percent awakened predicted when using Basner’s
Markov model for different values of the multiplier. (b) The rela-
tionship between LAmax and the multiplier, based on Basner’s field
dose-response relationship.


The data, shown in Figure 8.4 (b), was fit with a quadratic function, and the


obtained equation was:


mult = (−8.1508e−5)L2
Amax + (2.5274e−2)LAmax − 0.4321. (8.3)


To verify that this change in the Markov Model coefficient values resulted in the


desired percent awakened dose-response curve, a simulation was performed using the


coefficients with the added noise level dependence. Simulations of 50 person nights


with 32 evenly spaced noise events for each LAmax noise level from 35 to 90 dB(A) in


increments of 5 dB(A) were completed. The percent awakened was calculated for each


noise level based on the simulated dataset. This simulation process was than repeated
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100 times and the mean was calculated and variation of the results examined. The


results from this verification are shown in Figure 8.5.


30 40 50 60 70 80 90
0


20


40


Indoor L
Amax


 (dBA)


%
 A


w
ak


en
ed


Figure 8.5. The obtained relationship between LAmax and the per-
cent awakened using the modified version of Basner’s Markov model.
Basner et al.’s (2004) dose-response curve is shown in blue,the mean
of the simulated results in (green/light gray), and the results of 100
simulations in black.


The equation for the probability of sleep stage transitions with the added quadratic


dependence on noise level has the form:


p(si|sj) = eX∑5
i=0 e


X
, (8.4)


where


X = A(si) + AN1(si)LAmax + AN2(si)L
2
Amax +Bt+ C(si, sj)


+CN1(si, sj)LAmax + CN2(si, sj)L
2
Amax.


(8.5)
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8.3.2 Time-Dependent Model Comparisons


Sleep disturbance, using different models, was predicted for 6 nighttime operation


scenarios. The distributions of aircraft events are shown in Figure 8.6. These time


scenarios were chosen in order to determine the largest difference in sleep disturbance


predictions that might be expected with various scenarios.
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Figure 8.6. The occurrence of events for six nighttime scenarios that
were examined. Each bar represents the number of events during an
hour of the night. There are eight bars per scenario representing each
hour from 11 pm to 7 am. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.


The average number of awakenings for the six scenarios was calculated using the


ANSI standard model with time dependence. The results are shown in Figure 8.7.


The ANSI standard has a time dependence which results in events at the beginning
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of the night having the lowest probability of causing an awakening and events at the


end of the night having the highest probability of causing an awakening. Scenarios


1, 2, 3 in which most of the events are in the middle of the night all caused similar


number of awakenings.
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Figure 8.7. Average number of awakenings for the 6 time scenar-
ios predicted using the ANSI standard model with time dependence.
Black to dark gray 1.5, dark gray to light gray 1.0 and light gray
to white 0.5 awakenings. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.


Using Basner’s Markov model with the added quadratic dependence on noise level


described earlier in this chapter, the average number of awakenings in 50 simulations


at each grid point was calculated for the six time scenarios. The results are shown in
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Figure 8.8. The awakenings that are calculated are EEG, not behavioral awakenings,


they must occur within 90 seconds or three epoch of the start of the aircraft event


and the minimum duration of an awakening is 30 seconds. The results are opposite


to those of the ANSI standard model, more awakenings were predicted when most


events were at the beginning of the night. This difference in predictions is partly due


to the time dependent coefficients of the Markov model. While the baseline no-noise


model predicts an increase in awakenings, the time dependence coefficients of the first


and second noise models are negative. This decrease in awakening response to events


with time is supported by other models (Brink, Lercher, Eisenmann, and Schierz,


2008). In addition, more spontaneous awakenings tend to occur at the end of the


night and therefore more noise-induced and spontaneous awakenings may be jointly


occurring. In Figure 8.9, the results for the beginning of the night and end of the


night scenarios for both Basner’s Markov model and the ANSI Standard model with


time dependence are shown. The differences in percent awakened do appear small


for the two time scenarios. However, when the number of people living within each


contour are calculated the difference is more substantial, these results are given in


Table 8.3.


Table 8.3. Number of people within awakening contours for Airport
A, with 150 events during the night.


Average
Number of Basner Beginning Basner End ANSI Beginning ANSI End
Awakenings of the Night of the Night of the Night of the Night
Per Night
0.5 Awakenings 40,276 35,514 14,302 39,531
1.0 Awakenings 27,281 11,772 2,790 7,657
1.5 Awakenings 17,288 6,513 10 4,829
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Figure 8.8. Average number of awakenings for the 6 time scenarios
predicted using Basner’s Markov model with added quadratic depen-
dence on noise level. Black to dark gray 1.5, dark gray to light gray
1.0, and light gray to white 0.5 awakenings. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.







284


nmi


nm
i


(a)


−3 0 3
−10


−5


0


5


10


0.5
1.0


1.5


nmi


nm
i


(b)


−3 0 3
−10


−5


0


5


10


0.5
1.0
1.5


Figure 8.9. Average number of awakenings for the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and end of the night (blue contours) for
(a) the ANSI standard model with time dependence and (b) Basner’s
Markov model with added quadratic dependence on noise level.
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As the the use of Lnight, outside is advocated by WHO, contours for the scenario in


which most events occurred at the beginning of the night calculated using Basner’s


Markov model and the Lnight,outside contours is shown in Figure 8.10. In addition to


the WHO guidelines, recommendations have also been made based on the acceptable


number of awakenings per night such that 0.5 (Schrenkenberg, Meis, Kahl, Peschel,


and Eikmann, 2010) or 1.0 (Basner, Samel, and Isermann, 2006) additional awakening


on average should be prevented in order to protect communities from the adverse


effects of nighttime noise. Both limits, based on number of average awakenings, were


found to be more protective than the WHO Guideline of Lnight,outside=55 dB(A).
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Figure 8.10. Predictions of the average number of awakenings using
Basner’s Markov model with added quadratic dependence on noise
level for the scenario in which most events are at the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and the Lnight,outside contours (red).


The change in duration of sleep stages predicted using the modified version of


Basner’s Markov model was also examined. The Sleep Quality Index (SQI) (Basner,







286


2006) was calculated based on the duration of time spent in the different sleep stages.


The SQI is defined as,


SQI = 0.657 S2 + 0.840 REM + 0.879 S3 + S4, (8.6)


where S2, S3, S4, andREM are the duration of these stages in minutes. The equation


for SQI linearly weights the duration spent in different stages of sleep. The highest


weighting is for the duration spent in Stage 4 sleep and lowest is for Stage 2 sleep.


Time spent in Stage 1 and Wake are not included in the equation as they are not


restorative. A lower value of the SQI corresponds with worse sleep as REM , S3, and


S4 in the equation would have lower durations. The SQI values for the 6 nighttime


operation scenarios are shown in Figure 8.11. The scenario in which most events


were at the beginning of the night resulted in the lowest SQI values due to a greater


reduction in Stage 3 and 4 sleep. The reduction in Stage 3 and 4 sleep and the


increase in Stage Wake for the 6 time scenarios are also shown in Figures 8.12 and


8.13, respectively.


Due to increased computational complexity of the developed nonlinear model, full


contours for the six scenarios were not able to be generated with the model in time


for inclusion in this thesis. However, simulations for the six different scenarios for


a few grid points was completed. For each of these grid points, 50 simulations were


completed for each noise scenario. For each simulation a different set of random


parameters were selected as described in Chapter 7. For two grid points, the average


number of additional awakenings calculated by taking the difference between the


number of awakenings occurring when noise events are present and the number that


would occur at the same time spontaneously without noise present, are shown in


Figure 8.14.
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Figure 8.11. SQI predictions for the 6 nighttime flight operation
scenarios. (a) Peak in operations in two hours in the middle of the
night, (b) an even distribution, (c) most events in the middle of the
night, (d) a U-shaped distribution, (e) most events at the beginning
of the night, and (f) most events occurring at the end of the night.
Red contours are the 40 to 55 dB(A) Lnight,outside contours.
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Figure 8.12. Reduction in time spent (minutes) in slow wave sleep
for the 6 nighttime flight operation scenarios. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.13. Increase in time spent (minutes) in Wake for the 6 night-
time flight operation scenarios. (a) Peak in operations in two hours in
the middle of the night, (b) an even distribution, (c) most events in
the middle of the night, (d) a U-shaped distribution, (e) most events
at the beginning of the night, and (f) most events occurring at the
end of the night.
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As with modified version of Basner’s Markov model a greater number of additional


awakenings occurred when most of the events were at the beginning of the night


than when most events were at the end of the night. The change in sleep stage


durations, compared to nights without aircraft events, for the two grid points is shown


in Figure 8.15. The change in sleep stage durations did not vary greatly between the


six scenarios. The largest difference occurred between the scenario when most of the


events were at the end of the night and the scenario in which most events were at


the beginning of the night. When most events were at the beginning of the night,


there was a greater reduction in slow wave sleep. However, unlike with the modified


version of Basner’s Markov model predictions, there was not a greater increase in


Stage Wake. A possible reason for this result is that the events at the end of the


night, for the nonlinear dynamic model, might have caused a greater reduction in


slow wave activity than when the events were at the beginning of the night, which


might have increased the duration spent awake due to both spontaneous and noise


excitations.


8.4 Conclusions


Sleep disturbance in communities was predicted for realistic airport operations sce-


narios. Models based on behavioral awakenings were found to predict a low number


of awakenings compared to those based on polysomnography data and may, partic-


ularly, under-predict the impact of nighttime noise on communities for scenarios in


which there are only a few events on a runway or flight-path. For different distribu-


tions of aircraft events during the night, the ANSI standard model predicted opposite


results, in terms of the average number of awakenings, when compared to predictions


from Basner’s Markov model with added quadratic dependence on noise level and


the nonlinear model developed in this research. A possible explanation for this result
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Figure 8.14. Average number of awakenings for 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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Figure 8.15. Change in sleep stage durations for the 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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is that the ANSI standard model does not take into account the difference between


normal and noise disturbed sleep. Also, while the differences in disturbance between


more events at the the beginning and more events at the end of the night scenarios


appeared small for predictions calculated using both the ANSI standard model and


the modified version of Basner’s Markov model when translated into the number of


people impacted differences were quite large for the two scenarios. Therefore, the


number of people awakened by noise as well as contour size should be considered


when evaluating sleep disturbance in communities.


While similar trends were found in the number of additional awakenings and the


reduction in slow wave sleep calculated using the nonlinear dynamic model and the


modified version of Basner’s Markov model, there were differences in the predicted


total duration of being awake due to noise events. For the Markov Model a noise


event impacts the model predictions for 3 epochs, while for the nonlinear model the


noise events can impact the predictions of sleep for a longer duration. This difference


and its impact on predictions needs to be examined further. In addition, methods


for increasing the computation speed of the nonlinear dynamic model need to be


examined so that, in the future, it can be used to predict sleep disturbance contours.
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9. SUMMARY, OUTCOMES AND RECOMMENDATIONS FOR FUTURE


WORK


Nighttime aircraft noise can disturb sleep in communities, causing a decrease in rapid


eye movement and slow wave sleep and an increase in the number of awakenings and


time spent awake. These changes in sleep may lead to both next day and long term


health effects. There have been several models developed to predict noise induced


sleep disturbance. Most of the models, however, are limited because they only predict


the number of awakenings and not a change in sleep structure which may be important


when relating noise-induced sleep disturbance to potential health effects. A Markov


model which can be used to predict changes in sleep structure has been developed


by Basner (2006). However, the model does not have a noise level dependence and


it has many coefficients which makes it difficult to validate due to a large amount of


data being needed to produce estimates of the model parameters.


Nonlinear dynamic models have been developed to predict normal, non-noise in-


duced sleep patterns. This type of model was examined to determine if it could be


used to predict noise induced sleep disturbance. The nonlinear models have limita-


tions: they cannot predict awakenings during REM sleep or brief awakenings during


both NREM and REM sleep as observed in data from sleep studies. Approaches to


modifying a nonlinear dynamic model in order to be able to predict this type of be-


havior was examined. This resulted in the development of a model that could predict


slow wave, and slow and fast REM activity.
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9.1 Outcomes of This Research


To determine how to introduce faster dynamics into the Massaquoi and McCar-


ley model, first a sleep stage classification algorithm was developed. This algo-


rithm includes methods for removing artifacts and for identifying specific features


of polysomnography data including rapid eye movement and sleep spindles. Based on


the extracted features, a sleep stage classification algorithm in which sleep stages are


classified for each 1 second in time was developed. The standard method for scoring


sleep is to assign a sleep stage to each 30 second epoch. The algorithm that was


developed provides a more continuous evaluation of sleep stages than this standard


method. While in this research 30 second epochs were used at 1 second intervals


(sliding through the data), the algorithm is flexible so that shorter or longer epochs


could be used and the amount of overlap of segments changed.


To predict brief awakenings during REM sleep using the Massaquoi and McCar-


ley model (1992), a fast REM activity model was added. The occurrence of rapid


eye movements, identified using the sleep stage classification algorithm, was used to


classify when an individual was awake, in Tonic REM or in Phasic REM sleep. Based


on this classification, the fast REM activity was modeled by using a Duffing equation


with a 5th order stiffness term, undergoing periodic excitations in a region where


chaotic responses are occurring. The Duffing system has 3 stable and 2 unstable


equilibrium positions. When responses were in the regions of the stable equilibria


sleep was classified as being in Stage Wake, Phasic REM, or Tonic REM. The unsta-


ble equilibrium position between Wake and Tonic stable equilbria is a function of the


impulsive excitation in the sleep model.


To introduce aircraft noise into the model, extra impulsive excitations were added.


The probability of having a non-zero excitation response to a noise event increased


from its no-noise/external stimulus level with the maximum A-weighted Sound Pres-
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sure Level (LAmax) of the noise event. The complete nonlinear model has 5 compo-


nents: fast and slow REM sleep, slow wave activity and spontaneous and aircraft-noise


induced excitation models. The parameters of this model were estimated by using


the 1999 UK sleep study data (Flindell et al., 2000). This model can predict similar


durations of sleep stages for baseline non-noise nights as other existing sleep stage


models.


To compare predictions of noise induced sleep disturbance for different models,


two approaches for adding a noise level dependence to Basner’s Markov model were


examined. The coefficients of the three noise models were made a function of the


maximum A-weighted indoor noise level during a noise event. Both a linear and


quadratic dependence on noise level were examined. By using the modified version


of Basner’s Markov Model, with a quadratic dependence on noise level, and the


nonlinear model developed in this research, changes in sleep structure were predicted


for different airport noise scenarios. Both models predicted an increase in awakenings


with noise level, and a decrease in time spent in slow wave sleep. However, the


magnitude of these changes varied between the two models. A further refinement of


the model parameters used in the nonlinear model, and further examination of the


coefficients of the Markov model is still needed.


It should be noted that Basner’s model was tuned using the data the he had


available, the data from the DLR laboratory study. The model developed in this


research was tuned to the 1999 UK study, a relatively small dataset. Therefore some


differences may be due to the unique conditions in the two studies. There is clearly


a need with both models to have data from more studies to make the models more


generally applicable. Having emphasized the differences between the Markov and


nonlinear model predictions in terms of absolute levels it should be noted that while


tuned with different study data, the trends predicted agree very well with each other,
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perhaps evidence that they are predicting more generally observable trends in sleep


behavior.


In summary, the nonlinear dynamic model developed in this research with further


refinement can be a useful tool for predicting sleep disturbance in communities around


airports. One of the advantages of this type of model is that model coefficients can be


related to specific physiological processes and unlike Markov models which require a


large amount of data to estimate the large number of model parameters, the parame-


ters of the nonlinear model can be estimated using data for each subject night. This


perhaps will allow sleep disturbance to be able to be predicted for different subgroups


of the populations such as children, elderly, and individuals with preexisting sleep


problems, by estimating and using a different set of model parameters for each group.


9.2 Recommendations for Future Work


There are many areas in which research on the development of sleep disturbance


models should be conducted. Suggested areas of future research are provided below.


1. Further validation of the nonlinear model. The nonlinear dynamic sleep model


was developed based on one dataset the 1999 UK sleep study. This model should


be further validated by estimating parameters using additional sleep datasets. In


addition, further work should be done on validating and defining the thresholds used


to score sleep stages.


2. Incorporate additional noise characteristics into the model. Only the maximum


indoor noise level was considered in the model. However, researchers examining


the effects of noise on sleep have found that the rise time of the event as well as


spectral characteristics of the sound affect whether an individual will be awakened.


The incorporation of these characteristics into the model through modification of the


excitation term should be explored.
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3. Examine use of the model for predicting sleep in different subgroups of the pop-


ulation. An advantage of the nonlinear dynamic model is that the parameters can


be changed on a more intuitive basis than those of Markov sleep models. For exam-


ple, as individuals age the depth of sleep lightens therefore the decay parameters for


slow wave activity can be altered to reflect these changes. In addition, individuals


with sleep apnea have more awakenings during the night which could potentially be


modeled by increasing the rate of the excitation term. An examination of how to


change the model parameters in order to predict sleep in different populations should


be examined.


4. Improve predictions of indoor noise levels. For the airport noise simulations that


were conducted, outdoor noise levels, LAmax and SELA, were predicted and an out-


door to indoor noise attenuation of 25 dB(A) was assumed. However, one-third octave


band levels can be predicted using noise prediction software, though it is computa-


tionally intensive. By using sound transmission software and housing construction


data, house transfer filters could be developed and perhaps a better prediction of in-


door noise levels could be obtained. Effects of house orientation and window opening


would be interesting issues to explore in communities around airports and this would


be possible with improved sound transmission models.


5. Perform simulations of surveys around airports. There are very few large aircraft


noise and sleep field studies and so there is a limited number of datasets that can be


used to further validate the developed models. As part of designing a future survey,


simulations of the outcomes of different survey designs together with predictions of


sleep disturbance from existing models for current airport operations should be com-


pleted. This will enable researchers/survey designers to determine if the resulting


datasets would provide robust estimates of the parameters of existing sleep models.
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M. Koivuluoma, I. Rezek, S. J. Roberts, A. Värri, P. Rappelsberger, G. Pfurtscheller,
and G. Dorffner. Artifact processing of the sleep EEG in the SIESTA Project. In
Proceedings of the EMBEC, pages 1644–1645, Edinburgh, Scotland, 1999.


D. Schreckenberg, G. Thomann, and M. Basner. FFI and FNI-two effect based
aircraft noise indices at Frankfurt Airport. In Proceedings of Euronoise 2009, Edin-
burgh, Scotland, Oct. 2009.


D. Schrenkenberg, M. Meis, C. Kahl, C. Peschel, and T. Eikmann. Aircraft noise
and quality of life around Frankfurt Airport. International Journal of Environmental
Research and Public Health, 7(9):3382–3405, 2010.


T. J. Schultz. Synthesis of social surveys on noise annoyance. Journal of the Acous-
tical Society of America, 64:377–405, 1978.


J. M. Seigl. Normal human sleep: an overview. In M. H. Kryer, T. Roth, and W. C.
Dement, editors, Principles and Practice of Sleep Medicine. Elsevier, Philadelphia,
Pennsylvania, 4th edition, 2005.


M. H. Silber, S. Ancoli-Israel, M. H. Bonnet, S. Chokroverty, M. M. Grigg-
Damberger, M. Hirshkowitz, S. Kapen, S. A. Keenan, M. H. Kryger, T. Penzel,
M. R. Pressman, and C. Iber. The visual scoring of sleep in adults. Journal of
Clinical Sleep Medicine, 3(2):121–135, 2007.







311
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Appendix A. Noise Metrics


The following are noise metrics that were used in this report.


Cumulative Metrics:


1. Day Night Average Sound Pressure Level (DNL or Ldn):


DNL = 10log10


[
1


24


(∫ 22:00


7:00


pA
2


po2
dt+ 10


∫ 7:00


22:00


pA
2


po2
dt


)]
, (A.1)


pA is the A-weighted sound pressure level.


2. Lnight:


Lnight = 10log10


[
1


8


(∫ 7:00


23:00


pA
2


po2
dt


)]
. (A.2)


Single Event Metrics:


1. LAmax: Maximum A-weighted noise level.


2. SELA: Sound Exposure Level:


SELA = 10log10


(∫ t2


t1


pA
2


po2
dt


)
, (A.3)


where t1 and t2 are defined in Figure A.1.
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Figure A.1. A-weighted noise level (dB(A)) of aircraft noise event.
The maximum noise level (LAmax) and the portion of the sound used
to calculate the Sound Exposure Level (SELA) (red arrow) are indi-
cated.
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Appendix B. Laboratory and Field Studies


This appendix contains tables which list the survey data available for laboratory and


field studies on the effects of aircraft noise on sleep.


Table B.1. Laboratory studies-sleep measurements.


Study # of am/pm Behav. Acti- Motility- Polysom-
People Surveys Awake metry Other nography


Basner et al. 128 X X X
(2004)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X
(1994)
Carter et al. 9 X
(2002)
Dinisi et al. 20 X X
(1990)
Flindell et al. 9 X X X
(2000)
Levere et al. 6 X
(1972) (EEG)
Levere & Davis 12 X X
(1977) (EEG, EOG)
Lukas & Kryter 6 X X
(1970) (EEG, EOG)
Lukas et al. 12 X X X
(1971)
Lukas & Dobbs 8 X X X
(1972)
Marks et al. 24 X X
(2008)
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Table B.2. Laboratory studies-additional measurements.


Study # of ECG Blood Hormone Sleepiness Perfor-
People Pressure Levels, (Objective) mance


etc
Basner et al. 128 X X PST X
(2004) (24)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X X
(1994)
Carter et al. 9 X X
(2002)
Dinisi et al. 20 X
(1990)
Flindell et al. 9 X MSLT X
(2000)
Levere et al. 6 X
(1972)
Levere & Davis 12
(1977)
Lukas & Kryter 6
(1970)
Lukas et al. 12
(1971)
Lukas & Dobbs 8
(1972)
Marks et al. 24 X X
(2008)
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Table B.3. Field studies-sleep measurements.


Study Location # of Social am/pm Behav. Acti-
People Survey Survey Awake metry


Basner Cologne- 64 X X
et al. Bonn
(2004)
Borksy JFK 1500 X
(1976)
Brink Zurich 60 X
et al.
(2008)
DORA Heathrow 4153 X
(1980) Gatwick
Fidell & LAX 1417 X
Jones
(1975)
Fidell Castle Air 85 X X
et al. Force Base
(1995) LAX
Fidell Stapleton 77 X X X
et al. Denver
(2000)
Fidell DeKalb- 22 X X X
et al. Peachtree
(2000)
Flindell Manchester 18 X X
et al.
(2000)
Haral- Athens 140 X
abidis Arlanda
et al. Heathrow
(2008) Malpensa
Ollerhead Heathrow 400- X X
et al. Gatwick Act.
(1992) Stansted 46-
Hume Manchester Poly.
et al. 1636-
(2003) Social


Survey
Passchier- Schiphol 418 X X X
Vermeer
et al.
(2002)
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Table B.4. Field studies-additional sleep measurements.


Study Motility- Polysom- ECG Blood Hormone Perfor-
Other nography Pressure Levels, mance


etc
Basner X X X X
et al.
(2004)
Borksy
(1976)
Brink X
et al.
(2008)
DORA
(1980)
Fidell &
Jones
(1975)
Fidell
et al.
(1995)
Fidell
et al.
(2000)
Fidell
et al.
(2000)
Flindell X X X
et al.
(2000)
Haral- X
abidis
et al.
(2008)
Ollerhead X
et al.
(1992)
Hume
et al.
(2003)
Passchier- X
Vermeer
et al.
(2002)







320


Table B.5. Field studies-noise measurements.


Surveys Metrics- Measurement Measurement Noise
# of of of Metrics


Locations Outdoor Noise Indoor Noise
Basner et al. 64 X X A-weighted
(2004) time histories
Borksy 1500
(1976)
Brink et al. 60 X
(2008)
DORA 29 X LAeq, LAmax, SELA,
(1980) “number above” and


“level exceeded”
Fidell & 3 X Ldn


Jones (1975)
Fidell et al. 45 X X A-weighted time
(1995) histories, LAmax,


SELA
Fidell et al. 38 X X A-weighted time
(2000) histories, LAmax,


SELA
Fidell et al. 12 X X A-weighted time
(2000) histories, LAmax,


SELA
Flindell et al. 18 X X 1-sec A-weighted
(2000) time histories


Haralabidis 140 X A-weighted
et al. (2008) time histories
Ollerhead 8 X LAmax, SELA,
et al. (1992) Hourly LAeq


Hume
et al. (2003)
Passchier- 418 X X 1 sec A-weighted
Vermeer time histories
et al. (2002)
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Table B.6. Field studies-additional noise measurements.


Surveys Noise Recordings Flight Operations
(e.g. .wav) Data


Basner et al. X
(2004)
Borksy Distance from
(1976) airport
Brink et al. Played recordings
(2008) in each subject’s


home
DORA Flight paths,
(1980) Location of


surveyed areas
Fidell &
Jones (1975)
Fidell et al.
(1995)
Fidell et al.
(2000)
Fidell et al.
(2000)
Flindell et al. 10 sec .wav List of aircraft by
(2000) recordings for time of arrival


4 locations and departure
Haralabidis X
et al. (2008)
Ollerhead Maps indicating
et al. (1992) flight paths and
Hume study locations
et al. (2003)
Passchier- Obtained data from
Vermeer flight track monitoring
et al. (2002) system indicating


aircraft noise events
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Appendix C. Coefficients of Basner’s Markov Model


Table C.1. Coefficients for Basner’s Four Markov Models (2006).


Coefficient/sj si Baseline Noise 1 Noise 2 Noise 3
Intercept 0 1.2144 2.3013 0.7674 0.9691


1 -0.4702 -0.4125 -0.4415 -0.3739
3 -3.6542 -4.0295 -3.8388 -3.8809
4 -6.2984 -12.6277 -14.1409 -5.0150
5 -1.3717 -1.0818 -1.6914 -2.2264


S1 0 -2.7472 -1.8124 -2.9919 -2.8770
1 0.2838 0.4352 0.0584 -0.3877
3 -2.5433 -0.4452 -9.0011 -1.9712
4 -6.9807 -1.1678 -1.6087 -8.7818
5 -1.3017 -1.5643 -0.0583 -1.2233


S2 0 -4.8576 -3.5524 -3.8725 -4.6710
1 -4.6860 -3.3554 -4.2785 -4.7750
3 0.8986 1.6156 0.8650 1.2007
4 0.2586 4.8135 6.9155 -3.3496
5 -3.0316 -3.3679 -2.1935 -1.9309


S3 0 -3.4514 -2.4651 -2.9214 -3.2425
1 -6.7253 -3.6566 -4.7870 -4.9466
3 5.7615 5.9772 4.9008 5.8730
4 6.5807 12.6037 12.5687 4.9879
5 -3.8353 -4.9858 -5.2357 -2.6269


S4 0 -0.7784 -0.4093 -1.0691 -0.5785
1 -3.5858 -2.5576 -3.5520 -9.9189
3 6.5302 6.5707 5.6143 6.9644
4 11.5460 17.2381 17.5938 10.6345
5 -3.0085 -10.3476 -10.8294 -8.2248


REM 0 -1.0655 -0.9722 -0.8380 -1.0694
1 -1.2599 -0.3825 -1.2592 -1.5366
3 -2.0445 -9.1235 -8.4853 -8.2782
4 -6.1652 8.0627 -1.0821 -6.7936
5 4.5398 3.9654 4.6170 4.9946


Transition 0 0.000452 -0.00025 -0.00004 0.000401
1 -0.00026 -0.00030 -0.0013 0.000277
3 -0.00147 -0.00135 -0.00125 -0.00190
4 -0.00273 -0.00187 -0.00150 -0.00285
5 0.000869 0.000337 0.000822 0.000896
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Appendix D. Model Parameters Estimated for Each Subject


The model coefficient values listed in the following tables were calculated for 76


subject nights from the 1999 UK sleep study (Flindell et al., 2000). The methods


used to calculate these coefficients are discussed in Chapter 7. For the slow REM


sleep model, the coefficients were not calculated if the REM period defined in the


original dataset was less than 5 minutes in duration or if the NREM period before or


after a REM period was less than 15 minutes. Also the coefficients of the slow REM


model were not calculated if the duration of the prior NREM period or the duration


of the REM period was considered an outlier, which was defined as:


Lower Outliers < 25th percentile− 1.5(75th percentile− 25th percentile), (D.1)


Upper Outliers > 75th percentile+ 1.5(75th percentile− 25th percentile), (D.2)


here the 75th and 25th percentiles were calculated based on all NREM or REM


periods during the night for all 76 subject nights. The subject nights for which the


coefficients were not calculated are indicated by gray/blank entries in the following


tables.
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Table D.1. Estimated parameters for Process S and SWA models for
field subjects 1 through 12 in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


1 2 3.3365 0.0391 0.2384 0.1064 4.1062 1.5094
1 4 4.1180 0.0497 0.1725 0.2324 1.4241 1.0915
2 1 3.3673 0.0248 0.1094 0.4977 3.2499 0.8288
2 3 3.7074 0.0304 0.1411 0.3090 1.1422 1.1137
2 4 3.5105 0.0307 0.1501 0.3532 3.0706 0.9375
3 3 3.8628 0.0306 0.2220 0.2636 1.0852 0.9697
3 4 2.8551 0.0265 0.1641 0.8013 1.9962 0.5251
6 1 4.3358 0.0442 0.1103 0.2309 1.7047 1.0080
6 2 4.0398 0.0441 0.1010 0.2930 2.1427 1.1029
6 3 5.4750 0.0544 0.1075 0.1779 2.5459 1.1783
8 4 2.9164 0.0240 0.2467 0.3148 1.1791 0.9923
9 1 4.2406 0.0350 0.1879 0.2398 1.0777 0.9125
9 3 5.8348 0.0461 0.1513 0.2348 1.4101 0.6386
9 4 4.9060 0.0410 0.1532 0.3571 1.7851 0.6713
10 0 3.0004 0.0155 0.1751 0.5186 2.3834 0.7325
10 1 3.3971 0.0251 0.1691 0.3169 4.6552 1.0097
10 3 3.0035 0.0175 0.1817 0.4090 2.8392 0.8222
12 0 2.6382 0.0084 0.2029 0.6562 1.7541 0.6065
12 1 3.5689 0.0268 0.2300 0.2968 1.9174 0.6616
12 2 3.6195 0.0290 0.2220 0.3064 2.4094 0.6035
12 3 3.2195 0.0272 0.2102 0.3388 0.8993 0.8086
12 4 3.2789 0.0346 0.2216 0.5200 1.6621 0.6518
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Table D.2. Estimated parameters for Process S and SWA Models for
field subjects 13 through 18 in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


13 1 3.6619 0.0391 0.2099 0.3742 2.3962 0.9962
13 2 3.2038 0.0368 0.2127 0.6463 1.4571 1.0797
13 3 3.6877 0.0396 0.1749 0.4544 2.6606 0.9135
13 4 3.6919 0.0384 0.2346 0.3296 1.7203 0.8148
14 0 3.1813 0.0191 0.2252 0.5168 1.3479 0.4149
14 1 3.6535 0.0378 0.2081 0.3027 2.4437 0.4495
14 3 3.4100 0.0349 0.1948 0.4929 3.1263 0.4518
14 4 3.5922 0.0260 0.2182 0.4196 1.3223 0.3784
15 0 4.0728 0.0448 0.1920 0.2650 1.6454 0.8416
15 1 3.4671 0.0380 0.1849 0.4188 0.8472 0.8556
15 2 5.1299 0.0526 0.1491 0.2146 2.2660 1.0116
15 3 3.5554 0.0316 0.1909 0.3501 2.1493 0.8968
15 4 2.8822 0.0237 0.2099 0.3902 2.8141 0.9586
16 2 3.7999 0.0511 0.1885 0.3281 2.4172 0.6750
16 3 2.5900 0.0132 0.2515 0.4534 2.3607 0.7207
16 4 4.1062 0.0329 0.2400 0.4131 1.1499 0.6461
17 2 3.1666 0.0085 0.1984 0.6205 2.5602 0.1973
17 4 3.5993 0.0111 0.1903 0.2904 1.8888 0.7340
18 0 3.9134 0.0293 0.1481 0.5266 0.9661 0.3428
18 1 4.0829 0.0277 0.1769 0.4777 1.5498 0.6446
18 3 3.8975 0.0259 0.1720 0.5255 1.1675 1.3014
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Table D.3. Estimated parameters to define the random noise term
n(t) for field subjects 1 through 12 in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
1 2 -0.0137 0.2052 0.6424 3.1467
1 4 -0.0162 0.2376 0.7350 3.2077
2 1 -0.0249 0.3184 0.5866 3.0170
2 3 -0.0233 0.3076 0.5346 3.0197
2 4 -0.0270 0.3529 0.6954 3.0037
3 3 -0.0155 0.2619 0.6994 3.0650
3 4 -0.0183 0.2516 0.5569 3.1028
6 1 -0.0148 0.2358 0.4925 2.8902
6 2 -0.0163 0.2421 0.3801 2.7713
6 3 -0.0169 0.2414 0.4245 2.7671
8 4 -0.0131 0.2039 0.5482 3.0342
9 1 -0.0159 0.2125 0.4902 2.9049
9 3 -0.0153 0.2424 0.5413 3.0465
9 4 -0.0221 0.2908 0.4896 2.8882
10 0 -0.0166 0.2699 0.4735 3.0702
10 1 -0.0217 0.3305 0.5821 3.0052
10 3 -0.0231 0.2896 0.5359 2.9910
12 0 -0.0115 0.1989 0.4082 2.9315
12 1 -0.0126 0.2057 0.3081 2.8874
12 2 -0.0109 0.1999 0.4820 3.0699
12 3 -0.0127 0.2363 0.4677 2.8805
12 4 -0.0152 0.2335 0.5244 3.0019
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Table D.4. Estimated parameters to define the random noise term
n(t) for field subjects 13 through 18 in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
13 1 -0.0150 0.2333 0.4922 2.7396
13 2 -0.0126 0.2398 0.4638 2.7454
13 3 -0.0147 0.2262 0.4192 2.6815
13 4 -0.0117 0.2101 0.4216 2.7749
14 0 -0.0194 0.2653 0.6029 3.1969
14 1 -0.0188 0.2689 0.5385 3.2537
14 3 -0.0176 0.2690 0.6065 3.2100
14 4 -0.0171 0.2430 0.6088 3.3874
15 0 -0.0176 0.2389 0.5988 3.2506
15 1 -0.0148 0.2298 0.6067 2.9735
15 2 -0.0165 0.2028 0.5076 3.0437
15 3 -0.0144 0.2079 0.5460 2.9984
15 4 -0.0181 0.2209 0.6691 3.2496
16 2 -0.0152 0.2316 0.4356 2.7253
16 3 -0.0094 0.2039 0.3273 2.8323
16 4 -0.0110 0.2145 0.2778 2.7091
17 2 -0.0123 0.1875 0.3502 2.8473
17 4 -0.0113 0.1788 0.2057 2.7489
18 0 -0.0129 0.2000 0.4971 2.8332
18 1 -0.0187 0.2207 0.5803 3.1554
18 3 -0.0132 0.2158 0.5883 3.1180
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Table D.5. Estimated Slow REM parameters for the 1st REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.9449 0.3452 1.8029 2.2423
1 4 0.4772 0.3628 0.4370 1.0013
2 1
2 3
2 4 0.5625 0.3310 0.5577 1.2185
3 3
3 4
6 1 0.6171 0.3082 2.6341 2.1381
6 2 0.7395 0.2693 3.5046 2.1494
6 3 0.5880 0.5230 3.2306 2.8342
8 4 0.6009 0.3204 1.7271 1.9237
9 1 0.5630 0.2888 0.9491 1.4708
9 3 0.4375 0.3988 1.6747 1.8993
9 4 0.4624 0.2723 0.2468 0.7767
10 0 0.5033 0.2472 1.0223 1.4101
10 1 0.7957 0.2963 4.4418 2.4240
10 3
12 0 0.5003 0.2333 1.4639 1.4902
12 1 0.5599 0.3768 0.4808 1.1372
12 2 0.4742 0.3416 0.3624 0.8917
12 3 0.4671 0.3713 4.0835 2.3865
12 4
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Table D.6. Estimated Slow REM parameters for the 1st REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.8421 0.4053 1.3973 2.1578
13 2 0.3383 0.4697 2.9938 2.9428
13 3 0.6519 0.4009 1.3782 1.9353
13 4 0.5565 0.4542 1.5234 2.0760
14 0 0.4277 0.3275 1.0295 1.5120
14 1 0.5209 0.3732 0.8963 1.4355
14 3 0.6248 0.3588 1.7732 2.0457
14 4 0.4921 0.3768 0.9242 1.5152
15 0
15 1 0.4890 0.4508 2.9965 2.4623
15 2 0.4987 0.3260 2.5135 2.0515
15 3 0.4328 0.3804 0.5348 1.0644
15 4
16 2 0.5231 0.5728 4.9164 3.2492
16 3 0.5326 0.5202 1.2638 1.9961
16 4 0.6534 0.4220 2.8619 2.6845
17 2 0.4584 0.3948 2.1441 2.1096
17 4 0.4532 0.2789 0.3634 0.8962
18 0 0.4601 0.3255 1.6773 1.7843
18 1 0.4294 0.2975 0.9734 1.4024
18 3 0.5304 0.4369 1.0966 1.8001
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Table D.7. Estimated Slow REM parameters for the 2nd REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.4639 0.3865 0.5274 1.0631
1 4 0.5053 0.3594 1.9105 1.9666
2 1 0.4896 0.4300 0.8211 1.4968
2 3 0.4815 0.3023 0.5093 1.0836
2 4 0.4277 0.2928 1.0524 1.4569
3 3 0.3494 0.2807 0.6846 1.1034
3 4 0.4522 0.2536 1.0486 1.3399
6 1 0.4283 0.4861 3.2037 3.1510
6 2 0.3507 0.3839 0.9261 1.3689
6 3 0.6365 0.3903 1.0005 1.7083
8 4 0.5400 0.3777 4.9061 2.5620
9 1
9 3 0.4857 0.2791 0.3239 0.9093
9 4 0.3462 0.3166 0.6968 1.1381
10 0 0.3200 0.2705 0.6440 1.0248
10 1 0.3870 0.3070 0.9110 1.3715
10 3 0.4808 0.4389 0.4637 0.9781
12 0 0.3189 0.3230 1.2159 1.4351
12 1
12 2 0.4674 0.3754 0.2581 0.7168
12 3
12 4
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Table D.8. Estimated Slow REM parameters for the 2nd REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5208 0.4153 0.6243 1.2152
13 2
13 3 0.5909 0.3677 2.7721 2.3193
13 4 0.5863 0.3894 0.2723 0.8640
14 0 0.4264 0.3666 0.5073 1.0169
14 1 0.4901 0.4151 0.5836 1.1526
14 3 0.4566 0.4687 0.8856 1.5078
14 4 0.4850 0.4171 0.6355 1.2381
15 0 0.4898 0.5628 2.7293 2.6201
15 1 0.5081 0.2515 0.2453 0.8591
15 2 0.5007 0.4217 0.1873 0.5431
15 3 0.4853 0.3430 0.3609 0.9168
15 4 0.3844 0.3957 0.3694 0.7949
16 2 0.5862 0.2872 0.1222 0.8035
16 3 0.7002 0.3297 0.1092 0.5507
16 4 0.5370 0.4100 0.7989 1.4283
17 2 0.5171 0.3613 1.2800 1.7625
17 4 0.3584 0.3965 0.8833 1.3490
18 0 0.4221 0.4101 0.5928 1.1745
18 1 0.3666 0.2230 0.2092 0.6277
18 3 0.5499 0.3413 0.3794 1.0031
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Table D.9. Estimated Slow REM parameters for the 3rd REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.5024 0.3216 1.1445 1.5797
1 4 0.4838 0.5494 0.6685 1.2813
2 1 0.5188 0.3152 0.2316 0.8083
2 3 0.4390 0.5583 0.4880 0.9656
2 4 0.4011 0.4044 1.7710 1.9035
3 3 0.4550 0.3972 4.6822 2.9365
3 4
6 1 0.7139 0.4861 3.2037 3.1510
6 2 0.4969 0.4907 1.1780 3.1510
6 3 0.5158 0.5850 0.9091 1.6064
8 4 0.4733 0.4081 1.4409 1.8836
9 1
9 3 0.3599 0.2662 0.4348 0.8829
9 4 0.4198 0.3390 0.3032 0.7564
10 0 0.5402 0.5777 0.1713 0.4179
10 1 0.3928 0.4597 0.9503 1.4718
10 3 0.6591 0.4520 0.1129 0.4489
12 0 0.4552 0.3867 0.2471 0.6599
12 1 0.4861 0.4889 1.9929 2.2783
12 2 0.4854 0.3978 0.6604 1.2595
12 3
12 4
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Table D.10. Estimated Slow REM parameters for the 3rd REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5238 0.4283 1.0469 1.7118
13 2 0.6365 0.4470 3.4673 2.7505
13 3 0.4666 0.3557 0.7078 1.2666
13 4 0.5455 0.4493 2.3287 2.3778
14 0 0.5051 0.4106 0.2837 0.7724
14 1 0.5639 0.4553 0.3234 0.8716
14 3 0.6588 0.5353 0.3121 0.9028
14 4
15 0 0.6721 0.4306 0.3627 1.1717
15 1 0.3238 0.2679 0.4875 0.8953
15 2 0.5598 0.4507 0.3937 1.0072
15 3 0.5276 0.6923 0.4838 0.9810
15 4 0.5040 0.4025 0.8526 1.4848
16 2 0.3968 0.3456 1.5555 1.7050
16 3 0.4699 0.4098 2.1466 2.1424
16 4 0.4970 0.2984 0.3987 0.9866
17 2 0.5683 0.5020 0.1770 0.5425
17 4 0.5104 0.4287 0.6854 1.3078
18 0 0.5262 0.4634 0.9469 1.6672
18 1 0.3623 0.3685 0.1945 0.4621
18 3 0.4293 0.3853 0.8116 1.4171
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Table D.11. Estimated Slow REM parameters for the 4th REM period
for field subjects 1 through 12 in the 1999 UK study.


Subject Night a b c d
1 2 0.5365 0.5782 0.2852 0.6619
1 4 1.5974 1.3901 0.1178 0.2581
2 1 0.6074 0.7519 0.3061 0.6471
2 3 1.4069 1.3761 0.1261 0.3670
2 4 0.8437 0.7795 0.1388 0.4083
3 3 0.8604 1.1212 0.3128 0.6724
3 4
6 1 0.6818 0.3391 0.1062 0.5235
6 2 0.5887 0.3292 0.4522 1.2172
6 3 0.7326 0.3834 0.8000 1.6670
8 4 0.5739 0.6394 0.6444 1.3707
9 1
9 3 0.3905 0.4391 0.3334 0.7305
9 4 0.5724 1.5681 1.2130 1.7177
10 0
10 1 0.5912 0.4784 0.7260 1.4171
10 3 0.8150 0.8238 0.3115 0.7617
12 0 0.7859 1.0489 0.3869 0.8025
12 1 0.6698 0.3620 0.1179 0.5445
12 2 0.5553 0.6585 2.5723 2.8309
12 3 0.7427 0.5116 0.4340 1.1898
12 4







335


Table D.12. Estimated Slow REM parameters for the 4th REM period
for field subjects 13 through 18 in the 1999 UK study.


Subject Night a b c d
13 1 0.5669 0.4338 1.0256 1.6158
13 2 0.6722 0.6984 0.5466 1.2074
13 3 0.4981 0.5578 3.3427 3.3730
13 4 0.6880 0.4682 0.1152 0.4618
14 0 0.8844 1.0687 0.2996 0.6810
14 1 0.6790 0.5767 0.2644 0.7689
14 3 0.6432 0.3055 0.6329 1.4333
14 4
15 0 0.5792 0.6659 2.1312 2.6890
15 1 0.4194 0.7760 3.5629 2.6521
15 2 0.7735 1.1726 0.6910 1.3673
15 3 0.8922 0.5190 0.6672 1.6873
15 4
16 2 1.1560 1.1883 0.1378 0.1548
16 3 0.5448 0.4312 0.4498 1.0866
16 4
17 2 0.6413 0.5223 1.2624 2.0347
17 4 0.5594 0.3957 0.2866 0.8331
18 0 0.8106 0.6671 0.1257 0.4598
18 1
18 3 0.5416 0.4163 0.2068 0.6370
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Table D.13. Estimated parameters for Process S and SWA Models
for laboratory subjects in the 1999 UK study.


Subject Night So gc SWAL rc fc SWAo


19 0 4.4617 0.0388 0.1322 0.2723 2.7529 0.7880
19 1 4.1486 0.0416 0.1389 0.5287 2.3165 0.6207
19 2 4.4169 0.0377 0.1574 0.3119 1.8867 0.7717
20 1 3.7485 0.0301 0.1414 0.2021 1.2187 0.7005
20 2 4.4947 0.0510 0.1266 0.3502 1.9782 0.6344
20 3 4.5684 0.0447 0.1118 0.3991 0.9658 1.0292
22 0 3.6723 0.0302 0.1618 0.2413 0.8112 0.8331
22 1 2.7767 0.0224 0.1888 0.5033 0.6205 1.0756
22 2 2.9903 0.0215 0.1799 0.4356 3.9335 0.5538
22 3 3.3267 0.0247 0.1887 0.2465 0.5896 1.4638
22 4 3.2060 0.0299 0.1781 0.3031 1.4033 1.1598
23 0 4.3522 0.0437 0.1360 0.2274 1.5741 0.5255
23 1 3.6144 0.0427 0.1253 0.5919 3.0516 0.5897
23 2 3.5923 0.0458 0.1170 0.4904 3.2262 0.9388
23 3 3.9107 0.0403 0.1123 0.4474 0.7768 0.7866
23 4 4.2102 0.0408 0.0962 0.4243 5.2869 0.1287
24 1 3.7697 0.0262 0.1946 0.3005 1.2354 0.9240
24 2 3.6909 0.0287 0.1616 0.3345 1.2877 0.7526
24 3 3.5164 0.0242 0.1131 0.1927 2.1170 1.0128
24 4 3.3937 0.0310 0.1446 0.3861 2.5985 0.7584
25 0 4.4544 0.0408 0.1317 0.3577 3.0195 0.5270
25 1 5.5164 0.0423 0.1339 0.3528 1.8326 0.3762
25 3 4.1590 0.0326 0.1568 0.3428 1.7633 0.5745
25 4 4.6178 0.0388 0.1379 0.3817 4.4222 0.5808
26 0 4.1647 0.0367 0.2180 0.3898 1.8732 0.8575
26 1 3.5370 0.0251 0.1832 0.5734 2.5480 0.2611
26 2 3.5335 0.0148 0.2155 0.4978 3.5402 0.6858
26 3 3.0433 0.0285 0.2277 0.5752 1.0266 0.5940
26 4 3.3089 0.0247 0.1842 0.8444 3.5710 0.5459
27 0 3.7023 0.0310 0.1469 0.1939 2.1031 1.3816
27 1 4.2429 0.0291 0.1901 0.5101 2.4893 0.3781
27 2 3.6894 0.0174 0.1578 0.7144 3.8975 0.6864
27 3 2.2853 0.0092 0.1519 0.5768 1.3976 1.3098
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Table D.14. Estimated parameters to define the random noise term
n(t) for laboratory subjects in the 1999 UK study.


Subject Night mean std. dev skew kurtosis
19 0 -0.0230 0.2976 0.4820 2.9347
19 1 -0.0238 0.3001 0.4651 3.0426
19 2 -0.0223 0.3166 0.7243 3.4013
20 1 -0.0248 0.3499 0.7557 3.2273
20 2 -0.0208 0.3163 0.6404 2.9809
20 3 -0.0282 0.3209 0.7196 3.2341
22 0 -0.0102 0.1855 0.3313 2.5732
22 1 -0.0122 0.2177 0.4288 2.6868
22 2 -0.0139 0.2222 0.3567 2.7088
22 3 -0.0089 0.2127 0.3329 2.5741
22 4 -0.0126 0.1957 0.3300 2.6127
23 0 -0.0230 0.2794 0.6314 3.2467
23 1 -0.0270 0.3284 0.6696 3.2777
23 2 -0.0264 0.3022 0.7096 3.3291
23 3 -0.0269 0.3437 0.7923 3.4239
23 4 -0.0259 0.3180 0.6423 3.3163
24 1 -0.0215 0.2784 0.5800 3.2364
24 2 -0.0209 0.2496 0.7014 3.3164
24 3 -0.0246 0.2742 0.5689 3.1053
24 4 -0.0183 0.2503 0.6000 3.1454
25 0 -0.0153 0.2173 0.4594 3.1641
25 1 -0.0179 0.2804 0.4747 2.9093
25 3 -0.0153 0.2127 0.5792 3.0931
25 4 -0.0148 0.2390 0.4520 2.9289
26 0 -0.0138 0.2104 0.6281 3.2015
26 1 -0.0168 0.2368 0.6540 3.1220
26 2 -0.0135 0.2158 0.5218 2.8605
26 3 -0.0119 0.1976 0.3841 2.7699
26 4 -0.0180 0.2549 0.5501 2.9491
27 0 -0.0156 0.2358 0.4369 2.8233
27 1 -0.0206 0.2284 0.4893 2.7561
27 2 -0.0200 0.2304 0.4844 2.8232
27 3 -0.0157 0.2285 0.4956 2.8772
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Table D.15. Estimated Slow REM parameters for the 1st REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0
19 1 0.4251 0.2834 4.9021 2.2987
19 2 0.3810 0.3050 1.0263 1.3982
20 1 0.6702 0.3544 0.9204 1.6302
20 2 0.7062 0.5900 0.1642 0.5507
20 3 0.6909 0.4573 0.3386 1.0201
22 0 0.6138 0.3478 1.1979 1.6893
22 1 0.9176 0.2900 4.8776 2.3368
22 2 0.7329 0.3431 4.3607 2.6913
22 3 0.4388 0.2721 0.1291 0.5678
22 4 0.7147 0.2939 0.7556 1.5869
23 0 0.4287 0.4356 2.5031 2.2213
23 1
23 2 0.6862 0.4797 4.3969 3.0872
23 3 0.4092 0.5104 1.0667 1.6152
23 4 0.6191 0.3796 2.6691 2.5219
24 1 0.3248 0.3053 0.6152 1.0414
24 2
24 3 0.3725 0.3171 1.0875 1.4275
24 4 0.3869 0.3413 2.1844 1.8916
25 0 0.5445 0.3723 2.8765 2.3358
25 1 0.4892 0.4575 1.4841 1.9746
25 3 0.4685 0.3327 1.5071 1.8612
25 4 0.6223 0.2788 1.5787 1.7070
26 0 0.3708 0.3830 1.7241 1.7961
26 1 0.4198 0.3258 3.5515 1.9850
26 2
26 3 0.4386 0.3382 1.7017 1.8136
26 4
27 0 0.6900 0.3382 2.0799 2.1056
27 1
27 2 0.5655 0.3170 1.3695 1.7208
27 3 0.7115 0.4085 0.4487 1.3780
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Table D.16. Estimated Slow REM parameters for the 2nd REM pe-
riod for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0 0.4803 0.5197 0.3091 0.6831
19 1 0.3598 0.3574 1.1256 1.4724
19 2 0.3997 0.3644 0.5559 1.0828
20 1 0.4260 0.2717 0.3975 0.9515
20 2 0.7553 0.4345 0.8170 1.7184
20 3 0.5803 0.3985 0.3900 1.0402
22 0 0.4607 0.4267 1.3724 1.8195
22 1 0.3668 0.5099 0.9374 1.4428
22 2 0.5261 0.7963 4.1544 3.5468
22 3 0.3817 0.4728 1.9004 2.0365
22 4 0.4082 0.4221 0.4460 0.9360
23 0 0.6101 0.4355 2.8321 2.7324
23 1 0.3572 0.2965 0.7228 1.1619
23 2 0.6739 0.5253 2.2173 2.7709
23 3 0.6715 0.3244 1.0515 1.6653
23 4 0.5010 0.4570 1.7549 2.1579
24 1 0.4336 0.4467 2.2907 2.2103
24 2 0.5105 0.3927 1.3382 1.8843
24 3 0.4776 0.3814 2.9425 2.2768
24 4 0.4261 0.3919 1.1084 1.5847
25 0 0.4851 0.4419 1.0678 1.7222
25 1 0.5728 0.3633 1.0387 1.5875
25 3 0.4326 0.4155 0.8186 1.4586
25 4 0.3923 0.3724 1.7375 1.8288
26 0 0.4667 0.2680 0.2915 0.8435
26 1 0.4088 0.2678 0.5056 1.0000
26 2 0.3176 0.2458 0.6736 1.0591
26 3 0.4307 0.3001 0.6203 1.1292
26 4 0.2989 0.4336 0.7549 1.1672
27 0 0.4469 0.3773 0.4208 0.9390
27 1 0.4478 0.4120 0.4503 0.9404
27 2
27 3 0.5702 0.5707 3.3406 3.4079







340


Table D.17. Estimated Slow REM parameters for the 3rd REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0 0.6687 0.4552 0.3896 1.1010
19 1 0.4728 0.3570 0.3457 0.8511
19 2 0.4754 0.4595 0.6974 1.3590
20 1 0.3470 0.4226 0.9595 1.4112
20 2 0.5526 0.3769 1.1329 1.6898
20 3 0.5821 0.5023 0.2380 0.7116
22 0
22 1 0.6749 0.3394 1.3436 1.8864
22 2 0.8796 0.4257 0.3223 1.3819
22 3 0.6144 0.4661 0.4351 1.0741
22 4 0.5689 0.4450 0.4569 1.1015
23 0 0.5458 0.3444 0.4666 1.1157
23 1 0.4042 0.4423 0.5583 1.0675
23 2 0.6268 0.3094 0.6703 1.4387
23 3 0.4075 0.3986 0.8956 1.4221
23 4 0.5821 0.4232 1.0106 1.6091
24 1 0.5238 0.2789 0.2633 0.8962
24 2 0.5222 0.5068 0.5811 1.2142
24 3 0.5527 0.5264 0.6560 1.2955
24 4 0.5049 0.3868 0.3160 0.8776
25 0 0.5605 0.3765 0.5711 1.2564
25 1 0.4855 0.3871 0.4313 0.9964
25 3 0.5264 0.3732 0.6560 1.2955
25 4 0.4878 0.4818 0.8249 1.5370
26 0
26 1
26 2 0.6989 1.1090 0.2242 0.4263
26 3 0.4499 0.5123 0.3603 0.7970
26 4 0.6328 0.6036 0.4991 1.0923
27 0 0.5763 0.5844 4.0785 3.1609
27 1 0.5280 0.4658 1.5061 2.1693
27 2
27 3 0.7172 0.3840 1.1155 1.8699
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Table D.18. Estimated Slow REM parameters for the 4th REM period
for laboratory subjects in the 1999 UK study.


Subject Night a b c d
19 0
19 1
19 2 0.6152 0.5341 0.6383 1.3189
20 1 0.5484 0.3193 1.1088 1.5594
20 2 0.5387 0.4948 0.3856 0.9102
20 3 0.7437 0.8210 0.6442 1.4124
22 0 0.6091 0.5014 2.0878 2.6806
22 1 0.5382 1.0653 0.7443 1.3323
22 2 0.6858 0.5499 0.1414 0.5037
22 3 0.5855 0.3806 0.1708 0.6939
22 4 0.7367 0.6174 0.1708 0.5800
23 0 0.5867 0.5784 0.2321 0.5851
23 1
23 2 0.3950 0.4652 1.0138 1.5328
23 3 0.6093 0.4891 3.8592 2.9005
23 4 0.5175 0.3944 0.8351 1.4474
24 1 0.4008 0.8642 1.2226 1.6379
24 2 0.6070 0.3593 0.2406 0.9023
24 3 0.6052 0.3211 0.1749 0.8150
24 4 0.5982 0.4042 3.5296 2.6082
25 0 0.4848 0.4690 0.9139 1.6335
25 1 0.4930 0.3682 0.3855 0.9550
25 3 0.5087 0.4269 0.4168 0.9627
25 4 0.6791 0.5020 0.115 0.5144
26 0 0.9384 0.8990 0.4220 1.0837
26 1
26 2
26 3 0.6516 0.4208 0.3062 0.9689
26 4
27 0 0.7471 0.6266 0.9356 1.8275
27 1 0.6651 0.5636 0.3960 1.0266
27 2 0.8620 0.4098 1.3385 2.1424
27 3 0.4858 0.4788 1.3242 1.8655
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Appendix E. Range for Nonlinear Model Parameters Estimated for Each Subject


Table E.1. Range of estimated parameter values for Process S and
SWA Models for all field subject nights in the 1999 UK study.


Range
min to max


So 2.5900 to 5.8348
gc 0.0084 to 0.0544
SWAL 0.1010 to 0.2515
rc 0.1064 to 0.8013
fc 0.8472 to 4.6552
SWAo 0.1973 to 1.5094


Table E.2. Range of estimated parameter values for n(t) for all field
subject nights in the 1999 UK study.


Range
min to max


mean -0.0094 to -0.0270
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7350
kurtosis 2.6815 to 3.3874


Table E.3. Range of estimated parameter values for the Slow REM
model for all field subject nights in the 1999 UK study.


REM a b c d
Period min to max min to max min to max min to max


1 0.3383 to 0.9449 0.2333 to 0.5728 0.2468 to 4.9164 0.7767 to 3.2492
2 0.3189 to 0.7002 0.2230 to 0.5628 0.1092 to 4.9061 0.5431 to 3.1510
3 0.3238 to 0.7139 0.2662 to 0.6923 0.1129 to 4.6822 0.4179 to 3.1510
4 0.3905 to 1.5974 0.3055 to 1.5681 0.1062 to 3.5629 0.1548 to 3.3730
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Table E.4. Range of estimated parameter values for Process S and
SWA Models for all laboratory subject nights in the 1999 UK study.


Range
min to max


So 2.2853 to 5.5164
gc 0.0092 to 0.0510
SWAL 0.0962 to 0.2277
rc 0.1927 to 0.8444
fc 0.5896 to 5.2869
SWAo 0.1287 to 1.4638


Table E.5. Range of estimated parameter values for n(t) for all labo-
ratory subject nights in the 1999 UK study.


Range
min to max


mean -0.0089 to -0.0282
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7923
kurtosis 2.5732 to 3.4239


Table E.6. Range of estimated parameter values for the Slow REM
model for all laboratory subject nights in the 1999 UK study.


REM a b c d
Period min to max min to max min to max min to max


1 0.3248 to 0.9176 0.2721 to 0.5900 0.1291 to 4.9021 0.5507 to 3.0872
2 0.2986 to 0.7553 0.2458 to 0.7963 0.2915 to 4.1544 0.6831 to 3.5468
3 0.3470 to 0.8796 0.2789 to 1.1090 0.2242 to 4.0785 0.4263 to 3.1609
4 0.3950 to 0.9384 0.3193 to 1.0653 0.1115 to 3.8592 0.5037 to 2.9005







344


Appendix F. Equations and Coefficients of Nonlinear Dynamic Models


F.1 Massaquoi and McCarley Model


The Massaquoi and McCarley model (1992) has 4 main components. The first part of


the model is the reciprocal interaction REM model. The equation for REM promoting


neuron activity is,


Ẋ = a(X)S1(X)X − b(X)XY, (F.1)


and the equation for REM inhibiting neuron activity is,


Ẏ = −cY + dcircS2(Y )(X + E)Y, (F.2)


where,


dcirc = 0.975(1 + 0.125sin(0.0467 + 2.3)), (F.3)


and E is defined in Equation F.11. The equations for the coefficients of the REM


model are,


a(X) = 2− 1.8


(
1− 1


1 + e−4(X−0.5)


)
, (F.4)


b(X) =
2


1 + e−80(X−0.1)
, (F.5)


S1(X) = 1− 1.4


(
1


1 + e−0.8(X−2.5)


)
+ 0.167, (F.6)


S2(Y ) = 1− 1.5


(
1


1 + e−20(Y−2)


)
. (F.7)


The equations for the Process S and SWA models are:


˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t), (F.8)
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and


Ṡ = −gc SWA+ rs(1− S), (F.9)


where SWAmax is defined as,


SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05), (F.10)


and n(t) is a uniformly distributed random noise signal. The excitation term E in the


above equations is filtered Poisson noise (N) which has an exponentially distributed


arrival time, and uniformly distributed amplitude and duration, the equation for E


is,


Ė = N − kE. (F.11)


Sleep stages during the night are scored according to the following rules:


1. If X >1.4 score as stage REM,


2. If SWA <0.1 and E >0.5 score as Wake,


3. Else score as NREM sleep.


The values of the model parameters are in Table F.1. An example of the output of


the model is shown in Figure F.1.


F.2 The Nonlinear Model Developed as Part of This Research.


The following are the equations for the modified version of the Massaquoi and Mc-


Carley model that was developed as part of this research. The equations used for the


slow wave activity model are,


Ṡ = −gc SWA, (F.12)
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Figure F.1. An example of using Massaquoi and McCarley’s LCRIM/I
model to classify sleep stages, (a) REM-ON (X) (green) and REM-
OFF(X) (blue) activity, (b) Process S (green) and SWA (blue), (c)
Excitatory activity E, and (d) sleep stages. Thresholds used for scor-
ing sleep stages (red-dashed lines).


and


˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−


fcw (SWA− SWAL)E,


(F.13)
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Table F.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).


Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10


and


SWA = SWA(1 + n(t)). (F.14)


The equations for the Slow REM model are similar to those of the Massaquoi and Mc-


Carley model but without the saturation functions. The equation for REM promoting


neuron activity is thus,


Ẋ = (aX − bXY )dc, (F.15)


where dc is a sinusoidal term with a period of 24 hours,


dc = 1.55 + 0.8sin(0.0467t+ 4), (F.16)
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where t is measured in units rather than seconds with 1 unit equal to 10.7 minutes.


The equation for the REM inhibiting neuron activity is,


Ẏ = −cY + d(X + eE)Y. (F.17)


The equation for the fast REM model is,


ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt), (F.18)


where w(t) in the equation is typically the excitation term E(t). An example of the


output of the model when noise events are occurring is shown in Figure F.2. The


model parameter values are listed in Table F.2. The following rules were used for


assigning NREM sleep stages:


1. If SWA >2.0 score as Stage 3/4,


2. If SWA <0.3 score as Stage Wake/1 ,


3. If SWA <1 and E >0.5 score as Stage Wake/1,


4. All other times when REM sleep is not occurring are scored as Stage 2 sleep.


The following rules were used to assign REM sleep stages according to the value of x


of the fast REM model:


1. If x >0 score as Phasic REM sleep,


2. If x <-2 and an excitation is occurring score as Wake,


3. All other times are scored as Tonic REM sleep.


REM sleep periods were defined by the level of REM promoting activity X in the


slow REM model. When X is greater than 1, REM sleep periods was considered to


be occurring.
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Figure F.2. An example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM, REM
sleep period indicator, fast REMmodel and the spontaneous and noise
induced excitation terms.
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Table F.2. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution and + parameters varied accord-
ing to a uniform distribution, x parameter varied with an exponential
distribution.


SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean


std. dev 0.67 std. dev 0.1 inter-arr
6.1 min


*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min


*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min


SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0


fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65


fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0


rc 0.4 +Yo min 0.5
max 3.0


n(t) mean 0
std. dev 0.2
skewness 0.53
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Appendix G. Code for Nonlinear Dynamic Model


The following is the Matlab program for the nonlinear dynamic sleep model that was


developed as part of this research. The components of the model are the slow and fast


REM model, slow wave activity model, and spontaneous and aircraft noise induced


excitation terms. Based on these components sleep stages are predicted. In Table


G.1 is a list of subroutines in this program and the functions they call.


Table G.1. Subroutines of the nonlinear dynamic model.


Subroutine Name Is Called By Makes Calls to
Input Parameters Model Main None
Create Aircraft Input Model Main None
Generate Random Input Variables Model Main None
Create Spontaneous Model Main None
Create Aircraft Awakenings Model Main None
E Calc Model Main None
REM Calc Model Main None
Create REM INPUT Model Main None
SWA Calc Model Main None
NREM Sleep Stage Classify Model Main None
Fast REM Main Model Main calc tonic phasic int


Phasic Tonic Calc
Phasic Tonic Calc Fast REM Main None
calc tonic phasic int Fast REM Main None
Calc 30 Sec Stages Model Main None


The following are the inputs to the model:


1. optionN: which is used if a noise scenario is being run,


2. position: the x,y grid position,


3. LAMAX: the maximum noise levels of sound events during the night. This term
is a vector and its length is equal to the length of the number of events during
the night,


4. Numpeople: is the number of people to simulate for each location point,


5. Timing: the time of each noise event during the night in minutes.
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An example of an input to the model is the following if the events were of all the


same noise level during the night,


optionN={’Noise’};%%Run for noise events


position=[0 0];%%X,Y position


LAMAX=40*ones(1,16);%%LAMAX and timing must be equal in length


Numpeople=50;%%Number of people at grid point


Timing=30:24:402;%%Time of events in minutes


Function Model Main: This is the main code for the nonlinear dynamic model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Model_Main


%%%Main code for the nonlinear dynamic sleep model


%%%Note 1 Unit in the model is equal to 10.7 minutes


%%%


%%%Input: LAMAX-noise level for each nighttime event


%%% Timing-timing of aircraft events in minutes


%%% Numpeople-number of people at a location point


%%% optionN: is used if a noise scenario is being run


%%% position: x,y location for grid point


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function Model_Main(LAMAX,Timing,Numpeople,optionN,position)


warning off;


len=48;


Fs=640;


[Data]=Input_Parameters;%%Obtain model parameter values


if strcmp(optionN,’Noise’)


%%Run simulation once for baseline conditions and once for


%%Noise event conditions


Repeat=2;


%%Create aircraft noise input


[Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople);


else


Repeat=1;


end


for ink=1:Numpeople


display(ink)


time=0:1/Fs:len;
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%%Relationship between NREM excitation amplitude


%%and fast REM sleep excitation amplitude


REM=[.5 1.45];


NREM=[.5 5];


pr=polyfit(NREM,REM,1);


%%Spontaneous awakenings


[Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr);


%%Limit amplitude of REM and NREM excitation terms


if max(NtREM)>1.45


I=find(NtREM>1.45);


NtREM(I)=1.45;


end


if max(Nt)>5


I=find(Nt>5);


Nt(I)=5;


end


[Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs);


for ii=1:Repeat


tic


if strcmp(optionN,’Noise’) && ii==2


%%Create excitation term (N(t)) for


%%noise-induced awakenings


[aircraftREM aircraft]=...


Create_Aircraft_Awakenings(Data,Timing,len,Fs,pr,ink,Events);


%%Add spontaneous and noise-induced excitation terms


Nt=Nt+aircraft;


NtREM=NtREM+aircraftREM;


if max(NtREM)>1.45


I=find(NtREM>1.45);


NtREM(I)=1.45;


end


if max(Nt)>5


I=find(Nt>5);


Nt(I)=5;


end


end


%%Low-pass filter N(t) to obtain E(t)


[T,Wake]=E_Calc(Nt,Fs,len);


[T,WakeREM]=E_Calc(NtREM,Fs,len);


%%Calculate REM promoting (X) and


%%REM inhibiting activity (Y)


[T,X]=REM_Calc(Data,Wake,Fs,len);


REM=X(:,1);%%REM-ON activity
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%%Create REM sleep indicator (REMT)


[REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len);


toc


%%Calculate SWA activity


tic


[T,X]=SWA_Calc(Data,REM_NEW,Wake,Fs,len);


SWA=X(:,1).*(1+nt(1:length(X(:,1))))’;


toc


%%Assign 1 second NREM sleep stages based on SWA and E(t)


Est_Stage=zeros(1,960);


tic


[Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW);


%%Calculate Fast REM activity and assign 1 second REM sleep stages


[Est_Stage]=Fast_REM_Main(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM);


%%Calculate 30 second sleep stages


[tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage);


toc


%%Calculate duration of each sleep stage


for jj=1:4


I=find(tempstage(1:960)==jj);


dur_stage(jj,ink,ii)=length(I)/2;


end


%%Calculate percent of events individual awakened


%%to during the night


if strcmp(optionN,’Noise’)


perawake1=0;


for jj=1:length(Timing)


I=find(tempstage(Timing(jj)*2:Timing(jj)*2+3)==1);


if length(I)>0 && tempstage(Timing(jj)*2-1)~=1


perawake1=perawake1+1;


end


end


perawake(ink,ii)=perawake1/length(Timing);


end


Full_Stages(1:length(tempstage30plot),ink,ii)=tempstage30plot’;


end


%%Calculate difference in sleep stage duration


%%and probability of awakening at the time of noise events


%%for (1) baseline no-noise nights and (2)


%%nights with aircraft noise exposure


if strcmp(optionN,’Noise’) && ii==2


change(1:4,ink)=dur_stage(:,ink,2)-dur_stage(:,ink,1);


changeperawake(ink)=(perawake(ink,2)-perawake(ink,1))


end
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end


%%Save data


if strcmp(optionN,’Noise’)


total_awake(1)=...


sum(perawake(1:Numpeople,1)*length(Timing))/(Numpeople*length(Timing));


total_awake(2)=...


sum(perawake(1:Numpeople,2)*length(Timing))/(Numpeople*length(Timing));


totalchangeper=mean(changeperawake)’;


totalchangedur(1:4)= mean(change’);


save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)


save([’Ntotalchangeper_LAmax’ num2str(LAMAX(1)) ....


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangeper’)


save([’Ntotalchangedur_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangedur’)


save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)


save([’Nchange_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’change’)


save([’Nchangeperawake_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’changeperawake’)


end


save([’NFull_Stages_LAmax’ num2str(LAMAX(1)) ...


’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...


’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’Full_Stages’)


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Input Parameters: This function contains the values for the parameters of


the model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Input_Parameters


%%%Contains values of most model inputs-these values are based on the 1999


%%%UK data


%%%


%%%Output: Data-contains model parameters used


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data]=Input_Parameters
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%%Noise n(t) model parameters


Data.ntmean=0;


Data.ntstd=0.20;


Data.ntskew=0.5269;


Data.ntkurtosis=3;


%%wt/E model parameters


%%divide by 10.7 to convert parameters from


%%minutes to units


Data.wtintarr=6.1/10.7;


Data.wtstddur=0.20/10.7;


Data.wtmeandur=0.5/10.7;


Data.wtmindur=0.05/10.7;


Data.wtminamp=0.5;


Data.wtmaxamp=5.0;


Data.wtmeanamp=3.0;


Data.wtstdamp=0.65;


%%Slow REM model parameters


Data.amean=0.47;


Data.astd=0.1;


Data.bmean=0.41;


Data.bstd=0.1;


Data.cmean=1.4;


Data.cstd=0.15;


Data.dmean=1.83;


Data.dstd=0.15;


Data.yomin=0.5;


Data.yomax=3;


Data.xomin=0.15;


Data.xomax=0.3;


%%SWA model parameters


Data.SWAL=0.2;


Data.fc=2.0;


Data.rc=0.4;


Data.fcw=2*Data.fc;


Data.Somean=3.75;


Data.Sostd=0.67;


Data.Somin=2.3;


Data.Somax=5.8;


Data.gcmax=0.05;


Data.gcmin=0.008;


Data.gcstd=0.011;


Data.gcmean=0.0320;


Data.SWAomin=0.13;


Data.SWAomax=1.51;


Data.SWAomean=0.78;


Data.SWAostd=0.29;


%%%----------------------------------------------------------------------%%
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%%%----------------------------------------------------------------------%%


Function Generate Random Input Variables: The following program is used to gen-


erate all model parameters for one person night based on uniform and Gaussian


distributions.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Generate_Random_Input_Variables


%%%Code for generating all random inputs to the model


%%%


%%%Input: Data-contains model parameters used


%%% len-length of night that is being simulated


%%% Fs-sampling rate


%%%


%%%Output: Data-contains model parameter values for subject


%%% nt-noise term applied to SWA


%%% initRx-initial xo values for fast REM model


%%% initRy-initial yo values for fast REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs)


%%Minimum and maximum values are used to


%%limit current range of parameters


%%note: acceptable range of parameters will be


%%further explored in the future


%%SWA and Process S model parameters


Data.SWAo=normrnd(Data.SWAomean,Data.SWAostd,1,1);


if Data.SWAo<Data.SWAomin


Data.SWAo=Data.SWAomin;


elseif Data.SWAo>Data.SWAomax


Data.SWAo=Data.SWAomax;


end


Data.So=normrnd(Data.Somean,Data.Sostd,1,1);


if Data.So<Data.Somin


Data.So=Data.Somin;


elseif Data.So>Data.Somax


Data.So=Data.Somax;


end


Data.gc=normrnd(Data.gcmean,Data.gcstd,1,1);


if Data.gc<Data.gcmin


Data.gc=Data.gcmin;


elseif Data.gc>Data.gcmax


Data.gc=Data.gcmax;
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end


%%More restrictive on range for


%%slow REM sleep models as certain


%%combinations of a,b,c,d will result


%%in no REM cycling


%%Slow REM sleep model parameters


Data.a=normrnd(Data.amean,Data.astd,1,1);


if Data.a<Data.amean-Data.astd


Data.a=Data.amean-Data.astd;


elseif Data.a>Data.amean+Data.astd


Data.a=Data.amean+Data.astd;


end


Data.b=normrnd(Data.bmean,Data.bstd,1,1);


if Data.b<Data.bmean-Data.bstd


Data.b=Data.bmean-Data.bstd;


elseif Data.b>Data.bmean+Data.bstd


Data.b=Data.bmean+Data.bstd;


end


Data.c=normrnd(Data.cmean,Data.cstd,1,1);


if Data.c<Data.cmean-Data.cstd


Data.c=Data.cmean-Data.cstd;


elseif Data.c>Data.cmean+Data.cstd


Data.c=Data.cmean+Data.cstd;


end


Data.d=normrnd(Data.dmean,Data.dstd,1,1);


if Data.d<Data.dmean-Data.dstd


Data.d=Data.dmean-Data.dstd;


elseif Data.d>Data.dmean+Data.dstd


Data.d=Data.dmean+Data.dstd;


end


%%Slow and Fast REM sleep model initial conditions


Data.yo=Data.yomin+(Data.yomax-Data.yomin)*rand(1,1);


Data.xo=Data.xomin+(Data.xomax-Data.xomin)*rand(1,1);


initRx=-1+2*rand(1,10);


initRy=-1+2*rand(1,10);


%%Random noise term n(t)


cc=pearsrnd(Data.ntmean,Data.ntstd,Data.ntskew,Data.ntkurtosis, 1,len*Fs);


[b,a]=butter(3,10/(Fs/2));


nt=filter(b,a,cc);


nt=nt*(max(cc)/max(nt));


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Create Aircraft Input: The following program is used to generate a matrix


which contains, for each person and aircraft event, the amplitude of the associated


excitation based on the maximum noise level of the event.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Aircraft_Input


%%%Code for assigning excitation values for aircraft events


%%%for every subject


%%%


%%%Input: Data-contains model parameters used


%%% LAMAX-noise level for each nighttime event


%%% Numpeople-number of people at location point


%%%


%%%Output: Events-amplitudes of excitation N for all subjects for all


%%% aircraft events during the night


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople)


%%linear relationship between noise level and


%%fraction responding


Noise=[35 80];%%Lamax level


per=[.17 .55];%%percent nonzero response(above baseline)


p=polyfit(Noise,per,1);


%%Cycle through for each noise event


for ii=1:length(LAMAX)


%%These are nonzero responses hence value not zero


rel=p(1)*LAMAX(ii)+p(2);


val = normrnd(Data.wtmeanamp,Data.wtstdamp,floor(Numpeople*rel),1);


I=find(val<Data.wtminamp);


%%Limit range of excitations


if length(I)>0


val(I)=val;


end


I=find(val>Data.wtmaxamp);


if length(I)>0


val(I)=Data.wtmaxamp;


end


%%Nonzero and zero aircraft responses


Total=[val(:); zeros(Numpeople,1)];


Total=Total(1:Numpeople);


rr=randperm(Numpeople);


for jj=1:length(rr)
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Events(jj,ii)=Total(rr(jj));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Create Spontaneous: The following program is used to generate N(t) for


spontaneous awakenings for one subject night.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Spontaneous


%%%Code for generating spontaneous excitations N(t)


%%%


%%%Input: Fs-sampling rate


%%% len-length of night that is being simulated


%%% Data-contains model parameters used


%%% pr-relationship between noise amplitudes during slow and


%%% fast models


%%%


%%%Output: Nt-amplitudes of excitation N(t) for slow models


%%% NtREM-amplitudes of excitation N(t) for fast REM model


%%%


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr)


delta=1/Fs;


time=0:delta:len;


Nt=zeros(1,1.1*len*Fs);


NtREM=zeros(1,1.1*len*Fs);


%%Create vectors of amplitudes and durations


Amp=normrnd(Data.wtmeanamp,Data.wtstdamp,1,length(time)*1.1);


I=find(Amp < Data.wtminamp);


Amp(I)=Data.wtminamp;


duration=normrnd(Data.wtmeandur,Data.wtstddur,1,length(time)*1.1);


I=find(duration < Data.wtmindur);


duration(I)=Data.wtmindur;


%%Time between pulses are exponentially distributed


int_arr=exprnd(Data.wtintarr,1,length(time)*1.1);


total_dur=0;


ii=1;


%%Create N(t) for slow models


%%Assuming inter-arrival time is between the start of each pulse


while (total_dur <len)
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beg=round(sum(int_arr(1:ii))/delta);


if beg==0


beg=1;


end


fin=beg+round(duration(ii)/delta);


Nt(beg:fin)=Nt(beg:fin)+Amp(ii).*ones(1,round(duration(ii)/delta)+1);


%%Create N(t) for fast models


Aramp=pr(1)*Amp(ii)+pr(2);


NtREM(beg:fin)=NtREM(beg:fin)+Aramp.*ones(1,round(duration(ii)/delta)+1);


ii=ii+1;


total_dur=sum(int_arr(1:ii))+duration(ii);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Create Aircraft Awakenings: The following program is used to generate


N(t) for aircraft noise events.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_Aircraft_Awakenings


%%%Code for creating excitations N(t) associated with the occurrence


%%%of aircraft events


%%%


%%%Input: Data-contains model parameters used


%%% Timing-timing of aircraft events in minutes


%%% len-length of night that is being simulated


%%% Fs-sampling rate


%%% pr-relationship between noise amplitudes during slow and


%%% fast models


%%% ink-subject number


%%% Events-amplitudes of excitation N(t) for all subjects for all


%%% events during the night


%%%


%%%Output: aircraftREM-amplitudes of excitation N(t) for fast REM model for


%%% aircraft events


%%% aircraft-amplitudes of excitation N(t) for slow models


%%% aircraft events


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [aircraftREM aircraft]=Create_Aircraft_Awakenings(Data,Timing,...


len,Fs,pr,ink,Events)


aircraft=zeros(1,1.1*len*Fs);


aircraftREM=zeros(1,1.1*len*Fs);


for ii=1:length(Timing)


if Events(ink,ii)>0


dur=normrnd(Data.wtmeandur,Data.wtstddur,1,1);
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if dur<Data.wtmindur


dur(1)= Data.wtmindur;


end


%%Create N(t) for slow models


beg=round((Timing(ii)/10.7)*Fs);


fin=beg+round(dur*Fs);


aircraft(beg:fin)=aircraft(beg:fin)+Events(ink,ii).*ones(1,round(dur*Fs)+1);


%%Create N(t) for fast models


Aramp=pr(1)*Events(ink,ii)+pr(2);


aircraftREM(beg:fin)=aircraftREM(beg:fin)+Aramp.*ones(1,round(dur*Fs)+1);


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function E Calc: The following program is used to generate E(t) by low pass filtering


N(t), which is the summation of the aircraft noise induced and spontaneous excitation


terms.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function E_Calc


%%%Code for low-pass filtering the excitation term N(t)


%%%


%%%Input: Wake-this is the Poisson Noise (N(t))


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: T-time


%%% X-low pass filtered noise process E(t)


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=E_Calc(Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,Wake,Fs),1/Fs:1/Fs:len,[.001],options);


end


function dxdt=fun(t,x,Wt,Fs)


dxdt=zeros(1,1);


time=(0:1:(length(Wt)-1))/Fs;


w=interp1(time,Wt,t);


dxdt(1)=(64)*w-(64)*x(1);%%Lowpass below 10 seconds


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function REM Calc: The following program is used to calculate the slow REM ac-


tivity, both X REM promoting activity and Y REM inhibiting activity.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function REM_Calc


%%%Code for calculating slow REM activity-based on the Massaquoi and


%%%McCarley model.


%%%


%%%Reference:S. G. Massaquoi and R. W. McCarley. Extension of the limit


%%%cycle reciprocal interaction model of REM cycle control. An integrated


%%%sleep control model, 1:138-143,1992.


%%%


%%%Input: REM_Param-data for REM model


%%% Wake-excitation term E(t)


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: T-time


%%% X-slow REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=REM_Calc(REM_Param,Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,REM_Param,Wake,Fs),1/Fs:1/Fs:len,...


[REM_Param.xo REM_Param.yo],options );


end


function dxdt=fun(t,x,REM_Param,Wake,Fs)


dxdt=zeros(2,1);


time=(0:1:(length(Wake)-1))/Fs;


w=interp1(time,Wake,t);


dc2=(1.55+0.8*sin(.0467*t+4));%%24 hour circadian variation


dc=1;


%%REM-ON (X)


dxdt(1)=REM_Param.a*x(1)*dc2-x(1)*x(2)*REM_Param.b*dc2;


%%REM-OFF (Y)


dxdt(2)=-x(2)*REM_Param.c*dc+dc*(x(1)+(0.25/max(Wake))*w)*x(2)*REM_Param.d;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Create REM INPUT: The following program is used to calculate the start


and end of each REM period based on the level of X, REM-promoting activity, from


the slow REM model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Create_REM_INPUT


%%%Program for determining the beginning and end of each REM period


%%%based on the level of slow REM activity


%%%%


%%%Input: REM-slow REM model activity


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%Output: st_new-start of each REM period


%%% ff_new-end of each REM period


%%% REM_NEW-REM-indicator, 1 during REM sleep and zero during NREM


%%% sleep


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len)


ii=1;


if max(REM)<1.5


valgreat=.5*(max(REM)-min(REM));


else


valgreat=1;


end


%%Calculate Multipliers


tempShift=REM;


Ind=find(tempShift>=valgreat);


st(ii)=Ind(1);


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift<valgreat);


maxval=max(tempShift(1:Ind(1)));


ff(ii)=Ind(1)+st(ii);


sc(ii)=1.5/maxval;


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift>=valgreat);


while(ff(ii)<len*Fs && length(Ind)>0)


ii=ii+1;


st(ii)=Ind(1)+ff(ii-1);


tempShift=tempShift(Ind(1):length(tempShift));


Ind=find(tempShift<valgreat);


if length(Ind)>0


maxval=max(tempShift(1:Ind(1)));


ff(ii)=Ind(1)+st(ii);


sc(ii)=1.5/maxval;
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tempShift=tempShift(Ind(1):length(tempShift));


else


ff(ii)=len*Fs ;


maxval=max(tempShift(1:length(tempShift)));


sc(ii)=1.5/maxval;


end


Ind=find(tempShift>=valgreat);


end


%%Cycle through and find start points for the scaled REM signal


REM_NEW=zeros(1,length(REM));


for ii=1:length(st)


if ii==1


temp=REM(1:ff(1)+(st(2)-ff(1))/2)*sc(ii);


Ind=find(temp>=1);


REM_NEW(Ind)=1;


st_new(ii)=Ind(1);


ff_new(ii)=Ind(length(Ind));


elseif ii<length(st)


temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:ff(ii)+(st(ii+1)-ff(ii))/2)*sc(ii);


Ind=find(temp>=1);


REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;


st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


else


temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:length(REM))*sc(ii);


Ind=find(temp>=1);


REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;


st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function SWA Calc: The following program is used to calculate the slow wave activity


(SWA) and Process S.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function SWA_Calc


%%%Program for calculating slow wave activity based on Achermann et al.’s


%%%model


%%%


%%%Reference: P. Achermann, D. J. Dijk, D. P. Brunner and A. A. Borbly. A


%%%model of human sleep homeostasis based on EEG slow-wave activity:


%%%Quantitative comparison of data and simulations. Brain Research


%%%Bulletin. 31: 97-113, 1993.


%%%
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%%%Input: Param-model parameters


%%% REM-indicator of REM periods


%%% Wake-aircraft and spontaneous excitations, E(t)


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%%


%%%


%%%Output: T-time vector


%%% X-SWA and Process S


%%%


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=SWA_Calc(Param,REM,Wake,Fs,len)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,x) fun(t,x,Param,REM,Wake,Fs),1/Fs:1/Fs:len,...


[Param.SWAo Param.So],options);


end


function dxdt = fun(t,x,Param,REM,Wake,Fs)


dxdt=zeros(2,1);


timew=(0:1:(length(Wake)-1))/Fs;


timeR=(0:1:(length(REM)-1))/Fs;


w=interp1(timew,Wake,t);


R=interp1(timeR,REM,t);


%%dxdt(1) and x(1) is for SWA (slow wave activity)


%%dxdt(2) and x(2) is for process S


dxdt(1)=(Param.rc)*x(1)*x(2)*(1-x(1)/x(2))-(Param.fc)*(x(1)-Param.SWAL)*R...


-(x(1)-Param.SWAL)*(Param.fcw)*w;


dxdt(2)=-Param.gc*x(1);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function NREM Sleep Stage Classify: The following program is used to classify


NREM sleep stages based on the level of SWA and the excitation term E.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function NREM_Sleep_Stage_Classify


%%%Program for calculating NREM sleep stages based on SWA activity


%%%and excitation values


%%%


%%%Input: Est_Stage-empty vector for sleep stage assignment


%%% SWA-Slow wave activity


%%% Wake-excitation term


%%% REM-NEW-indicator of REM periods


%%%


%%%Output: Est_Stage-assigned NREM sleep stages
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW)


for ii=1:length(SWA)


if REM_NEW(ii)==0


if SWA(ii)>=2.0


Est_Stage(ii)=3;%%Stage 3/4


elseif SWA(ii)<1.0 && Wake(ii)>=.5


Est_Stage(ii)=1;%%Stage Wake/S1


elseif SWA(ii)<0.3


Est_Stage(ii)=1;%%Stage Wake/S1


else


Est_Stage(ii)=2;%%Stage 2


end


else


Est_Stage(ii)=5;%%Temporary place holder


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Fast REM Main: The following program is the main program for calculating


fast REM activity.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Fast_REM_Main


%%%Program for calculating fast REM activity


%%%


%%%


%%%Input: Est_Stage-vector containing sleep stages


%%% initRx-initial xo values for fast REM model


%%% initRy-initial yo values for fast REM model


%%% Fs-sampling rate


%%% st_new-start of each REM period


%%% ff_new-end of each REM period


%%% WakeREM-excitation term for fast REM model


%%%


%%%Output: Est_Stage-assigned sleep stages


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage]=Fast_REM_Main...


(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM)


%%Moving unstable equilibrium position


Eq_Wake=2-(WakeREM);


%%Cycle through for each REM period
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for ii=1:length(st_new)


Wake_Seg=Eq_Wake(st_new(ii):ff_new(ii));


%%t of fast REM model is on a different scale


t=0:1/Fs:(ff_new(ii)-st_new(ii))/Fs;


tnew=0:1/(10.7*Fs*5):(ff_new(ii)-st_new(ii))/Fs;


Wake_Seg_sp = spline(t,Wake_Seg,tnew);


lenT=(ff_new(ii)-st_new(ii)+1)/Fs*10.7*5;


initREM(1)=initRx(ii);


initREM(2)=initRy(ii);


delta=.06;


w=0.3*2*pi;


A=0.50;


%%Calculate Duffing oscillator solution


[T,X]=Phasic_Tonic_Calc(delta,w,Wake_Seg_sp,A,Fs,lenT-1,initREM);


%%Initial assignment of REM sleep stages


%%1-Tonic, 0-Phasic, -1-Wake


X=X(:,1);


REM_Stage=0;


I=find(X>=0);


REM_Stage(I)=1;


I=find(X<0 & X>-2);


REM_Stage(I)=0;


I=find(X<=-2);


for jj=1:length(I)


if Wake_Seg_sp(I(jj))<1.9


REM_Stage(I(jj))=-1;


else


REM_Stage(I(jj))=0;


end


end


[st, ff]=calc_tonic_phasic_int(REM_Stage);


REM_Stage_New=REM_Stage;


%%Correction for Tonic REM


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)


if min(X(st(jj):ff(jj)))>=-.25


REM_Stage_New(st(jj):ff(jj))=1;


end


end


end


[st, ff]=calc_tonic_phasic_int(REM_Stage_New);


%%Tonic REM period less than 15 seconds is equal to previous stage


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)
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if ff(jj)-st(jj)<.25*5*Fs && st(jj)>1


REM_Stage_New(st(jj):ff(jj))=REM_Stage_New(st(jj)-1);


end


end


end


%%Correct for Phasic period in which max is not near 0.5


TempREM_Phasic=ones(1,length(REM_Stage_New));


I=find(REM_Stage_New==1);


TempREM_Phasic(I)=zeros(1,length(I));


[st, ff]=calc_tonic_phasic_int(TempREM_Phasic);


if st(1)~=0 && ff(1)~=0


for jj=1:length(ff)


if max(X(st(jj):ff(jj)))<.25


REM_Stage_New(st(jj):ff(jj))=0;


end


end


end


%%Correct if awakening started during noise event-find its end


tempEvents=ones(1,length(REM_Stage_New));


I=find(Wake_Seg_sp<1.9);


tempEvents(I)=zeros(1,length(I));


[stN, ffN]=calc_tonic_phasic_int(tempEvents);


if ffN(1)~=0 && ffN(length(ffN))<length(X)


for jj=1:length(ffN)


if X(ffN(jj))<-2 && X(ffN(jj)+1)<-2


I=find(X(ffN(jj):length(X))>-2);


if length(I)~=0


REM_Stage_New(ffN(jj):ffN(jj)-1+I(1))=-1;


end


end


end


end


%%Determine sleep stage- five points for every one point in slow models.


stageREM=[-1 0 1];


REM_StageFinal=0;


for jj=1:length(X)/(5*10.7)


for kk=1:3


I=length(find(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7)==stageREM(kk)));


perseg(kk)=I/length(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7));


end


I=find(perseg==max(perseg));


REM_StageFinal(jj)=stageREM(I(1));


if REM_StageFinal(jj)==-1


Est_Stage(st_new(ii)+jj-1)=1;%%Stage Wake/S1


else


Est_Stage(st_new(ii)+jj-1)=5;%%Stage REM


end


end
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end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Phasic Tonic Calc: The following program is used to calculate the fast REM


activity based on the Duffing model with the 5th order stiffness term.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Phasic_Tonic_Calc


%%%Program for Duffings system with a 5th order stiffness term


%%%


%%%Reference:G. X. Li and F. C. Moon. Criteria for chaos of a three-well


%%%potential oscillator with homoclinic and heteroclinic orbits. Journal


%%%of Sound and Vibration. 136(1): 17-34, 1990.


%%%


%%%Input: delta-damping


%%% w-drive frequency


%%% Wake-spontaneous and aircraft excitations


%%% A-drive amplitude


%%% Fs-sampling rate


%%% len-length of night that is being simulated


%%% init-inital conditions


%%%


%%%Output: X-fast REM model


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [T,X]=Phasic_Tonic_Calc(delta,w,Wake,A,Fs,len,init)


options = odeset(’RelTol’,1e-6);


[T,X]=ode45(@(t,X) fun(t,X,delta,w,Wake,A,Fs),1/Fs:1/Fs:len,init,options);


end


function dxdt=fun(t,X,delta,w,Wake,A,Fs)


time=(0:1:(length(Wake)-1))/Fs;


m=interp1(time,Wake,t);


dxdt=zeros(2,1);


dxdt(1)=X(2);


dxdt(2)=-1*((X(1)-0.5)*(X(1)-0))*(X(1)+0.5)*(X(1)+m)*(X(1)+2.5)...


-delta*X(2)+A*cos(w*t);


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Phasic Tonic Calc: The following program is used to calculate the inter-


arrival times of Phasic or Tonic REM sleep.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Phasic_Tonic_Calc


%%%Program for determing start and end points of certain activity, for


%%%example calculating the inter-arrival time of phasic activity


%%%


%%%Input: REM_Dens-fast REM model sleep stages


%%%


%%%Output: st-start


%%% ff-end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [st, ff]=calc_tonic_phasic_int(REM_Dens)


st=0;


ff=0;


ink(1:2)=1;%%ink(1) start, %%ink(2)=fin


for kk=1:length(REM_Dens)


if REM_Dens(kk)==0 && kk <length(REM_Dens)


if kk==1


st(ink(1))=kk;


ink(1)=ink(1)+1;


elseif REM_Dens(kk-1)~=0


st(ink(1))=kk;


ink(1)=ink(1)+1;


end


if REM_Dens(kk+1)~=0


ff(ink(2))=kk;


ink(2)=ink(2)+1;


end


elseif REM_Dens(kk)==0 && kk ==length(REM_Dens)


if REM_Dens(kk-1)~=0


st(ink(1))=kk;


ff(ink(2))=kk;


ink(1)=ink(1)+1;


ink(2)=ink(2)+1;


else


ff(ink(2))=kk;


ink(2)=ink(2)+1;


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Calc 30 Sec Stages: The following program is used to calculate 30 second


sleep stages.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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%%%Function Calc_30_Sec_Stages


%%%Program for calculating 30 second sleep stages


%%%


%%%Input: Est_Stage-1 second sleep stages


%%%


%%%Output: tempstage-30 second sleep stages


%%% tempstage30plot-30 second sleep stages for plotting


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage)


val=[1 2 3 5];


tempstage=0;


tempstage30plot=0;


for ii=1:length(Est_Stage)/(30)


for kk=1:length(val)


I=find(Est_Stage((ii-1)*30+1:ii*30-1)==val(kk));


per(ii,kk)=length(I)/(30);


end


maxval=max(per(ii,:));


I=find(per(ii,:)==maxval);


tempstage(ii)=I(1);


if tempstage(ii)==4


tempstage30plot(ii)=3;


elseif tempstage(ii)==3


tempstage30plot(ii)=1;


elseif tempstage(ii)==2


tempstage30plot(ii)=2;


elseif tempstage(ii)==1


tempstage30plot(ii)=4;


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Appendix H. Code for Feature Extraction and Sleep Stage Scoring


The following is the Matlab program used for extracting different features of the


polysomnography data and for scoring sleep stages. The first part of the program


extracts characteristics such as the occurrence of movement artifacts, level of EMG


activity, correlation of EOG channels, power in EEG frequency bands, and the fre-


quency with the lowest decay rate identified using Auto-Regressive modeling. An


example of some of the features that were extracted for one subject night is shown in


Figure H.1. Sleep stages are assigned for each second based on the extracted features


using a classification algorithm that was developed and the probability of being in


different sleep stages was calculated for each 30 seconds of scored sleep stages, an


example for one subject night is shown in Figure H.2. An overview of the subroutines


of the program is in Table H.1.


Table H.1. Subroutines of the feature extraction code and sleep stage
scoring algorithm.


Subroutine Name Is Called By Makes Calls to
Movement Artifacts Threshold Main Feature Calc None
Dominant Band AR Main Feature Calc None
Calc Correlation Main Feature Calc None
RLS Calc Main Feature Calc None
Amplitude Time Exceeded Main Feature Calc None
Per Power Main Feature Calc None
Power Welch Main Feature Calc None
Classify Stage None Calc REM Periods
Calc REM Periods Classify Stage None


Function Main Feature Calc: This is the main program for extracting features of


polysomnography data for later use. The data is saved and then imported into the


separate sleep stage classification program.
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Figure H.1. An example of some of the characteristics that are ex-
tracted including; (a) the percent of an epoch occupied by movement
artifacts, (b) the percent of an epoch occupied by Slow Wave Sleep
(SWS), (c) the frequency that has the lowest decay rate identified us-
ing an AR(4) model, (d) correlation between the right and left EOG
channels, and (e) the root-mean-square (RMS) of the EMG activity
for each epoch.
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Figure H.2. Probability of being in Stage Wake/S1, Stage 2, Stage
3/4, and REM sleep calculated using the developed sleep stage scoring
algorithm.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Main_Feature_Calc


%%%Main code for extracting and saving signal characteristics for later


%%%analysis


%%%Input: subject_num-subject number


%%% night_num-night number


%%% Seg_Len-length of moving signal (i.e. usually 15 or 30 seconds)


%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)


%%% Fs-sampling rate


%%% correct_option-’correct’ if EKG and EOG artifact corrections


%%% are going to be applied to the EEG data


%%% EKG_File-indicates whether the EKG file is usuable or not for


%%% correction, equal to 0 if it is fine to use, 1 if it contains


%%% artifacts


%%%


%%%Output: The data is saved as .mat files within this


%%% program


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function Main_Feature_Calc...


(subject_num, night_num,Seg_Len,inc_Len,Fs,correct_option,EKG_File)


%%Read in the Physiological Data from 1999 UK dataset


choice={’C4-A1’,’C3-A2’,’EMG’,’EOG-L’,’EOG-R’,’EKG’,’Stages’};


[Signals, Stages, Missing_Data]=Load_Signals(subject_num,night_num,choice);


%%For EOG and EKG Corrections


lambda = .9999; %%Forgetting Factor


delta = .01; %%Initial Value


M=3;%%Filter Order


%%Indentify movement artifacts


%%ART indicates whether a 1 second epoch was above the threshold (1 there


%%is an artifact and 0 there is not an artifact.)


%%Cycle through twice for both EEG channels


for ii=1:2


[ART_Thres(:,ii),ART_Thres_onesec(:,ii)]...


=Movement_Artifacts_Threshold(Signals(:,ii),Fs,inc_Len);


end


%%Frequency Bands


bandHigh= [ 2 4.5 4.5 8 12 16 25 35 45 15 14 45];


bandlow= [.5 2 .5 4.5 8 12 16 25 35 11 12 .5];


%%Save AR Model for every increment


Band=[.5 45];


Size=1;


for jj=1:2


[Damp_AR(:,jj) Freq_AR(:,jj)]=Dominant_Band_AR...


(Signals(:,jj),Band,floor(length(Signals(:,1))/(Fs)),Size,inc_Len,Fs);
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end


%%Incase I want to run for multiple segment lengths


for ink=1:length(Seg_Len)


%%Preallocate Space


SWS=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


ART=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


Pow=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);


Pow_Welch=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);


EOG_Corr=zeros((length(ART_Thres(:,1)))-Seg_Len,1);


maxEOG=zeros((length(ART_Thres(:,1)))-Seg_Len,2);


EMG_RMS=zeros((length(ART_Thres(:,1)))-Seg_Len,1);


K_Complex=zeros((length(ART_Thres(:,1)))-Seg_Len,30,1);


inc=1;


for kk=1:(length(ART_Thres(:,1)))-Seg_Len


display(kk)


for jj=1:2%%Cycle twice for both EEG channels


Seg=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len(ink)*Fs,jj);


ART(kk,jj)=sum(ART_Thres((kk-1)*1+1:(kk-1)*1+Seg_Len(ink),jj));


EKG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,6);


EOGL=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,4);


EOGR=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,5);


EMG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,3);


if jj==1;%%Don’t need this step for both cycles through


Band=[.5 5];


Thresholds=[25 250];


%%Calculate EOG_Corr


[EOG_Corr(kk) maxEOG(kk,1:2)]=Calc_Correlation...


(EOGL,EOGR,Thresholds,Band,Fs);


%%Calculate EMG RMS


EMG_RMS(kk)=sqrt(mean(abs(EMG).^2));


end


%%If the EEG signal is going to be corrected for EKG and EOG artifacts


if strcmp(correct_option,’correct’)


%%if EKG signal is usuable && low amount of movement artifacts


if EKG_File==0 && ART(kk,jj)<15


%%For EKG Correction


%%Determine if segment contains EKG


[CC]=...


Calc_Correlation(Seg,EKG,[0 1.1*max([max(Seg) max(EKG)])],[.5 40],Fs);


if abs(CC)>=.2 %%If EEG and EKG are Correlated


%%EKG input signal measured in mV, EEG is measured in micro volts


u=EKG*1000;


d=Seg;%%Contaminated/desired EEG signal


%%use RLS to correct EEG signal


%%"Fixed Signal" is the output error of RLS


[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);


end


end
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%%For EOG Correction


%%Determine if segment contains eye mvmts


%%if eye Movement && low amount of EEG artifacts


if EOG_Corr(kk)<=-.2 && ART(kk,jj)<15


Band=[.5 5];


Thresholds=[25 250];


%%Corr between EEG and EOGL


[CCL]=Calc_Correlation(EOGL,Seg,Thresholds,Band,Fs);


%%Corr between EEG and EOGR


[CCR]=Calc_Correlation(EOGR,Seg,Thresholds,Band,Fs);


%%Determine if EEG and EOG signals are correlated


if abs(CCL)>=abs(CCR) && abs(CCL)>=.2%%Use Signal most correlated


u=EOGL;%%input signal


d=Seg;%%Contaminated/desired EEG signal


%%"Fixed Signal" is the output error of RLS


[Seg,w,h]=RLS(lambda,M,u,d,delta);


elseif abs(CCR)>=.2


u=EOGR;%%input signal


d=Seg;%%Contaminated desired EEG signal


[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);


end


end


end


%%Detect SWS


Threshold_SWS=[75 250];


[DataSWS]=Amplitude_Time_Exceeded(Seg,Threshold_SWS,[.5 2],Fs);


SWS(kk,jj)=sum(DataSWS.Time_Above)/DataSWS.Total_Time;


%%Power for segment


[Pow(kk,1:length(bandHigh),jj)]=Per_Power(Seg,bandHigh,bandlow,Fs);


%%Power using Welch Method


Band=[.5 45];


[Pow_Welch(kk,1:length(bandHigh),jj)]=...


Power_Welch(Seg,bandHigh,bandlow,Band,Fs);


end


end


end


%%Save files


save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’ ...


num2str(night_num) ’_Damp_ARburg.mat’],’Damp_AR’)


save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Freq_ARburg.mat’],’Freq_AR’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_SWS.mat’],’SWS’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...
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num2str(night_num) ’_EOG_Corr.mat’],’EOG_Corr’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART.mat’],’ART’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...


num2str(night_num) ’_EMG_RMS.mat’],’EMG_RMS’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Pow.mat’],’Pow’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_Pow_Welch.mat’],’Pow_Welch’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_maxEOG.mat’],’maxEOG’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART_Thres.mat’],’ART_Thres’)


save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...


num2str(night_num) ’_ART_Thres_onesec.mat’],’ART_Thres_onesec’)


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Movement Artifacts Threshold: This program is used to identify when


movement artifacts are occurring based on activity in the gamma frequency band


of the EEG signal.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Movement_Artifacts_Threshold


%%%Code for calculating thresholds which are used to identify movement


%%%artifacts. The method used is based on the work of Brunner et al.


%%%


%%%Reference: D. P. Brunner, R. C. Vasko, C. S. Detka, J. P. Monahan, C. F.


%%%Reynolds III and D. J. Kupfer. Muscle artifacts in the sleep EEG:


%%%Automated detection and effect on all-night EEG power spectra. J. Sleep


%%%Res. 5: 155-164, 1996.


%%%


%%%Input: Signal-typically the EEG channel


%%% Fs-is the sampling frequency


%%% inc_Len-size of increment in time (i.e. usually 1 for 1 second)


%%%


%%%Output: ART-indicator of artifacts, 1 if there is an artifact and 0 if


%%% there is not an artifact


%%% ART_Thres_re-threshold used for defining artifacts


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [ART,ART_Thres_re]=Movement_Artifacts_Threshold(Signal,Fs,inc_Len)


%%Consider only activity from 26 to 32 Hz


[b,a]=butter(4,[26 32]./(Fs/2),’bandpass’);


Filt_Signal=filtfilt(b,a,Signal);
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%%Calculate average power every 4 seconds


meanval=zeros(1,length(Signal)/(4*Fs));


for ii=1:length(Signal)/(4*Fs)


meanval(ii)=mean(abs(Filt_Signal((ii-1)*4*Fs+1:ii*4*Fs)).^2);


end


pow_smooth=medfilt1(meanval,45); %%Brunner smoothed out the spectrum for the


%%threshold using the


%%surrounding three minutes


%%three minutes divided by 4 second epochs


%%is 45 points


ART_Thres_4sec=pow_smooth.*4;%%Brunner found that 4* the smoothed threshold


%%provided the best results


%%Resample threshold


len=length(Signal)/(inc_Len*Fs)-(4/inc_Len);


t=(0:1:length(ART_Thres_4sec)-1)*4;


tnew=(0:1:(len-1))*inc_Len;


ART_Thres_re=spline(t,ART_Thres_4sec,tnew);


%%Cycle through signal and and determine if the mean of the


%%signal is above the smoothed out threshold


for ii=1:length(ART_Thres_re)


meanval(ii)=mean(abs(Filt_Signal((ii-1)*inc_Len*Fs+1:ii*inc_Len*Fs)).^2);


if meanval(ii)> ART_Thres_re(ii)


ART(ii)=1;


else


ART(ii)=0;


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Dominant Band AR: This program is used to determine the frequency with


the lowest decay rate using an AR model.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Dominant_Band_AR


%%%Code for calculating the frequencies that have the least damping


%%%identified using an AR model. The approach is based on Olbrich and


%%%Achermann.


%%%


%%%Reference: E. Olbrich and P. Achermann. Analysis of the temporal


%%%organization of sleep spindles in the human sleep EEG using a
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%%%phenomenological modeling approach. Journal of Biological Physiology,


%%%34:341349, 2008.


%%%


%%%Input: Signal-the EEG signal


%%% Band-frequency band limits for filtering


%%% Seg_Len-length of signal being used


%%% Size-length of sub-segment


%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)


%%% Fs-the sampling frequency


%%%


%%%Output: max_freq-frequency associated with the minimum damping


%%% max_damp-minimum damping value.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [max_damp,max_freq]=Dominant_Band_AR(Signal,Band,Seg_Len,Size,inc_Len,Fs)


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


Seg=filtfilt(b,a,Signal);


N=4;%%Order of AR filter


%%preallocate space


max_damp=zeros((Seg_Len/inc_Len)-Size,1);


max_freq=zeros((Seg_Len/inc_Len)-Size,1);


%%Determine frequency and damping


for ii=1:floor(Seg_Len/inc_Len)-Size


[a,e]=arburg(Seg((ii-1)*Fs*inc_Len+1:(ii-1)*Fs*inc_Len+1+Fs*Size),N);


damping=abs(roots(a));


freq=rad2deg(abs(angle(roots(a))))*(Fs/2)/180;


%%find maximum value


maxval=max(damping);


I=0;


I=find(damping==maxval);


if length(I)>1


I2=find(freq(I)>=.5 & freq(I)<45);


if length(I2)>0


freqval=min(freq(I(I2)));


else


freqval=min(freq(I));


end


else


freqval=freq(I(1));


end


if freqval>=Band(1) && freqval<Band(2)


max_damp(ii)=maxval;


max_freq(ii)=freqval;


else


max_damp(ii)=0;


max_freq(ii)=0;


end
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end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function RLS Calc: This program is used to create a Recursive Least Squares Filter


(RLS) for removing eye movement and ECG artifacts from EEG data.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function RLS_Calc


%%%Code for Recursive Least Squares Filter


%%%


%%%Reference: S. Haykin Adaptive Filter Theory. Prentice Hall, Upper Saddle


%%%River, New Jersey, 3rd edition, 1996.


%%%


%%%Input: Lambda=forgetting factor


%%% M = filter order


%%% x=input signal (ECG or EOG)


%%% d=desired signal (contaminated EEG)


%%% delta=initial value


%%%


%%%Output: e = error estimate (corrected signal)


%%% h = filter coefficients


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [e,w,h]=RLS_Calc(lambda,M,x,d,delta)


w=zeros(M,1);


P=eye(M)/delta;


x=x(:);


d=d(:);


len=length(x);


%%error vector


e=d;


for ii=M:len


x_est=x(ii:-1:ii-M+1);


k=P*x_est/(lambda+x_est’*P*x_est);


e(ii)=d(ii)-w’*x_est;


w=w+k*conj(e(ii));


h(:,ii)=w;


P=lambda^(-1)*P-lambda^(-1)*k*x_est’*P;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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Function Calc Correlation: This program is used to calculate the correlation between


two signals.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Calc_Correlation


%%%Code for calculating the correlation between two signals


%%%


%%%Input: Seg1-Signal 1


%%% Seg2-Signal 2


%%% Thresholds-minimum and maximum amplitude of signal


%%% primarily used for EOG to eliminate artifacts


%%% Band-frequency band limits


%%% Fs-the sampling frequency


%%%


%%%Output: CC-correlation of the two channels


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [CC,maxval]=Calc_Correlation(Seg1,Seg2,Thresholds,Band,Fs)


if Band(1)~=0


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


temp1=filtfilt(b,a,Seg1);


temp2=filtfilt(b,a,Seg2);


else


[b,a]=butter(4,Band(2)./(Fs/2),’low’);


temp1=filtfilt(b,a,EOGL);


temp2=filtfilt(b,a,EOGR);


end


maxval(1)=max(abs(temp1));


maxval(2)=max(abs(temp2));


if maxval(1)<Thresholds(2) && maxval(2)<Thresholds(2) && ...


maxval(1)>Thresholds(1) && maxval(2)>Thresholds(1)


C=corrcoef(temp1,temp2);


CC=C(1,2);


else


CC=0;


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Amplitude Time Exceeded: This program is used to calculate the percent


of each epoch occupied by slow wave sleep.
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Amplitude_Time_Exceeded


%%%Code for calculating peak to peak amplitude critera


%%%


%%%Reference: H. Kuwahara, H. Higashi, Y. Mizuki, S. Matsunari, M. Tanaka,


%%%and K. Inanaga. Automatic real-time analysis of human sleep stages by


%%%an interval histogram method. Electroencephalography and Clinical


%%%Neurophysiology, 70: 220-229,1988.


%%%


%%%Input: Signal-either the EOG, EEG, or EMG signal


%%% Thresholds-vector containing the minimum and maxmium amplitude


%%% Band-frequency band limits


%%% Fs-sampling frequency


%%%


%%%Output: Data.Time_Above-time the signal is within the specified thresholds


%%% Data.Total_Time-total time of segment


%%% Data.Range-maximum value of signal between zero crossings


%%% Data.Duration-duration of the signal between zero crossings


%%% Data.Start_Time-start time of each zero crossing


%%% Data.End_Time-end time of each zero crossing


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Data]= Amplitude_Time_Exceeded(Signal,Thresholds,Band,Fs)


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


Seg=filtfilt(b,a,Signal);


greater=[];


greater=find(Seg>=0);%%Find values greater then 0


incpos=1;


crossingpos=[];


incneg=1;


crossingneg=[];


%%Find all zero crossings


for ii=1:length(greater)


if (greater(ii)-1)>0 && (greater(ii)+1)<length(Seg)


if Seg(greater(ii)-1)<0 && Seg(greater(ii)+1)>0 %%make sure it is a crossing


crossingpos(incpos)=greater(ii);


incpos=incpos+1;


end


if Seg(greater(ii)+1)<0 && Seg(greater(ii)-1)>0


crossingneg(incneg)=greater(ii);


incneg=incneg+1;


end


end


end


%%Find the start, end, range, and duration for each crossing


ink=1;


if crossingpos(1)<crossingneg(1)
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lenval= length(crossingpos)-1;


else


lenval= length(crossingneg)-1;


end


for ii=1:lenval


if crossingpos(1)<crossingneg(1)


temp=abs(Seg(crossingpos(ii):crossingneg(ii)));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));


Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


temp=abs(Seg(crossingneg(ii):crossingpos(ii+1)));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii+1))));


Data.Duration(ink)=(crossingpos(ii+1)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii+1)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


else


temp=abs(Seg(crossingneg(ii):crossingpos(ii)));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));


Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


temp=abs(Seg(crossingpos(ii):crossingneg(ii+1)));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii+1))));


Data.Duration(ink)=(crossingneg(ii+1)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii+1)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


ink=ink+1;


end


end


ii=length(crossingpos);


if crossingpos(1)<crossingneg(1) && length(crossingneg)==length(crossingpos)


temp=abs(Seg(crossingpos(ii):crossingneg(ii)));


tempSign=Seg(crossingpos(ii):crossingneg(ii));


Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));
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Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;


Data.Start_Time(ink)=crossingpos(ii)/Fs;


Data.End_Time(ink)=crossingneg(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


Data.Range_Sign(ink)=tempSign(ind(1));


elseif length(crossingneg)==length(crossingpos)


temp=abs(Seg(crossingneg(ii):crossingpos(ii)));


tempSign=Seg(crossingneg(ii):crossingpos(ii));


Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));


Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;


Data.Start_Time(ink)=crossingneg(ii)/Fs;


Data.End_Time(ink)=crossingpos(ii)/Fs;


ind=[];


ind=find(temp==Data.Range(ink));


Data.Max_Time(ink)=(ind(1)-1)/Fs;


Data.Range_Sign(ink)=tempSign(ind(1));


end


%%Determine time when peak to peak amplitude is greater than the threshold


Data.Total_Time=sum(Data.Duration);


Data.Time_Above=zeros(1,length(Data.Range));


for ii=1:length(Data.Range)-1


if (Data.Range(ii)+Data.Range(ii+1))>=Thresholds(1) &&...


(Data.Range(ii)+Data.Range(ii+1))<=Thresholds(2)


%%Make sure that half of wave is not contributing to the entire peak to


%%peak amplitude


if Data.Range(ii)>=Thresholds(1)*.25 && Data.Range(ii+1)>=Thresholds(1)*.25


if (Data.Duration(ii)+Data.Duration(ii+1))>=1/Band(2) &&...


(Data.Duration(ii)+Data.Duration(ii+1))<=1/Band(1)


Data.Time_Above(ii)=Data.Duration(ii);


Data.Time_Above(ii+1)=Data.Duration(ii+1);


end


end


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Per Power: This program is used to calculate the root-mean-square value


for the power in each frequency band.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function: Per_Power


%%%Code for calculating RMS values for each frequency band


%%%


%%%Input: EEG-EEG segment
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%%% BandHigh-upper frequency band limit


%%% BandLow-lower frequency band limit


%%% Fs-sampling frequency


%%%


%%%Output: pow-RMS value for each of the specified frequency bands


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [pow]=Per_Power(EEG,bandHigh,bandlow,Fs)


pow=zeros(1,length(bandlow));


for ii=1:length(bandlow) %%Cycle through and calculate


[b,a]=butter(4,[bandlow(ii) bandHigh(ii)]./(Fs/2),’bandpass’);


temp=filtfilt(b,a,EEG);


pow(ii)=sqrt(mean(abs(temp).^2));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Power Welch: This program is used to calculate power in each frequency


band.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function: Power_Welch


%%%Code for calculating power spectral density


%%%


%%%Reference: F. Ferrillo, S. Donadio, F. De Carli, S. Gabarino, and


%%%L. Nobili. A model-based approach to homeostatic and ultradian


%%%aspects of nocturnal sleep structure in narcolepsy.


%%%Sleep, 30(2):157165, 2007.


%%%


%%%Input: EEG-EEG segment


%%% BandHigh-upper frequency band limits


%%% BandLow-lower frequency band limits


%%% Band-cutoff frequencies for filter


%%% Fs-sampling frequency


%%%


%%%Output: Pow-power for each of the specified frequency bands


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Pow]=Power_Welch(EEG,bandHigh,bandlow,Band,Fs)


%%Method is Similar to Ferrillo et al. Calculate PSD using


%%Welch method.


%%Filter EEG


[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);


EEG_filt=filtfilt(b,a,EEG);
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%%Calculate power spectra using the Welch method


%%Use 4 second segments, apply hamming window


%%Use 75% overlap


%%Sum power in each frequency band


window=4*Fs;


noverlap=.75*window;


nfft=2^(nextpow2(8*window));


[Sxx,f] = pwelch(EEG_filt,window,noverlap,nfft,Fs,’onesided’);


%%Calculate power in each frequency Band


for ii=1:length(bandHigh)


start=find(f>=bandlow(ii));


fin=find(f<bandHigh(ii));


Pow(ii)=sum(Sxx(start(1):fin(length(fin))));


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Calc REM Periods: This program is used to identify the start and end of


each REM period.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Function Calc_REM_Periods


%%%Code for calculating potential REM sleep periods as part of


%%%sleep stage classification algorithm


%%%


%%%Input: Stages-sleep stages


%%% inc_len-sliding increment used


%%%


%%%Output: start-start of each potential REM period


%%% fin-end of each potential REM period


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [start,fin]=Calc_REM_Periods(Stages,inc_len)


%%Find start and finish for each REM period


starti=[];


fini=[];


starti=0;


fini=0;


I=find(Stages==5);


starti(1)=I(1);


ink=1;


for kk=2:length(I);


durStage=length(find(Stages(I(kk-1):I(kk))<5));


%%definition need greater then 15 minutes


if durStage>15*floor(60/inc_len)%
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fini(ink)=I(kk-1);


ink=ink+1;


starti(ink)=I(kk);


end


end


%%Can happen if REM sleep period is at end of night


if length(starti)>length(fini)


fini(length(starti))=I(length(I));


end


%%Eliminate very brief REM sleep periods


start=[];


fin=[];


ink=1;


for kk=1:length(starti)


lenREM=length(find(Stages(starti(kk):fini(kk))==5));


if lenREM>=1*floor(60/inc_len) && fini(kk)-starti(kk)>=2.0*floor(60/inc_len)


start(ink)=starti(kk);


fin(ink)=fini(kk);


ink=ink+1;


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


Function Classify Stage: This program is used to automatically classify sleep stages.


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


%%%Classify_Stage


%%%Code for automatically classifying sleep stages


%%%


%%%Input: ART-artifact signal


%%% SWS-percent of epoch occupied by SWS


%%% EOG_Corr-correlation between left and right EOG channels


%%% EMG-RMS-root mean square of EMG activity


%%% Freq-AR-dominant frequency in the EEG signal


%%% Alpha-power in the alpha frequency band


%%% Delta-power in the delta frequency band


%%% Sigma-power in the sigma frequency band


%%% Theta-power in the theta frequency band


%%% Seg-Size-size of segment that sleep stages are being scored


%%% for


%%% inc_len-sliding increment used


%%%


%%%Output: Est_Stage-sleep stages for each time increment


%%% Per_Stage-probility of sleep stage


%%% Hyp-hypnogram for plotting


%%% Count_AR-percent of epoch dominated by each frequency
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%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%


function [Est_Stage,Per_Stage,Hyp,Count_AR]=Classify_Stage...


(ART,SWS,EOG_Corr,EMG_RMS,Freq_AR,Alpha,Delta,Sigma,Theta,Seg_Size,inc_len)


I=find(EMG_RMS>0);


a=sort(EMG_RMS(I));


per_85=a(round(.85*length(a)));%%Most EMG_RMS is below 85 percentile


Est_Stage=85.*ones(1,length(SWS));


ink=1;


Est_Stage(1)=2;


jj=1;


Count_AR=0;


for ii=2:length(Alpha)


bandHigh= [ 4.5 8 12 16 25 35 ];


bandlow= [ .5 4.5 8 12 16 25 ];


for jj=1:length(bandlow)


tempFreq_Ar=Freq_AR(ii:ii+floor(Seg_Size/inc_len)-1);


I=find(tempFreq_Ar>=bandlow(jj) & tempFreq_Ar< bandHigh(jj));


if length(I)~=0


Count_AR(ii,jj)=length(I)/Seg_Size;


else


Count_AR(ii,jj)=0;


end


end


Count_AR(ii,:)=Count_AR(ii,:)./sum(Count_AR(ii,:));


if ART(ii,1)>=5 || Count_AR(ii,3)>=.5


Est_Stage(ii)=0;


%%If there is not an artifact


else


if EOG_Corr(ii)>-.2 %%no eye movements


%%.15 is from 2 standard deviations for Stage 2 sleep


if (SWS(ii)>=.15 || Delta(ii)>=0.7 )


Est_Stage(ii)=3;


elseif (SWS(ii)>=.05 && SWS(ii)<.15 ) || (Count_AR(ii,4)>=1/Seg_Size )


if Est_Stage(ii-1)==3 && Delta(ii)>=0.65 ...


&& Count_AR(ii,4)<=1/Seg_Size && Sigma(ii)<=1/Seg_Size


Est_Stage(ii)=3;


else


Est_Stage(ii)=2;


end


else


if Alpha(ii)/Theta(ii) >=1.5


Est_Stage(ii)=0;


elseif Est_Stage(ii-1)==5


if EMG_RMS(ii)<=per_85 && SWS(ii)<=1/Seg_Size && Delta(ii)<0.45


Est_Stage(ii)=5;


else
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Est_Stage(ii)=0;


end


else


Est_Stage(ii)=2;


end


end


%%Eye Movement


elseif EOG_Corr(ii)<=-.2


if EMG_RMS(ii)<=per_85 && (Alpha(ii)/Theta(ii))< 1.5 && Delta(ii)<0.45


Est_Stage(ii)=5;


else


Est_Stage(ii)=0;


end


end


end


end


%%Get rid of brief eye movements (single eye movements


%%with no other activity around it)


for ii=floor(61/inc_len):length(Est_Stage)-floor(60/inc_len)


I=find(Est_Stage(ii-floor(60/inc_len):ii+floor(60/inc_len))==5);


if length(I)<floor(3/inc_len) && Est_Stage(ii)==5


Est_Stage(ii)=0;


end


end


%%Correction for rapid eye movements at the beginning of the


%%night


I=find(Est_Stage(1:30*floor(60/inc_len))==5);


for ii=1:length(I)


if Est_Stage(I(ii)-1)==0


Est_Stage(I(ii))=0;


else


Est_Stage(I(ii))=2;


end


end


%%Correct for Stage 2 sleep during REM periods


[start,fin]=Calc_REM_Periods(Est_Stage,inc_len);


ink=1;


for ii=1:length(start)


for jj=start(ii):fin(ii)


if Est_Stage(jj)==2 && SWS(jj)<2/30 && Count_AR(jj,4)<=.05


Est_Stage(jj)=5;


elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Alpha(ii)/Theta(ii) >=1.5


Est_Stage(jj)=0;


elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Count_AR(jj,3)>Count_AR(jj,2)


Est_Stage(jj)=0;


end


end


end
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%%Get rid of eye movements not between end points


for ii=1:length(start)


if ii==1


I=find(Est_Stage(1:start(ii)-1)==5);


Est_Stage(I)=0;


elseif ii<=length(start)


I=find(Est_Stage(fin(ii-1)+1:start(ii)-1)==5);


Est_Stage(fin(ii-1)+I)=zeros(1,length(I));


end


end


if fin(length(fin))+1<length(Est_Stage)


I=find(Est_Stage(fin(length(fin))+1:length(Est_Stage))==5);


Est_Stage(fin(length(fin))+I)=0;


end


val=[0 2 3 5];


%%Calc_30 second sleep stages


for ii=1:length(Est_Stage)/floor(30/inc_len)


for jj=1:length(val)


Per_Stage(ii,jj)=...


length(find(Est_Stage((ii-1)*floor(30/inc_len)+1:ii*floor(30/inc_len))...


==val(jj)))/floor(30/inc_len);


end


maxval=max(Per_Stage(ii,:));


ind=find(Per_Stage(ii,:)==maxval);


if length(ind)>1


if ii~=1


Hyp(ii)=Hyp(ii-1);


else


Hyp(ii)=val(ind(1));


end


elseif length(ind)==1


Hyp(ii)=val(ind(1));


end


end


%%%----------------------------------------------------------------------%%


%%%----------------------------------------------------------------------%%
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GLOSSARY

Actigraph A device worn on the wrist. It contains an accelerom-
eter and is used for measuring motility during the
night.

Adaptation Decrease in response, occurs at the level of the sensory
organ.

Alpha Activity Activity in the EEG signal between 8-12 Hz.

Arousal Consists of EEG activity in the 8 to 12 Hz range.
There will also be an increase in muscle activity. They
last for at least 3 seconds but not more than 15 sec-
onds.

A-weighting Frequency weighting. It was derived from the 40-phon
equal loudness curve. It’s use was meant for sounds of
low levels.

Autonomic Arousal Elevation in the sympathetic tone. May occur with
or without a cortical arousal. It is associated with
elevations in blood pressure and heart rate.

Behavioral Awakening An individual must perform a task when awakened
such as pressing a button.

Beta Activity Activity in the EEG signal between 15-25 Hz.

Blood Pressure Dipping The nighttime blood pressure level decreases below
10% of its average daytime level.

Circadian Rhythm 24 hour variation in biological rhythms such as body
temperature.

Day Night Average
Sound Level (DNL)

An average A-weighted sound pressure level which has
a 10 dB penalty for noise events occurring between the
hours of 10:00 pm and 7:00 am. (See Appendix A)

ECG Artifact Artifact in the EEG signal, heart activity is picked up
due to the electrode being positioned close to a vein
or artery.

Electrocardiogram
(ECG)

Measurement of electrical activity of the heart.

Electroencephalogram
(EEG)

Measurement of electrical activity in the brain.

Electromyogram
(EMG)

Measurement of muscle activity.
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Electrooculogram
(EOG)

Measurement of eye movement.

EOG Artifact Artifact in the EEG signal caused by eye movements.

Gamma 1 Activity Activity in the EEG signal between 25-35 Hz.

Gamma 2 Activity Activity in the EEG signal between 35-45 Hz.

Ghrelin A hormone for regulating appetite. An increased level
leads to an increase in appetite.

Glucose Tolerance Rate of decline of glucose levels in the body. Those
with impaired glucose tolerance would have a slower
rate of decline.

Habituation Decrease in response, happens at the central nervous
system.

Homeostatic Sleep
Process

Indicator of an individual’s need for sleep. Increases
when an individual is awake, decreases while asleep.

Hypertension High blood pressure.

K-complex A characteristic feature of Stage 2 sleep. They last for
at least half a second and consist of a sharp decrease
in EEG activity followed by a longer increase in level.
Usually a sleep spindle will occur before, after, or dur-
ing a K-complex.

LAeq Average A-weighted sound pressure level of a sound.

LAmax Maximum A-weighted sound pressure level of a
sound.

Leptin A hormone for regulating appetite. An increased level
leads to a decrease in appetite.

Lnight Average A-weighted sound pressure level between
11:00 pm and 7:00 am.

Motility A measurement of body movement.

Multiple Sleep Latency
Test

An objective measure of sleepiness. The time it takes
for an individual to fall asleep is measured 4 to 5 times
throughout the day.

Noise Sensitivity How bothered someone is by noise in general, not just
aircraft noise. It is typically measured using a multi-
item questionnaire.

Obstructive Sleep
Apnea

A sleep disorder in which the airflow and respiratory
effort either completely stops for a few seconds or is
reduced.

Odds Ratio Ratio of an exposed population having a certain con-
dition to a non-exposed population having a certain
condition.
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Phasic Rapid Eye
Movement Sleep

Rapid eye movement sleep in which there is irregular
occurrence of events such as rapid eye movement.

Polysomnography The simultaneous measurement of the electroen-
cephalogram (EEG), electromyogram (EMG), and
electrooculogram (EOG).

Pupillographic
Sleepiness Test (PST)

A measurement of the oscillation in pupil size. A
change less then 0.3 mm indicates a subject is alert.

Rapid Eye Movement
Sleep (REM)

A sleep stage which is characterized by theta activity
in the EEG signal, and the lowest amount of muscle
activity during the night. Also there will be rapid
oscillations in the EOG signal.

Sawtooth Waves Sawtooth shaped waves that occur in the EEG sig-
nals during Stage REM. The fundamental frequency
is between 2 to 6 Hz.

Sigma Activity Activity in the EEG signal between 12-15 Hz.

Sleep Efficiency Total sleep time divided by the total time in bed.

Sleepiness Indicated by difficulty remaining awake and falling
asleep.

Sleep Latency Time from lights out to the first occurrence of Stage
2.

Sleep Spindles Fast oscillations, between 12 to 14 Hz, in the EEG
signal. They are a characteristic feature of Stage 2
sleep.

Slow Wave Activity Power in the spectrum of the electroencephalogram
(EEG) signal in the frequency range of 0.5-4.5 Hz.

Sound Exposure Level
(SELA)

A measure derived from the A-weighted sound level
time history of a noise event. SELA is determined by
considering only the portion of the noise event 10 dB
down from the maximum A-weighted sound pressure
level. (See Appendix A)

Spontaneous
Awakening

An awakening that is not associated with a noise (or
other external stimulus) event.

Stage Wake In this stage the activity in the EEG signal will be
primarily between 8 and 12 Hz (alpha activity). The
level of EMG activity will be high and if the individual
is relaxed, there will be slow eye rolling.

Stage 1 This stage is primarily a transition stage. Most of the
EEG activity is between 4 to 8 Hz. The muscle tone
decreases from Stage Wake.

Stage 2 The background activity in Stage 2 is theta activ-
ity, however there are two characteristic features sleep
spindles and K-complexes.
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Stage 3 This stage is considered deep sleep. Twenty to 50% of
the epoch contains slow waves of less than 2 Hz with
a peak to peak amplitude greater then 75 microvolts.

Stage 4 This is the deepest stage of sleep. At least 50% of the
epoch contains slow waves of less than 2 Hz with a
peak to peak amplitude greater than 75 microvolts.

Stage REM This stage consists of theta activity in the EEG signal.
The muscle activity reaches a minimum in this stage
and there are rapid eye movements. Also sawtooth
waves may occur.

Theta Activity Activity in the EEG signal between 4-8 Hz.

Tiredness Lack of energy, fatigue.

Tonic Rapid Eye
Movement Sleep

Rapid eye movement sleep in which there are no rapid
eye movements however, the low mixed frequency
EEG activity and the low EMG activity means the
sleep stage is still classified as Stage REM.

Ultradian Cycle Cyclic variations in sleep between NREM and REM
sleep.

Vertex Wave Sharp transient increase in EEG activity during sleep
Stage 1.

Vigilance Task A task that involves sustained attention. An individ-
ual has to detect stimuli that occur at random inter-
vals. The reaction time is measured.
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ABSTRACT

McGuire, Sarah M. Ph.D., Purdue University, August 2012. Modeling Aircraft Noise
Induced Sleep Disturbance. Major Professor: Patricia Davies, School of Mechanical
Engineering.

One of the primary impacts of aircraft noise on a community is its disruption of

sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and

decreases the amount of rapid eye movement and slow wave sleep. Understanding

these changes in sleep may be important as they could increase the risk for developing

next-day effects such as sleepiness and reduced performance and long-term health

effects such as cardiovascular disease. There are models that have been developed

to predict the effect of aircraft noise on sleep. However, most of these models only

predict the percentage of the population that is awakened. Markov and nonlinear

dynamic models have been developed to predict an individual’s sleep structure during

the night. However, both of these models have limitations. The Markov model only

accounts for whether an aircraft event occurred not the noise level or other sound

characteristics of the event that may affect the degree of disturbance. The nonlinear

dynamic models were developed to describe normal sleep regulation and do not have

a noise effects component. In addition, the nonlinear dynamic models have slow

dynamics which make it difficult to predict short duration awakenings which occur

both spontaneously and as a result of nighttime noise exposure. The purpose of this

research was to examine these sleep structure models to determine how they could be

altered to predict the effect of aircraft noise on sleep. Different approaches for adding

a noise level dependence to the Markov Model was explored and the modified model

was validated by comparing predictions to behavioral awakening data. In order to
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determine how to add faster dynamics to the nonlinear dynamic sleep models it was

necessary to have a more detailed sleep stage classification than was available from

visual scoring of sleep data. An automatic sleep stage classification algorithm was

developed which extracts different features of polysomnography data including the

occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these

features an approach for classifying sleep stages every one second during the night

was developed. From observation of the results of the sleep stage classification, it was

determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast

REM activity are modeled separately and the activity in the gamma frequency band

of the EEG signal is used to model both spontaneous and noise-induced awakenings.

The nonlinear model predicts changes in sleep structure similar to those found by

other researchers and reported in the sleep literature and similar to those found

in obtained survey data. To compare sleep disturbance model predictions, flight

operations data from US airports were obtained and sleep disturbance in communities

was predicted for different operations scenarios using the modified Markov model, the

nonlinear dynamic model, and other aircraft noise awakening models. Similarities

and differences in model predictions were evaluated in order to determine if the use

of the developed sleep structure model leads to improved predictions of the impact

of nighttime noise on communities.
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1. INTRODUCTION

Currently in the United States the Day Night Average Sound Level (DNL) is used

to quantify aircraft noise around an airport. This metric is based on the average

A-weighted sound pressure level of the aircraft noise events for an entire day and has

a 10 dB penalty which is applied to nighttime events occurring between 10:00 pm and

7:00 am. This 10 dB penalty is applied to account for the adverse affects of nighttime

noise. The Federal Aviation Administration’s (FAA) noise policy is based on DNL.

The FAA considers communities within the 65 dB(A) DNL contour to be adversely

affected by aircraft noise and eligible for noise insulation. They adopted the use of

DNL because they felt it provided a reliable relationship between noise exposure and

the reactions of people to noise (FICON, 1992).

Research on the use of DNL as a metric for predicting community impact has

primarily focused on examining its relationship to annoyance. Many dose-response

models, which relate the percent highly annoyed to DNL, have been developed using

social survey data. One of the most widely used models was developed by Schultz

(1978) who combined responses to road, rail, and aircraft noise to generate the model.

According to the model a DNL level of 65 dB(A) corresponds to about 15% of the

population being highly annoyed. A more recent model, in which response to aircraft

noise was modeled seperately, has been developed by Miedema and Oudshoorn (2001).

This model is used in the European Union. However, there have been arguments

made against the use ofDNL to predict impacts other than annoyance. The results of

studies on sleep disturbance support the hypothesis that DNL is not a good predictor

of noise induced awakenings, and that awakenings are better estimated when using
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the level of each individual noise event (Fidell, Pearsons, Tabachnick, Howe, Silvati,

and Barber, 1995). It also should be noted that awakenings are just one of many

possible characteristics of sleep disturbance.

1.1 Motivation

The results of numerous field and laboratory studies have provided evidence that

aircraft noise causes an increase in the number of awakenings and a reduction in the

amount of rapid eye movement and slow wave sleep (Griefahn, Robens, Bröde, and

Basner, 2008b). Noise-induced sleep disturbance may lead to next day effects includ-

ing an increase in annoyance (Quehl and Basner, 2006) and sleepiness (Basner, 2008),

and a decrease in performance (Elmenhorst and Basner, 2008). Also there is evidence

presented in the sleep literature that fragmented sleep may lead to long term health

effects by causing an increase in blood pressure (Haralabidis, Dimakopoulou, Vigna-

Taglianti, Giampaolo, Borgini, Dudley, Pershagen, Bluhm, Houthuijs, Babisch, Velon-

akis, Katsouyanni, and Jarup, 2008), impairing glucose tolerance (Tasali, Leproult,

Ehrmann, and Van Cauter, 2008), and affecting appetite (Spiegel, Tasali, Penev, and

Van Cauter, 2004) and stress hormone levels (Ekstedt, Åkerstedt, and Söderström,

2004).

Several models have been developed in order to predict the impact of noise on

sleep. Most of the models are simplistic dose-response relationships relating the indoor

noise level of a single event to the percent awakened (e.g. FICAN (1997); Finegold

and Elias (2002)). The majority of these models are based on behavioral awakening

data, where an individual is instructed to press a button when they are awakened by

noise. Behavioral awakenings are not a sensitive measure of sleep as it requires that

an individual regain full consciousness. Behavioral awakenings are also a subjective

measure of sleep because individuals can decide whether or not to press the button.
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Therefore, models based on behavioral awakening data may under-predict the amount

of sleep disturbance in communities. Only one dose-response relationship has been

developed based on awakenings measured using electroencephalography (EEG) in the

field. EEG is a more sensitive measure by which to determine sleep state (Basner,

Samel, and Isermann, 2006) because it measures brain wave activity. EEG measured

awakenings are as brief as 15 seconds in duration. Models based on awakenings

measured with EEG do predict a higher degree of disturbance than those based on

behavioral awakenings. To predict the percent awakened at least once for an entire

night of aircraft events, an ANSI standard (2008) has also been developed. However,

a limitation of this standard is that it is based on the behavioral awakenings dose-

response models.

One limitation of all of these models is that they only predict awakenings, but

aircraft noise also changes the structure of sleep. A Markov model has been developed

which can be used to predict the effect of noise on sleep structure (Basner, 2006)

however, it is not without limitations. The model only accounts for whether an

aircraft event occurs, not the noise level. This model also has many parameters

making it difficult to fully validate because a large amount of data is needed to

produce low variance estimates of the parameters. Also it is not intuitive in terms of

how to change the model coefficients in order to predict sleep disturbance for different

age groups, or other sub-populations of interest. Another limitation of Markov models

is that they do not provide information on the physical processes behind sleep.

There are nonlinear dynamic sleep models which are based on a more physical un-

derstanding of the sleep process (Achermann and Borbély, 1990; Massaquoi and Mc-

Carley, 1992). The nonlinear dynamic models predict the interactions that have been

found between rapid eye movement (REM) sleep promoting neurons and REM sleep

inhibiting neurons which cause the ultradian oscillation between non-REM (NREM)
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and REM sleep during the night. Also the change in slow wave activity (power in

the EEG signal between 0.5 and 4.5 Hz) during the night can be predicted with these

models. The amount of slow wave activity is related to the depth of sleep. One

limitation of the nonlinear dynamic models, in their current form, are that they only

predict normal non-noise disturbed sleep.

1.2 Objective

As noted above, there is evidence from studies that aircraft noise affects sleep and that

these changes in sleep may lead to health effects. Because the current community

impact metric DNL is not a measure of sleep disturbance even with the 10 dB

night penalty, and existing awakening and sleep structure models all have limitations,

there is a need to develop a new sleep model that could be used to create sleep and

health effect contours, which are maps indicating noise impact in communities. The

process involved in developing these contour maps involves several steps as outlined

in Figure 1.1. Sound propagation and transmission modeling is needed so that indoor

noise levels can be predicted. Different characteristics of the sound in addition to

maximum level such as the rise time and spectral balance may also affect the degree

of sleep disturbance and therefore should be predicted (Marks, Griefahn, and Basner,

2008). Also there needs to be an improved understanding of what changes in sleep

best relate to potential health effects. Developing useful sleep contours is a complex

problem involving research in many different areas. It would not be feasible to address

all of these issues within this research. This research has been focused on one step

involved in predicting the impact of nighttime noise on communities: developing a

more comprehensive aircraft noise induced sleep disturbance model which predicts

not only the increase in number of awakenings due to noise but also the change in

sleep structure.
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Figure 1.1. Diagram of the steps involved in assessing the effect of
nighttime aircraft noise on communities.
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1.3 Research Approach

The approach of this research was to modify the nonlinear dynamic sleep models in

order to predict noise induced sleep disturbance, specifically the model developed

by Massaquoi and McCarley (1992). This model is based on physiological sleep

processes and requires less parameters than Markov models. Although, the dynamics

of the Massaquoi and McCarley (1992) model accurately describes the slow 90 minute

ultradian cycling between NREM and REM sleep the model does not allow awakenings

during all stages of sleep to be predicted, yet from observing physiological data it is

known that this is possible. Basner (2006) found that the probability of transitioning

from REM to Wake when a noise event occurred was 0.14. In addition the model

only predicts normal sleep patterns, therefore a way of introducing the effects of being

exposed to different noise levels needs to be incorporated into the model so that the

observed increase in sleep disturbance with noise level can be predicted.

In order to develop and validate nonlinear sleep models, data from existing studies

in which sleep was measured using polysomnography have been obtained from other

researchers. A sleep stage classification algorithm was developed to define sleep stages

on a more refined scale in order to identify brief awakenings. The current standard

is to score sleep stages according to 30 second segments of sleep. The algorithm

developed defines a sleep stage for each 1 second of sleep. Different features of the

polysomnography data are extracted including rapid eye movements and slow wave

activity. The occurrence of these features were used to determine how to introduce

faster dynamics and a noise dependence into the nonlinear models, and the extracted

data was also used to estimate the parameters in the model.

By using various elements shown in Figure 1.1, and the developed sleep distur-

bance model, a prediction of sleep changes in a population around an airport can be

made. To do this, data from two US airports was obtained. Noise metrics were pre-
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dicted for single aircraft noise events. Different nighttime operation scenarios were

generated and sleep disturbance was predicted using the nonlinear models. Sleep

disturbance was also predicted using existing noise induced awakening models and

Markov models. These models were examined, and limitations of the models were

addressed such as adding a noise dependence to the Markov model, so that a fair com-

parison of model predictions could be made. The different model predictions were

examined to determine whether the nonlinear dynamic models may lead to improved

predictions of sleep disturbance. The steps involved in this research are shown in

Figure 1.2

1.4 Thesis Outline

The outline of this thesis is as follows: In Chapter 2 a literature review of the basics

of sleep and how it is measured is provided. Also auditory processing during sleep,

changes in sleep that occur due to noise exposure, and possible next day and longer

term health effects caused by sleep disturbance are described. The information in

Chapter 2 provides a rationale for why a model that predicts awakenings and the

effect of noise on an individuals sleep structure may be useful. A description of

the survey data that was obtained and used throughout the analysis is described in

Chapter 3. Chapter 3 also contains a review and evaluation of existing awakening

models by comparing predictions from those models to obtained survey data. In

Chapter 4 Basner’s Markov model (2006) is described. An approach to adding a

noise level dependence to the Markov model was examined and predictions using

the modified model are compared to survey data. Chapter 5 consists of a review on

nonlinear dynamic sleep models. The results of a parameter variation study performed

on the Massaquoi and McCarley (1992) model, that is used as the basis of the model

developed in this research, is described. In Chapter 6 an analysis of the obtained sleep
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Figure 1.2. Diagram of the steps involved in developing a nonlinear
dynamic sleep model and comparing its performance in predicting
community sleep disturbance with that of other models.



9

physiological data is provided including an examination of artifact removal methods

and the development of a sleep stage classification algorithm. In Chapter 7 the

steps taken to develop the nonlinear dynamic sleep model is provided. Methods for

overcoming the limitations of the model and for estimating model parameters are

described. In Chapter 8 a comparison of sleep disturbance model predictions using

the awakening models, Markov models and the developed nonlinear dynamic model

are described for different airport noise scenarios. Chapter 9 consists of a review of

the research findings and a proposal for future work that should be done in the area

of noise-induced sleep disturbance modeling.
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2. NOISE INDUCED SLEEP DISTURBANCE AND THE POTENTIAL HEALTH

EFFECTS

This chapter consists of a literature review on noise induced sleep disturbance. A

description of normal sleep and how it is measured is provided. A review of studies on

how noise is processed during sleep, how it affects sleep structure, and the implications

of these disturbances on both short term and long term health will also be discussed.

2.1 Normal Sleep

For a normal healthy individual it will take between 10 to 20 minutes to fall asleep.

If an individual is tired this sleep onset latency will become shorter. A latency of

less than 5 minutes is considered to be pathologic sleepiness (Spriggs, 2008). A sleep

onset latency greater than 20 minutes indicates difficulty initiating sleep. Sleep is a

time varying process and periodic in nature. Periods of rapid eye movement (REM)

and non rapid eye movement (NREM or non-REM) sleep alternate throughout the

night in about 90 minute cycles, with the first REM period occurring about 80 min-

utes after an individual retires to bed. The duration of the first REM sleep period

is typically between 5-10 minutes in duration. The duration of REM sleep periods

increases throughout the night (Carskadon and Dement, 2005), with the largest in-

crease in duration occurring between the first and second REM periods (McCarley

and Massaquoi, 1986). NREM sleep consists of 4 different stages numbered 1 through

4. Sleep is considered to be deeper, more restorative, as the NREM sleep stage num-

ber increases. In the beginning of the night, slow wave sleep (SWS), Stages 3 and 4,

is more prevalent.
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An average young adult in their twenties, will spend less than 5% of the night

awake, 5% will be spent in Stage 1, 50-55% will be spent in Stage 2, 10% will

be spent in Stage 3, 10% in Stage 4, and 20 to 25% will be spent in REM sleep

(Kales and Kales, 1970). An example of a typical sleep pattern is shown in Figure

2.1. During the night a young adult will spontaneously awaken about 20 times and

will have approximately 80 arousals as measured with EEG (electroencephalogram –

measurement of electrical activity in the brain) (Bonnet and Arand, 2007). Arousals

and awakenings are characterized by higher frequencies of brain wave activity (alpha

activity 8-12 Hz) and there is often an increase in the muscle tone seen in the elec-

tromyogram (EMG – measurement of activation signals in muscles). The difference

between arousals and awakenings is primarily based on their duration: arousals last

at least 3 seconds but no more than 15 seconds, while awakenings are greater than

15 seconds in duration (Bonnet et al., 1992). Another type of arousal are autonomic

arousals; which are elevations in the sympathetic tone, which is the normal activity

level of the sympathetic nervous system. An autonomic arousal can occur with or

without an EEG arousal and includes a change in heart rate and an increase in blood

pressure (Griefahn, Bröde, Marks, and Basner, 2008a).

As individuals age, sleep lightens and there is a decrease in the amount of Stage

3 and 4 sleep and an increase in the number of awakenings and arousals. In Figure

2.2 the percent of time spent in each of the 6 different stages of sleep for different age

groups is shown (Williams, Karacan, and Hursch, 1974).

2.2 Sleep Stage Classification

Sleep stage classification rules were developed by Rechtschaffen and Kales (1968) and

became the standard for scoring sleep physiological data. Sleep stages are determined

by examining the signals of the EEG, EMG, and electroocculogram (EOG– measure-
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ment of eye movements). EEG is measured by attaching electrodes to the scalp. A

diagram of the positions for placing electrodes is shown in Figure 2.3. There are sev-

eral different regions of measurement; Frontal (F), Central (C), Parietal (P), Occiptal

(O), and Temporal (T). Most of the aircraft noise studies have measured EEG at the

central locations, C3 and C4. These locations are referenced to A2 and A1, respec-

tively. EMG is usually measured with 3 electrodes. One electrode is placed in the

middle of the chin, and the other two are placed underneath the chin, approximately

2 cm from the top of the chin and 2 cm from the center line, one on the left of the

center line and one on the right (Spriggs, 2008). EOG is measured by having one

electrode placed about 1 cm out and 1 cm up from the corner of the right eye. The

electrode for the left eye is placed 1 cm out and 1 cm down from the corner of the eye.

Looking away from an electrode will result in a negative signal, while looking toward

the electrode will result in a positive signal (Spriggs, 2008). By having one electrode

above the eye and one electrode below the eye, the occurrence of eye movements can

be distinguished as the two channels of EOG will be negatively correlated.

Table 2.1. EEG frequency bands.

Frequency Bands Range
Delta 0-4 Hz
Theta 4-8 Hz
Alpha 8-12 Hz
Sigma 12-16 Hz
Beta 16-25 Hz
Gamma 1 25-35 Hz
Gamma 2 35-45 Hz

It is standard practice to assign a sleep stage to each 30 second segment of sleep.

Most sleep stages are related to EEG activity in a specific frequency band. The

frequency bands are listed in Table 2.1. For Stage Wake, when an individual is
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Figure 2.3. The standard placement of EEG electrodes, based on a
diagram in Spriggs (2008).
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relaxed there is often alpha activity in the EEG signal which is activity in the 8 to

12 Hz range (alpha activity). There is also high EMG activity and slow eye rolling.

An example of the EEG and EOG signals for Stage Wake are shown in Figure 2.4. If

an individual is moving when awake, high amplitude artifacts will appear in most of

the other physiological measurements.

Stage 1 appears in the EEG as a low voltage mixed frequency signal. Most of the

activity is in the 4 to 8 Hz range (theta activity). An example of the EEG and EOG

signals for Stage 1 is shown in Figure 2.5. Also sharp vertex waves can occur which

are sharp transient waves in the EEG signal which last less than 0.5 seconds and are

of a high amplitude typically greater than 100 μV , an example is shown in Figure

2.6. The amount of muscle activity will also decrease compared to Stage Wake.

Stage 2 also consists of theta activity but has two characteristic features, sleep

spindles and K-complexes. Sleep spindles last for one half second or more but not

longer than approximately two seconds and are bursts of activity between 12 to 14

Hz in the EEG signal, an example is shown in Figure 2.7. K-complexes are waves

which have a sharp negative followed by a slower positive component. K-complexes

also last for at least one half second and have sleep spindles occurring either before,

after, or during it (Fisher and Cordova, 2006). An example of a K-complex with a

sleep spindle is shown in Figure 2.8.

Stage 3 is classified by the amount of low frequency activity; at least 20% but not

more than 50% of the epoch consists of oscillations of 2 Hz or a lower frequency and

has a peak to peak voltage of 75 μV or more. Stage 4 is classified in a similar manner

as Stage 3, but the slow wave behavior must occur for more than 50% of the epoch.

Examples of EEG signals during Stage 3 and 4 is shown in Figure 2.9.

Rapid eye movement (REM) sleep has a similar EEG pattern as Stage 1 in that

it is a low voltage, mixed frequency signal. Therefore to catergorize an epoch as
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Figure 2.4. An example of the EEG and EOG signals for Stage Wake.
(a) C3-A2 EEG channel, (b) Right EOG channel, and (c) Left EOG
channel.
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Figure 2.5. An example of the EEG and EOG signals for Stage 1.
(a) C3-A2 EEG channel, (b) Right EOG channel, and (c) Left EOG
channel.
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Figure 2.6. An example of vertex waves, a characteristic feature of Stage 1 sleep.
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Figure 2.7. An example of sleep spindles, a characteristic feature of Stage 2 sleep.
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Figure 2.8. An example of a K-complex with sleep spindles, a char-
acteristic feature of Stage 2 sleep.

consisting of REM sleep, an examination of the EOG and the EMG signals is needed.

EMG, which is a measure of muscle activity, will be at its lowest level during REM

sleep. Also sawtooth waves may occur in the EEG signal which are sharp, triangular

waves between 2 and 6 Hz (Silber et al., 2007). An example of Stage REM is shown in

Figure 2.10. REM sleep in which there is low EMG activity and low mixed frequency

EEG activity, but no transient activity like sawtooth waves and rapid eye movements

are called Tonic REM sleep. REM sleep with rapid eye movements or other transient

activity is referred to as Phasic REM sleep. There is no standard method to classify
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Tonic and Phasic REM sleep. The characteristics for each of the 6 sleep stages are

summarized in Table 2.2.
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Figure 2.9. Examples of the EEG signals for (a) Stage 3 and (b) Stage 4 sleep.

A review of the sleep stage scoring rules developed by Rechtshaffen and Kales

began in 2004 and in 2007 a new manual for visual sleep scoring was published by

the American Academy of Sleep Medicine (Silber et al., 2007). The characteristics

of the sleep stages largely remain the same. One of the changes made is that Stage

3 and Stage 4 were combined. Also the rules for scoring the beginning and end of

Stage 2 and REM sleep were clarified. For example there used to be a 3-minute rule;

3 minutes of sleep between sleep spindles and K-complexes could be scored as Stage

2 as long as there were no movements, arousals, or transitions to other sleep stages.

After 3 minutes the stages were classified as Stage 1. This rule was changed and now

once Stage 2 begins, epochs can continue to be scored as Stage 2 as long as there is

not an apparent transition to another sleep stage. Also, in order to not confuse sleep
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Figure 2.10. An example of EEG, EMG, and EOG signals during
REM sleep. (a) C3-A2 EEG channel, (b) EMG, (c) Right EOG chan-
nel, and (d) Left EOG channel.
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Table 2.2. Characteristics of sleep stages.

Sleep Stage EEG EMG EOG
Stage Wake Alpha activity Increase in activity Slow eye rolling
Stage 1 Theta activity Decrease in level Slow eye rolling

Vertex waves compared to Stage Wake
Stage 2 Theta activity Level varies Varies

Sleep Spindles
K-complexes

Stage 3 20-50% oscillations Level varies Small movement
below 2 Hz

peak to peak voltage
≥ 75 micro-volts

Stage 4 >50% oscillations Level varies Small movement
below 2 Hz

peak to peak voltage
≥ 75 micro-volts

REM Theta activity Lowest level Rapid oscillations
Sawtooth waves
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stage scoring using the old and new system, each stage has a new name. Stage 1 is

referred to as N1, Stage 2 is N2, and Stage 3 and 4 are now referred to as N3. Since

the results and models discussed use the former labeling of stages the new labeling

will not be used throughout this report.

2.3 Auditory Processing During Sleep

Auditory processing continues during sleep, however not at the same level as during

awake states. In the brain almost all sensory information passes through the thalamus

on its way to the cortex. During sleep, the transmission of information to the cortex

is reduced compared to the amount of information that reaches the thalamus. This

phenomenon has often been called “thalamic or sensory gating”(Coenen, 2010).

2.3.1 Auditory Awakening Thresholds

Several studies have evaluated the level of a sound needed to awaken an individual

during the night. The sleep stage that an individual is in affects whether they will be

awakened. Zeplin, McDonald, and Zammit (1984) determined the auditory awakening

thresholds of subjects of different ages. The three age groups that were studied was

18 to 25, 40 to 48, and 52 to 71 years. They played an 800 Hz tone of 5 seconds

duration during the night, the intensity of the tone was increased until an individual

awakened. The subjects had to press a buzzer to signal they were awakened. Auditory

awakening thresholds for Stage 2, 4, and REM sleep were measured. They found that

auditory awakening thresholds decreased with age. Also the sleep stage with the

highest threshold was Stage 4, which is considered the deepest stage of sleep. In

men, they found that the auditory awakening threshold for Stage REM was similar

to the threshold for Stage 2 sleep. However, in women, while similar results as men
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were found for the 18 to 25 age group, for the 40 to 48 and 52 to 71 age group, the

auditory awakening threshold for REM sleep was closer to the threshold for Stage

4. They stated this difference in response to sounds during REM sleep may be due

to the incorporation of the auditory stimuli in dreams or that the tones were played

during Phasic REM sleep when auditory awakening thresholds may be higher.

Rechtschaffen, Hauri, and Zeitlin (1966) also measured auditory awakening thresh-

olds. Seven subjects took part in the study and they were between 20 to 30 years in

age. The sound stimulus that was used was a 2000 Hz tone of 5 seconds duration. Af-

ter each sound stimuli was played a series of short repetitions of the tone were played.

The subjects had to verbally respond how many repetitions of the tone were played.

If their answer was correct they were considered to have awakened. Rechtschaffen,

Hauri, and Zeitlin (1966) used the method of constant stimuli; they calculated the

percent of trials that resulted in an awakening for different sleep stages. They found

that more awakenings occurred in REM and Stage 2 sleep than Stage 3 and 4 sleep

during the first three hours of the night. A similar number of awakenings occurred

in Stage 2 and REM sleep.

Through the night, the depth of sleep lightens, which means that the auditory

thresholds may decrease through the night. Basner (2010) reviewed the research of

Ernst Otto Heinrich Kohlschütter who over 150 years ago investigated the sound

intensity required to wake 6 students throughout the night. The sound was generated

by having a pendulum hammer strike a slate slab. The intensity of the sound was

varied by increasing the elevation of the hammer. The subjects gave some sort of

signal to indicate that they were awakened. The stimulus intensity needed to awaken

subjects increased for the first 90 minutes of sleep and then decreased throughout the

remaining part of the night. This follows trends that would be expected due to the

variation in sleep depth during the night.
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Brain activity response to noise, not just behaviorally indicated awakenings has

also been evaluated. Czisch, Wetter, Kaufmann, Pollmächer, Holsboer, and Auer

(2002) evaluated responses to noise during sleep using EEG and fMRI. The stimuli

used was an excerpt from a novel. They found using fMRI that a reduction in ac-

tivity in the primary and auditory cortices during NREM sleep occurred. Issa and

Wang (2011) collected neuron activity data from the auditory cortex in marmosets

monkeys. They also measured EEG activity in order to determine which sleep state

the marmosets were in. During the night tones and narrow-band noise of different

levels were played. The levels used were not high enough to cause an awakening.

They found that during slow wave sleep when quiet sounds below 40 dB were played

neuron firing rates were less than when subjects were awake. However, for louder

sounds, greater than 40 dB, neuron firing for the SWS and Wake states was similar.

2.3.2 Auditory Processing During Rapid Eye Movement Sleep

Awakening thresholds found in previous studies are not consistent; it is unclear from

these studies whether the auditory awakening threshold for REM sleep is more similar

to the awakening thresholds of Stage 2 or Stage 4. The contradictory findings may

be due to the fact that awakenings during the two different substates of REM sleep,

Phasic and Tonic, were not distinguished. During Tonic REM sleep muscle tone is

low and EEG amplitude is low and consists of mixed frequency activity primarily

in the theta band similar to Stage 1 sleep. During Phasic REM sleep there are

spikes in neuron activity which can be observed in the occipital cortex and are called

ponto-geniculo-occipital spikes, there is also rapid eye movement, contractions of the

muscles of the middle ear similar to the contractions that occur to protect against

loud noise, other muscle twitches and irregularity in respiration and heart rate (Seigl,
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2005). Also dreams may be more intense and emotional during Phasic REM sleep

(Sallinen, Kaartinen, and Lyytine, 1996).

Ermis, Krakow, and Voss (2010) examined whether the different auditory awak-

ening thresholds found in previous studies was due to the non differentiation between

the two types of REM sleep. They classified a state as being Tonic REM sleep if

rapid eye movements were absent for at least 15 seconds prior to a 30 second epoch.

The acoustic stimulus used was a 1000 Hz tone that began at 35 dB and the level

was increased until the subject pressed a switch taped to their palm to indicate that

they were awake. They measured behavioral awakening thresholds during Stage 2, 3,

4, and Phasic and Tonic REM sleep. During Phasic REM the sound stimuli began

being played when rapid eye movement activity was occurring. Ten subjects com-

pleted the study. They found that the awakening threshold or level of sound needed

to awaken a subject increased with NREM stages. The auditory awakening threshold

was lowest for Stage 2 sleep and highest for Stage 4 sleep. They also found that the

awakening threshold during Phasic REM sleep was similar to that for Stage 4 and

the awakening threshold during Tonic REM was similar to that for Stage 2. These

differences cannot be explained by the frequency spectrum of the EEG signal, as the

EEG activity level during both Tonic and Phasic REM sleep is similar to the EEG

activity levels during light NREM sleep.

Wehrle, Kaufmann, Wetter, Holsboer, Auer, Pollmächer, and Czisch (2007) used

functional magnetic resonance imaging (fMRI) and polysomnography to evaluate the

differences in processing of auditory stimuli during REM sleep. Data from 7 subjects

was used in the analysis. They used different stimuli including narrative text, a beep,

and piano music during the test. The purpose of this test was not to determine the

awakening threshold but to evaluate differences in auditory processing, so stimuli were

played at a non-arousing threshold. REM density was calculated by determining the
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presence of rapid eye movements in 3 second epochs. The regions of the brain that

were the focus of the imaging were the thalamus and the auditory cortex. They found

that activation of the auditory cortex was reduced in Tonic REM sleep compared to

that during wakefulness and at its lowest level in Phasic REM sleep. They also

found that auditory stimuli that began in Phasic REM sleep sometimes led to Tonic

REM sleep. They stated that their work supports that of Llinas and Pare (1991)

who argued that the thalamus is as excited by external stimuli during REM sleep

as during awake states but the information is ignored and not passed to the cortex

during Phasic REM sleep. They stated that the thalmacortical network must act as

a closed loop during Phasic REM sleep.

2.4 Measurement Methods

There is substantial evidence that sounds are processed during sleep and that they can

cause awakenings during the night. Therefore, there has been concern over whether

aircraft noise at night will lead to significant amounts of sleep disturbance in commu-

nities surrounding airports. In Appendix B are detailed lists of laboratory and field

studies that have been conducted to understand the effect of aircraft noise on sleep.

Twelve laboratory and 12 field studies have been identified. The reports for each

study were examined to determine what methods were used to measure awakenings

and what additional measurements were made; the results are summarized in Table

2.3. It can be seen that a wide range of methods have been used to measure awaken-

ings. Sleep has been measured by using polysomnography in few field studies, which

is considered the most sensitive measure of sleep. In addition, in most field studies

heart rate, blood pressure, or hormone levels have not been measured. Data collected

from these type of measurements could aid in understanding the relationship between

sleep and health.
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Table 2.3. The number of studies that used the listed measurement
techniques and measured the listed variables.

Laboratory Field
>than 20 subjects 3 11
Social Survey 0 5
am/pm Questionnaires 7 7
Behavioral Awakenings 3 4
Actimetry 3 6
Motility-Other 1 1
Polysomnography 12 3
ECG 7 2
Blood Pressure 1 1
Hormone Levels 3 1
Objective Sleepiness 2 0
Subjective Sleepiness 6 8
Performance 5 3

One method that has been used to quantify sleep disturbance is to use social

surveys or next day questionnaires. These surveys have included questions on the

number of awakenings, difficulty falling asleep, annoyance caused by nighttime noise,

window closing habits, etc. A correlation between objective measures of sleep and

subjective evaluations has been found. Ollerhead et al. (1992), for example, found

a strong inverse relationship between arousal rate (measured with actimetry) and

subjects’ evaluations of sleep quality, indicating that subjects with a higher number

of arousals did report poorer sleep. A problem with the use of social surveys or

questionnaires to evaluate sleep is that subjects will only remember awakenings in

which they regained full consciousness, which means the awakening lasted at least two

and a half minutes (Ollerhead et al., 1992). Shorter arousals will not be remembered

in the morning, but they may be an important factor in long or short term health

effects.
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One method used, particularly in US field studies on aircraft noise and sleep distur-

bance, is the measurement of signaled awakenings, also often referred to as behavioral

awakenings. In US studies subjects pressed a button when they were awakened. This

method is less intrusive than other measurements of sleep such as polysomnography

which involves many electrodes, and it can easily be implemented in the field. How-

ever, it is an insensitive measure of disturbance compared to measurements made

with EEG. A person has to be consciously awake to press the button. Also it is a

subjective measure as subjects can decide whether or not to press the button. The

result is a measurement of far fewer awakenings then might actually occur during the

night.

In a study by Fidell, Pearsons, Tabachnick, Howe, Silvati, and Barber (1995) it

was found, when measuring behavioral awakenings of subjects living around airports,

that on average two spontaneous awakenings and less than one noise induced awak-

ening occurred during the night. This is much less then the approximately 20 EEG

measured spontaneous awakenings that occur. In addition, behavioral awakenings

may underestimate sleep disturbance due to habituation. There is evidence that the

number of behavioral or signaled awakenings decreases over subsequent study nights

while other physiological measurements such as cardiac arousals do not (Griefahn,

Bröde, Marks, and Basner, 2008a). Thiessen (1978) conducted a laboratory study in

which subjects were exposed to noise from road vehicles. Seven truck passbys were

played during the first six hours of sleep. Ten subjects slept 24 consecutive nights

in the laboratory. There was clear habituation in signaled awakening responses, i.e.,

fewer occurred as the length of time in the study increased, however there was never

full habituation.

The measurement of motility has been used in several studies to evaluate sleep dis-

turbance. Movement is often measured using actimeters, which are devices worn on
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the wrist and contain an accelerometer. Different algorithms are used to determine

when awakenings occur making it difficult to compare results across studies (Luz,

Nykaza, Stewart, and Pater, 2008). As part of a study conducted by Ollerhead et al.

(1992), comparisons were made between arousals, determined by using actimeters and

EEG measured awakenings. It was found that 88% of all EEG awakenings coincided

with actimetric arousals. Another less intrusive method for evaluating movement

has been developed by Brink, Müller, and Schierz (2006). In this technique, called

seismosomnography, force sensors are placed underneath bed posts. Heart rate, res-

piration, and body movement can be estimated from these measurements. However,

this method has not been used often, and still needs further validation.

In order to evaluate the effect of noise on sleep stages and to determine the number

of smaller arousals polysomnography is used. This method involves the simultaneous

measurement of EEG, EOG, and EMG. Additional measurements such as electro-

cardiogram (ECG – measurement of electrical activity of the heart) and respiration

measurements are also often made. For polysomnography, the ECG usually involves

only two electrodes. The two electrodes can either be placed directly below the col-

larbone on both the left and right side, or one electrode is placed under the right

collarbone and the other electrode is placed on the left side of the ribcage. Res-

piration measurements are made with a strap around the lower abdomen (Spriggs,

2008).

While polysomnography provides detailed information about an individual’s sleep,

it is costly to perform. A trained individual is needed to apply the electrodes. Also

the standard practice is to visually score sleep stages, which is time consuming and

expensive. In addition, the number of electrodes that are used may affect the quality

of sleep, causing an individual’s sleep to be lighter and therefore more likely to be

awakened by noise.
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Less intrusive methods have been used to obtain information on changes in sleep

state. LeVere, Bartus, and Hart (1972) only used one EEG electrode (plus reference)

for their study. This meant that they could not distinguish sleep stages since EOG and

EMG are needed to define REM sleep; however they did perform a spectral analysis

of the EEG signal to quantify the effect of noise on sleep. The frequency bands they

analyzed were; Delta, Theta, Alpha and Beta. LeVere et al. (1972) defined 5 levels

of activation. Level 0 was the highest level of activation and, although not stated in

the paper, one would assume this corresponds to the waking state. Levels 1 and 2

were associated with 30% of the epoch containing theta and alpha activity and could

be thought of as light sleep such as Stage 1 and 2, Level 3 occured when the epoch

contained 20-50% delta activity which is Stage 3 sleep, and Level 4 was associated

with 50% delta activity which corresponds to Stage 4 sleep. The results of their study

were that the level of activation did increase when an aircraft sound occurred.

Another less invasive method for measuring sleep has been developed by Basner,

Müller, Elmenhorst, Kluge, and Griefahn (2008c). They have evaluated cardiac acti-

vations, measured with an electrocardiogram. It involves fewer electrodes and partic-

ipants in a study can be trained to apply their own electrodes. They found that very

similar dose-response relationships for EEG awakenings and ECG (cardiac) arousals

can be obtained. This method is less expensive to implement than polysomnography

and is a more sensitive measure of awakenings than other low cost options such as

actimetry or button pressing.

2.5 Noise Induced Sleep Disturbance

Regardless of the method used to evaluate sleep, overall an increase in sleep distur-

bance with noise level has been found in most studies designed to examine the effect

of aircraft noise on sleep. The differences in the results between studies is primarily
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the number of awakenings measured, which is important when trying to understand

potential health effects. For example, Ollerhead et al. (1992) found that 4.2% of

events caused an EEG awakening, while only 0.9% of events caused an actimetric

arousal.

Noise not only increases the number of awakenings but also the duration of the

awakening. Basner, Samel, and Isermann (2006) found that compared to spontaneous

awakenings, the duration of a noise induced awakening increases for sounds that

have a maximum noise level above 70 dB(A) (LAmax). Researchers who have used

polysomnography, have also evaluated the effect of noise on the amount of time spent

in specific sleep stages. Griefahn, Marks, and Robens (2006) found a significant

decrease in the amount of REM sleep and SWS for nights with noise compared to

nights without noise. The reduction in total minutes of REM sleep was found to be

6.4 minutes and 5.3 minutes for SWS. For an average young adult about 96 minutes

is spent in both Slow Wave and REM sleep (Kales and Kales, 1970). The result

of Griefahn et al. (2006) would suggest a 5-7% decrease in duration of these sleep

stages occured due to noise. Basner and Samel (2005) also found that noise exposure

resulted in a significant reduction in average time spent in SWS, although not for

REM sleep.

The overall effect of noise on awakenings and sleep structure was summarized by

Griefahn, Robens, Bröde, and Basner (2008b). Noise has been found to cause:

1. an increase in time to fall asleep

2. an increase in time until Stage 4 is reached

3. an increase in time spent awake

4. an increase in the number of awakenings which last longer than three minutes

(these would constitute conscious awakenings)
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5. an increase in time spent in Stage 1 sleep

6. a decrease in time spent in slow wave sleep (SWS, Stages 3 and 4)

7. a decrease in time spent in rapid eye movement sleep (REM).

Basner, Glatz, Griefahn, Penzel, and Samel (2008b) indicate it may be useful not

only to examine awakenings but also to examine the effect of noise on arousals. They

evaluated 3 nights of data from 10 subjects, two of the nights were noise exposure

nights. For one noise exposure night, 64 aircraft events were played with a maximum

noise level of (LAmax) 65 dB(A). For the second noise exposure night, 64 aircraft

events were played with a maximum noise level of (LAmax) 45 dB(A). One finding of

the study was that for louder sounds of 65 dB(A), awakenings were the best indicator

of the changes in sleep due to noise, while for quieter sounds of 45 dB(A) arousals

were the best indicator of the impact of noise on sleep.

The usefulness of measuring arousals is supported by the findings of Saremi,

Grenéche, Bonnefond, Rohmer, Eschenlauer, and Tassi (2008). In their test, there

were two experimental nights in which subjects were exposed to train noise. On

one night train noise with a LAeq,8hr (8-hour A-weighted equivalent noise level) of 40

dB(A) was presented and the other night train noise with a LAeq,8hr of 50 dB(A) was

presented. The only significant effects of noise on sleep that were found were an in-

crease in latency to SWS (the time from sleep onset until Stage 3 or Stage 4 occurs)

and an increase in the number of arousals. The increase in both latency and number

of arousals was found to increase with noise level.

There is still not a clear understanding of how different characteristics of noise

affect whether an individual will be disturbed. Currently models are based on the

assumption that single event indoor metrics LAmax or A-weighted Sound Exposure

Level (SELA) are the best predictors of the disturbance. There is, however evidence
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that sound characteristics in addition to the noise level affect whether an individual

awakens. Bruck, Ball, Thomas, and Rouillard (2009) examined awakening thresholds

for different types of signals including; square waves of different fundamental frequen-

cies, a sound consisting of three pure tones, white noise, and sounds that had a higher

noise level in a given frequency band. All sounds were presented 4 times during the

night when the participant was in Stage 4 sleep. To indicate an awakening, subjects

had to press a button three times. A 20 dB difference in mean awakening thresholds

was found across the different signals.

A study on low frequency noise and cortisol levels was conducted by Ising and

Ising (2002). In this study the levels of cortisol in children ages 7 to 13 years old

who were exposed to road noise were measured. Cortisol levels were determined from

urine samples, one sample was obtained 1 hour after falling asleep and another was

obtained after awakening at the end of the night. The maximum noise levels were

measured using both A-weighting and C-weighting (LAmax, LCmax). Fifty-six children

took part in the study. There was some correlation between the secretion of cortisol

in the first half of the night and the C-weighted noise levels.

In addition to low frequency content, the rise time of the noise affects the degree

of arousal. Levere, Davis, Mills, Berger, and Reiter (1976) investigated the effect

of rise time on arousal. The stimuli used were band-passed random noise, one-third

octave band centered at 125 Hz. The stimuli had a duration of 15 seconds and

80 dB peak intensity. For one sound the rise time was “instantaneous” and was

approximately 3.24 ms. The second stimuli had a linear rise time and approached the

maximum noise level after 7.5 seconds. The response to events of different rise times

was not found to be consistent throughout all stages of sleep. When the EEG was

occupied by fast wave activity, which would coincide with light sleep, both fast and

slow-rise time events produced similar levels of activation. During slow wave sleep the
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sounds with the faster rise time produced the greatest response. Marks, Griefahn, and

Basner (2008) found that for aircraft and railway noise, people were more likely to be

awakened by sounds with faster rise times. This finding is also supported by the work

of Brink, Lercher, Eisenmann, and Schierz (2008). The subjects in their experiment

were exposed to aircraft sounds reproduced by a loudspeaker. The aircraft events

occurred during a period of 90 minutes, either at the beginning or end of the night.

They found that the faster the rise time the greater the motility.

Related to noise metrics, two studies have been conducted in order to evaluate

the difference in sleep disturbance caused by aircraft, road, and rail noise. Basner,

Elmenhorst, Maass, Müller, Quehl, and Vejvoda (2008a) found that aircraft noise

caused fewer awakenings and changes to Stage 1 than the other types of transporta-

tion noise. Marks, Griefahn, and Basner (2008) also found that sleep disturbance

was dependent on the noise source. They found that train noise caused the most

awakenings, followed by aircraft, and then road noise. They stated that a possible

reason for these results is a difference in sound characteristics such as duration, rise

time and spectral balance. These characteristics should be considered along with the

maximum level as candidate terms in a more comprehensive sleep disturbance model.

LeVere, Bartus, Morlock, and Hart (1973) examined whether equal loudness or

equal sound pressure level dictated whether an individual would awaken to noise.

Acoustical stimuli used were three one-third octave band noise centered on the fre-

quencies of 125 Hz, 250 Hz, and 1000 Hz. The sounds were equated for equal loudness

of 80 dB measured with A-weighting. The actual sound pressure of the sounds was 93

dB for 125 Hz, 87 dB for the 250 Hz sound, and 80 dB for the 1000 Hz sound. During

high cortical activity response to all three stimulus was the same however, during

slow wave sleep the sound with the highest sound pressure and lowest frequency (125

Hz) caused the greatest degree of arousal. They suggest that certain neural centers
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which normally are involved in auditory processing are perhaps inhibited during sleep

resulting in a difference in processing during deep sleep.

LeVere, Morlock, Thomas, and Hart (1974) conducted a second study to further

examine processing of sounds of equal loudness during sleep. The sounds used were

band-passed random noise for one-third octave bands centered at 50, 250, and 1000

Hz. Subjects during the day used the method of adjustment to match the loudness

of the 50 and 250 Hz sound to the level of the 1000 Hz sound. The average SPL of

the 50 Hz sound was approximately 100 dB, the average SPL of the 250 Hz sound

judged to be equally loud as the 1000 Hz sound was 90 dB, and the reference 1000

Hz tone was played at 80 dB. Similar results to the 1973 study were found in that

the three stimuli produced almost equal amounts of arousal during fast activity while

the amount of response varied according to sound pressure level in slow wave sleep.

It has been shown that the meaning of sounds also affects whether an individual

will be awakened. Oswald, Taylor, and Treisman (1960) played a recording of 56

different names. This list included the names of the subjects involved in the study.

The subjects were told to awaken when they heard their name or a control name

and to clench their fist upon awakening. Oswald et al. (1960) found that subjects

moved their hand more when their name was presented, and they also had more

K-complexes than when other names were played. Portas, Karakow, Allen, Josephs,

Armony, and Frith (2000) used fMRI and EEG to examine sensory processing during

NREM sleep. The stimuli used were a pure tone beep and the subject’s name. More

awakenings occurred when the subject’s name was presented than when the tone was

presented. They stated that the pattern of activation of brain activity in both sleep

and waking was similar. However, there was reduced activity in different regions of

the brain including the left parietal, bilaterally in the prefrontal cortex, thalamus,

and part of the limbic system compared to the activity present in the awake state.
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During sleep when the subjects name was presented certain areas of the brain were

more responsive than when the tone was played.

2.6 Mediating Factors

There are several factors that may affect the level of sleep disturbance in addition to

the sound characteristics. Of particular interest in noise studies, is whether the testing

environment affects the level of disturbance. A person sleeping in a laboratory may be

more likely to be awakened because of an unfamiliar sleeping environment. Therefore,

results from a laboratory study may not be directly applicable to communities around

airports. There has also been interest in habituation and whether those living in

communities will become less likely to awaken over time. This could also be another

reason why results in the laboratory and in the field studies are different.

2.6.1 Laboratory vs Field

There have been several field and laboratory studies conducted to evaluate the effect

of noise on sleep. However, whether the results from the two environments can be

directly compared has been a subject of debate, particularly because the methods used

in the two studies are often different. Pearsons, Barber, Tabachnick, and Fidell (1995)

combined data from several existing studies and examined the difference in dose-

response relationships between the noise level and percent awakened in the laboratory

tests and in the field tests. It was found that for the same noise level, the percent

awakened was higher in the laboratory. For example, an A-weighted Sound Exposure

Level (SELA) of 80 dB(A) would cause 33% of people in a laboratory study to be

awakened while only 4% awakened in the field. However, one of the main problems

with their analysis is that they combined data from studies that used different noise



37

sources including aircraft, railway, white noise, pure tones, and sonic booms. It has

been found in several studies that noise induced sleep disturbance is dependent on the

sound source. Therefore, if the sound sources used in the laboratory studies and in

the field studies are not the same, attributing differences in sleep disturbance to the

study environment alone is highly questionable. However, higher responses to noise

in the laboratory than in the field were also found by Basner et al. (2004). They even

found a higher degree of disturbance in the laboratory for the group of 20 people who

participated in both the laboratory and the field studies.

Iber et al. (2004) investigated the difference in sleep parameters for subjects under-

going unsupervised recording in the home and supervised recording in the laboratory.

In both circumstances the application of the sensors was performed by a trained indi-

vidual. Also, the same individuals were tested in both environments. The responses

in the home environment were compared to those in the laboratory and it was found

that in the laboratory test, sleep duration decreased by 38 minutes, sleep efficiency

(total sleep time divided by the total time in bed) decreased by 7.8%, the percent time

spent in REM sleep decreased by 2.6% and the amount of Stage 1 sleep increased by

1.2%, however,they did not find a significant difference in the arousal index (the num-

ber of arousals per hour of sleep) in the two environments. In other studies, such as

those by Flindell et al. (2000) and Sk̊anberg and Öhrström (2006), large differences in

sleep disturbance between the two testing environments (laboratory and field) were

not found. Sk̊anberg and Öhrström (2006) used actimeters to evaluate sleep and

found that in the laboratory there was an increase in sleep onset latency of 3.3 min

and a slight decrease in time awake of 1 minute. They also found a slight decrease in

sleep quality and increase in tiredness when subjects slept in the laboratory.
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2.6.2 Habituation

It has often been argued that the differences in results in the two testing environments

is due to habituation, i.e., that individuals living near airports have become accus-

tomed to the noise and therefore, are less likely to be awakened. Habituation within

a single night and over the course of many nights has been examined by researchers.

Brink, Lercher, Eisenmann, and Schierz (2008) found that motility in response to a

noise event decreased with the number of events. They found a decrease of approxi-

mately 20% between the motility for the first event and the motility for the sixteenth

event during a single night.

Basner and Samel (2004) also found a decrease in the probability of awakening

as the number of events increased in a laboratory study. This decrease began with

8 events and there seemed to be a threshold reached in which the probability of

awakening remained constant after 32 events. Öhrström (1995) measured movement

of subjects, with an accelerometer attached to the bed, when they were exposed to

noise from a passing truck. Different numbers of truck operations from 16 to 128 were

played. It was found that movements induced by noise decreased when subjects were

exposed to 64 and 128 noise events compared to when subjects were exposed to 16

and 32 events. Griefahn and Muzet (1978) in a review paper stated that for up to

35 stimuli a night the probability of awakening seems to increase with the number of

events, however after that the percent awakened either no longer increased or began to

decrease. Griefahn (1977) stated that a decrease in response with number of events is

not due to habituation, but is caused by adaptation. Adaptation can occur if stimuli

occur too close together as neurons may be in a refractory period, which means that

they are unable to respond to the next stimuli. In adaptation the neurons at the level

of the sensory organ cannot respond. However, for habituation the individual can
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fully sense it, the lack of response happens at the level of the central nervous system

(Domjan, Grau, and Krause, 2010).

Habituation over the course of several nights has also been examined. Kuroiwa,

Xin, Suzuki, Saszawa, and Kawada (2002) had 9 subjects undergo 17 nights of sleep

measurements. For 10 nights, subjects were exposed to road traffic noise. They used

polysomnography to evaluate sleep disturbance. They also had subjects complete

a questionnaire in which they rated sleepiness, sleep maintenance, worry, integrated

sleep feeling, and sleep initiation. Over the ten days it was found that polysomno-

graphic sleep parameters did not change, however, there was some evidence of ha-

bituation in the subjective sleep parameters. Thiessen (1978) also conducted tests

to evaluate habituation to noise from trucks. Sleep disturbance was evaluated using

both EEG and behavioral awakenings. In one test, 5 subjects slept for 12 nights in the

laboratory while in another test 10 subjects were tested for 24 nights. It was found

that behavioral awakenings did decrease over the number of nights. This decrease

though, could be due to a lack of motivation to press the button.

Vallet, Gagneux, Blanchet, Favre, and Labiale (1983) conducted a study with

subjects who had lived in the same house for at least four years. Sleep was evaluated

in the home of the subjects. They slept in their normal nighttime arrangement for

part of the study and they also moved their bed to a room on the quieter side of the

house for several nights. The subjects’ sleep did improve in the quieter setting, less

time was spent awake, and the amount of REM sleep and subjective sleep quality

increased. This provides evidence that even after living near a noise source for sev-

eral years sleep is still disturbed by noise. Therefore, while there is evidence from

awakenings and subjective evaluations of sleep that subjects do habituate to some

degree, no full habituation occurs. By reducing noise, an individual’s sleep can be

improved. Also it is important to note that lesser degrees of arousal have shown no
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habituation. Griefahn, Bröde, Marks, and Basner (2008a) found that the number

of cardiac arousals caused by noise both within a night and across nights did not

decrease with increased exposure.

2.6.3 Noise Sensitivity

Noise sensitivity has been found to explain part of the variation in annoyance due

to noise, and so the relationship between noise sensitivity and sleep has also been

investigated. Marks and Griefahn (2007) assessed noise sensitivity by using the Noise

Sensitivity Questionnaire (NoiSeQ) which is a list of 35 questions, seven questions

in each of 5 different categories related to work, sleep, communication, leisure, and

habituation. The scores for each question are averaged and the results can range from

0 to 3. The noise sensitivity for subjects in their study ranged from 0.37 to 1.77. They

found that noise sensitivity did not seem to relate to any physiological measures but

was related to subjective assessment of sleep. Specifically, it was related to reported

difficulty falling asleep, calmness, restoration, estimated body movements and sleep

quality.

Öhrström and Björkman (1988) evaluated responses to noise using an accelerom-

eter attached under the bed and also measured heart rate using ECG. For the test

they had 12 very noise-sensitive subjects and 12 non noise-sensitive subjects. This

was determined by using a sensitivity scale from 0 to 100. During the night subjects

were exposed to road noise. The difference in heart rate and body movements be-

tween sensitive and non-sensitive subjects was small. However, there was a difference

in self-reported sleep. Noise sensitive subjects reported a longer sleep onset latency

and a higher number of awakenings. Based on the results of these two studies it seems

that noise sensitivity affects subjective measures of disturbance but not physiological

measures.
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Dang-Vu, McKinney, Buxton, Solet, and Ellenbogen (2010) found that there is

possibly a biological marker that indicates whether a person will be more likely to

awaken to noise during the night than another person. They found that individuals

with a high number of sleep spindles were less likely to awaken due to noise (which

consisted of commonly heard sounds of road and air traffic, telephone ringing, and

hospital based sounds), than individuals who had less sleep spindles during the night.

The number of sleep spindles a person had during the night seemed to be a stable

characteristic over three nights of testing.

2.6.4 Inter-Individual Variability

When evaluating sleep disturbance it is important to keep in mind the large inter-

individual differences that occur. While the average change in the duration of sleep

stages or number of awakenings when exposed to noise may be small, there is often a

large spread in the data, with some individuals being affected significantly more than

others. Therefore, in order to understand how noise affects both short-term and long

term health, it may be useful to examine the data on an individual basis rather than on

a population average basis. This was advocated by Vallet, Gagneux, Blanchet, Favre,

and Labiale (1983). They evaluated the effect of road traffic noise on the sleep of

each person. They stated that “averaging the results gives only a mediocre indication

of these differences and it is more fruitful to follow the procedure of examining the

classification of pattern responses to noise (Vallet, Gagneux, Blanchet, Favre, and

Labiale, 1983).” When they state “classification of pattern response”, the authors are

referring to evaluating the change in sleep stage duration, sleep onset latency, and

number of awakenings for each subject.

It is also important to keep in mind that the subjects taking part in noise studies

are almost always in good health. They are not a representative population of those
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living in communities around airports. Therefore the amount of disturbance due to

noise could vary even more then what is observed in sleep studies on the effects of

aircraft noise. For example, subjects with high anxiety have poorer sleep. Fuller,

Waters, Binks, and Anderson (1997) found that subjects with high anxiety have a

longer sleep latency, decreased slow wave sleep, a greater amount of Stage 1 sleep,

lower REM density, and were more prone to arousal especially in the first half of the

night. Also health and weight problems could lead to increased disturbance. Dixon,

Schachter, and O’Brien (2005) conducted a sleep study in which the subjects under-

went laparoscopic gastric band surgery. Sleep was evaluated using polysomnography

both before surgery and on average about 17 months after surgery. It was found

that weight loss led to a lower Apnea-Hypopnea index and an increase in slow wave

sleep and REM sleep. In addition, it should be noted that 50 to 70 million people

have sleep problems (National Institute of Health, 2003). It is unknown how noise

interacts or compounds preexisting sleep issues.

2.7 Short Term Effects of Sleep Disturbance

Sleep disturbance during the night can lead to several next day effects. It can in-

crease an individual’s sleepiness. Also, it may lead to decrements in performance and

increased annoyance to aircraft noise. A description of these next day effects follows.

2.7.1 Sleepiness and Tiredness

The effect of aircraft noise on sleepiness has been evaluated objectively as well as

subjectively. Basner (2008) used the Pupillographic Sleepiness Test (PST). Data

was collected for 24 out of the 128 subjects from the DLR laboratory sleep study.

PST involves measuring the oscillations in pupil size. The change in size will be
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below 0.3 mm for alert subjects, while for sleepy subjects the change could be several

millimeters. Basner (2008) calculated the pupillary unrest index (PUI), which is a

measure of the oscillation in pupil size per unit of time. They found that the natural

log of PUI did increase with levels of noise events and also with the number of events

that people were exposed to over the preceding night. The results were compared

to PUI values for people with obstructive sleep apnea (OSA). It was found that the

levels of sleepiness caused by aircraft noise never reached the levels found for those

with OSA.

Another test used to evaluate sleepiness is the Multiple Sleep Latency Test (MSLT).

This test involves evaluating how long it takes for an individual to fall sleep. Each

test period is 20 minutes long, 4 to 5 sessions are completed throughout the day, with

approximately 2 hours between tests. For a normal subject it takes between 10 to 20

minutes to fall asleep. The less time it takes to fall asleep, the higher an individual’s

sleepiness. MSLT tests were performed as part of the laboratory study conducted by

Flindell et al. (2000). They did not find any statistically significant difference between

the data from subjects following a control night and following a noise exposure night.

In many studies sleepiness is evaluated subjectively. There are three scales that are

often used in sleep research, although they are not typically implemented in studies

by researchers investigating effects of aircraft noise on sleep. These scales include

the Epworth Sleepiness Scale (ESS) (Johns, 1991), Karolinska Sleepiness Scale (KSS)

(Åkerstedt and Gillberg, 1990), and the Stanford Sleepiness Scale (SSS) (Flindell

et al., 2000).

The Epworth Sleepiness Scale (ESS) is derived from answers to questions on how

likely subjects are to fall asleep while in different situations which include: 1) reading,

2) watching TV, 3) sitting in a public place, 4) as a passenger in a car, 5) lying down to

rest in the afternoon, 6) sitting and talking to someone, 7) sitting after a lunch, and 8)
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in a car while stopped. Each scale is rated from 0 to 3, and the results for each question

are added together to obtain an overall score. A test in which the use of the ESS was

examined was conducted by Johns (1991). The subjects for this test included a control

group as well as those with sleep disorders including snoring, obstructive sleep apnea,

narcolepsy, idiopathic hypersomnia, and periodic limb movement disorder. Several

patients not only filled out the ESS but also underwent Multiple Sleep Latency Tests.

It was found that there was a correlation between MSLT and ESS scores.

The Karolinska Sleepiness Scale (KSS) is a 9 point scale, which has verbal labels

for every odd scale number. The verbal labels are: 1) extremely alert, 3) alert 5)

neither alert nor sleepy 7) sleepy but no difficulty remaining awake and 9) extremely

sleepy-fighting sleep (Åkerstedt and Gillberg, 1990). The Stanford Sleepiness Scale

(SSS) has 7 detailed descriptions of the degree of sleepiness. For example, a rating

of 1 is associated with “feeling active, vital, alert, or wide awake” while a rating of

7 is associated with “No longer fighting sleep, sleep onset soon, having dream like

thoughts.” This scale was used in the aircraft noise study conducted by Flindell et al.

(2000). However, they found no effect of aircraft noise on sleepiness as evaluated by

using the SSS. Passchier-Vermeer, Vos, Steenbekkers, van der Ploeg, and Froothuis-

Oudshoorn (2002) had subjects evaluate sleepiness with a 9 point scale. They found

that nighttime noise was related to sleepiness ratings but only when the rating was

completed first thing in the morning.

Tiredness has been examined in other studies. In a social survey conducted around

Heathrow and Gatwick Airports, a large variation in reports of tiredness was found.

Tiredness was evaluated by using a five point scale marked from “very refreshed”

to “very tired” (DORA, 1980). The reported tiredness was compared to the average

A-weighted night-time noise levels between 10:00 pm and 7:00 am and no relationship

was found below 65 dB(A), however above 65 dB(A) there was an increase in reported
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tiredness with noise level. Fidell et al. (1995) used a 5 point scale to evaluate tiredness

(1 “not at all tired”, 5 “extremely tired”). They found that tiredness was positively

correlated with the number of behavioral awakenings.

2.7.2 Performance

Sleep disturbance might also decrease next day performance. Wilkinson and Campbell

(1984) evaluated performance after sleep disturbance caused by traffic noise. Perfor-

mance was evaluated both before and after double glazed windows were installed.

They used several different performance tests including a reaction time test, short

term memory tests, and vigilance tests. After installing double glazed windows they

found that reaction time improved. They showed that this decrease in reaction time

also coincided with an increase in Stage 4 sleep and an improvement in the subjects’

evaluations of sleep. However, the relationship between these three variables was not

statistically significant. The association between SWS and performance has also been

shown by Marks and Griefahn (2005) after nights where subjects were exposed to rail

traffic noise.

Elmenhorst and Basner (2008) have found small but statistically significant dif-

ferences in performance after noise exposure. A decrease in performance with LAeq

levels was found. An increase in reaction time of 0.13 ms/dB was found in the labo-

ratory studies and a 0.3 ms/dB increase in reaction time in the field studies. Flindell

et al. (2000) also evaluated next day performance. They used several tests that were

completed every two hours during the day. The tests included a sustained attention

task, a digit memory recall task, and a choice reaction task. They found that perfor-

mance did not decrease with increased noise exposure. In the field study, performance

improved for all three tasks over the course of three days (following nights of noise ex-

posure). However, it was noted by the authors that few of the field subjects completed



46

all of the required training and therefore the results could represent a learning effect.

In their laboratory tests, for most performance tests and testing times, a statistically

significant effect of noise on performance could not be found. Schapkin, Falkenstein,

Marks, and Griefahn (2006) also found no statistically significant results that would

indicate that noise affects next day performance. It was mentioned that this could

have been due to the tasks being too easy, which was indicated by the low false alarm

rates. These results are also further supported by Passchier-Vermeer et al. (2002)

who used a reaction time task to evaluate performance and found that neither the

reaction time nor mistakes made during the test were affected by sleep disturbance

caused by nighttime aircraft noise.

As a result of the negative findings found in many studies, there is the question of

what type and what amount of sleep disturbance would lead to next day performance

decrements? Guilleminault, Abad, Philip, and Stoohs (2006) conducted a study in

which a 1000 Hz tone was used to excite cardiac arousals but not EEG arousals during

one night. For a second night they excited EEG arousals. For both nights, once an

arousal was obtained, at least 1 minute of sleep had to occur before another tone was

played. The following morning, after each experimental night, subjects completed

a psychomotor vigilance task. They found that an increase in reaction time only

occurred for the test condition in which EEG arousals were evoked.

Decrements in performance are found after nights in which sleep time is greatly

reduced. However, even in studies in which subjects are completely deprived of sleep,

there are large variations in performance and not all tests indicate a decrease in per-

formance. Frey, Badia, and Wright Jr. (2004) evaluated the performance of subjects

after two nights of sleep deprivation. The subjects completed 22 different performance

tests that included psychomotor vigilance tasks and reaction time tasks. The tasks

were completed every three hours during the sleep deprivation period. Performance
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compared to that on baseline nights was worse for 17 out of the 22 tasks. Performance

for individual subjects was highly task dependent. The subject that performed the

worst on one test did not consistently perform the worst on all tests. There was also

a large variability in response between subjects. Thus, when evaluating next day

performance, it is important to use multiple tests as well as evaluate the change in

performance on an individual basis.

2.7.3 Annoyance

Sleep disturbance can also lead to increased annoyance. Using laboratory and field

data, Quehl and Basner (2006) examined annoyance due to nighttime noise. Annoy-

ance was evaluated each morning using the standardized 5 point annoyance scale (1

“Not at all Annoyed” to 5 “Extremely Annoyed”) (Fields et al., 2001). They found

that annoyance in the laboratory was greater than in the field. They also found that

it was important to include the number and level of events when assessing annoyance.

Basner, Elmenhorst, Maass, Müller, Quehl, and Vejvoda (2008a) also evaluated an-

noyance due to sleep disturbance caused by aircraft, road, and train noise. They

found that aircraft noise caused the greatest amount of annoyance but it caused the

least number of transitions to Wake or Stage 1 sleep.

2.7.4 Coping Strategies

Coping strategies such as taking sleeping pills and closing windows to reduce the noise

are both used in the short term to improve sleep for a particular night, and in the

long term when their use becomes a continuous habit for an individual. Griefahn,

Schuemer-Kohrs, Schuemer, Moehler, and Mehnert (2000) found that the probability

that an individual slept with the windows closed increased with outdoor noise level.
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They also found that those exposed to road noise were less likely to sleep with windows

closed compared to those exposed to train noise of the same outdoor noise level.

Passchier-Vermeer et al. (2002) found that an increase in age as well as noise level

contributed to an increase in the percentage of people taking sleeping pills.

2.8 Long-Term Health Effects and Potential Pathways

In addition to next day effects, noise induced sleep disturbance may lead to long-

term health effects. One of the largest studies examining the health effects caused

by aircraft and road traffic noise is the Hypertension and Exposure to Noise near

Airports study (HYENA) (Jarup et al., 2008). This study was conducted in order

to evaluate the risk of developing hypertension due to aircraft and road traffic noise

exposure. The study was conducted in communities surrounding six airports: London

Heathrow, Berlin Tegel, Amsterdam Schiphol, Stockholm Arlanda, Milan Malpensa

and Athens Elpheterios Venizelos Airports. Researchers compared both LAeq,16hr and

Lnight measures of aircraft noise with the odds ratio for hypertension and found that

only the relationship with Lnight was statistically significant. Therefore, it seems that

nighttime noise and sleep disturbance may be an important pathway through which

noise may affect an individual’s health.

2.8.1 Sympathetic Tone

In response to a stressor, an increase in activity in the sympathetic nervous system

occurs. This includes an increase in heart rate and blood pressure among other effects.

Elevations in activity of the parasympathetic nervous system cause the opposite re-

actions. There have been a few studies conducted in which the effect of noise on these

levels has been investigated. Graham, Janssen, Vos, and Miedema (2009) conducted
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a study to investigate the effect that train and road noise have on sympathetic and

parasympathetic tone. They found no relationship between traffic noise and cardiac

sympathetic tone but they did find a relationship with cardiac parasympathetic tone;

there seemed to be a reduced level but only for the second half of the night.

Carter, Henderson, Lal, Hart, Booth, and Hunyor (2002) conducted a laboratory

study in which the subjects were 9 nurses who were night-shift workers. The effect of

noise on heart rate, blood pressure, and sympathetic tone was evaluated. They played

military aircraft, trucks, tones, and civilian aircraft sounds to the subjects during an

80 minute period at the beginning of night. They found that military aircraft and

pure tones increased systolic and diastolic blood pressure. To evaluate the effect of

noise on sympathetic tone they performed a frequency analysis of the heart rate and

blood pressure measures. They found that there was an increase in sympathetic tone

for military aircraft when assessing the data on blood pressure, but did not find an

increase when analyzing the heart rate data.

2.8.2 Cardiac Arousals

In addition to EEG arousals, the effect of noise on autonomic arousals has been inves-

tigated. One of the main indicators of an autonomic arousal is a change in heart rate.

Griefahn, Bröde, Marks, and Basner (2008a) examined cardiac arousals caused by

road, rail, and aircraft noise. Cardiac arousals both with and without an awakening

were assessed. With an awakening the changes in heart rate were monophasic (an

increase from baseline to a maximum followed by a decrease to baseline). The maxi-

mum heart rate was greatest when awakening from SWS and lowest when awakening

from REM sleep. For autonomic arousals not associated with an awakening, the be-

havior was biphasic with an increase in heart rate followed by a deceleration and then

a gradual increase back to baseline. The sleep stage the person was in affected the
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extent of the arousal; this time it was greatest during REM sleep and lowest during

SWS. A greater heart rate elevation was found when an awakening occurred.

Di Nisi, Muzet, Ehrhart, and Libert (1990) also found that noise affects heart

rate. They conducted a laboratory test in which subjects were exposed to five dif-

ferent sounds: a jet, truck, motorcycle, train, and a telephone. They conducted two

tests, one in which subjects were exposed during the day and another study where

subjects were exposed at night. For the daytime experiment, each of the signals were

presented six times. They measured ECG, finger-pulse, respiratory movements, and

body movements. For the nighttime tests they used all of the sounds except the tele-

phone ringing and they reduced the average noise levels of the sounds by 15 dB(A).

Eight sounds per hour were played, the inter-arrival time of the stimuli was random.

In addition to the measurements made during the day, they also used polysomnog-

raphy to evaluate sleep. They found that the heart rate response at night was much

greater than that during the day, which was especially significant because the sounds

during the night were 15 dB(A) quieter than the sounds heard during the day.

2.8.3 Stress Hormones

The effect of sleep disruption on stress hormones has been investigated in several

studies. Understanding the effect of noise on cortisol levels, for example, is important

as an elevated level could affect glucose functions, increase protein and bone degener-

ation, and could affect blood pressure raising hormones (Spreng, 2004). In a normal

night cortisol levels will decrease during the first half of the night and will increase

in the second half of the night, reaching a peak shortly after awakening. Elevated

levels are due to a stress response (Born and Fehm, 2000). Spiegel, Leproult, and

Van Cauter (1999) found, after restricting sleep to 4 hours, that morning cortisol

levels obtained from saliva samples were elevated. In addition to sleep length, there
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is also evidence that the number of arousals during the night may be related to an

increase in cortisol levels. Ekstedt, Åkerstedt, and Söderström (2004) separated their

data into two groups, results for those that experienced more than 9 arousals per

hour and those that experienced less than 9 per hour. For subjects with a higher

frequency of arousal a statistically significant increase in heart rate, blood pressure,

and cortisol level was found.

Carter, Hunyor, Crawford, Kelly, and Smith (1994) evaluated the sleep of 9 sub-

jects who had a history of cardiac arrhythmia. The subjects spent four nights in the

laboratory, two of which included exposure to noise. For one night road traffic noise

was presented, while for the other night aircraft noise was played. They measured

levels of noradrenaline, adrenaline, and dopamine at the end of the night and found

that all levels were in the normal range and were unaffected by noise. MaaB and

Basner (2006) found similar results to Carter et al. (1994). For both the laboratory

and field studies they assessed the levels of stress hormones cortisol, adrenaline, no-

radrenaline, and the electrolytes potassium, calcium, sodium, and magnesium. They

found that aircraft noise exposure did not have a large affect on any of these levels.

2.8.4 Appetite Regulation Hormones Leptin and Ghrelin

Fragmented sleep may also have an affect on appetite. Spiegel, Tasali, Penev, and

Van Cauter (2004) evaluated the level of leptin and ghrelin after sleep restriction.

Elevated levels of ghrelin are related to increased appetite while increased levels of

leptin are associated with a decrease in appetite. Spiegel et al. (2004) had 6 subjects

spend 10 hours in bed, while 6 subjects had their sleep restricted to 4 hours in bed.

The following morning blood samples were obtained. They also had subjects evaluate

their hunger and appetite using a questionnaire. Spiegel et al. found that after the

4 hour sleep condition there was an increase in appetite especially for sweet or salty
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foods. Also, they found that leptin levels were 18% lower and ghrelin levels were

28% higher compared to the results for subjects who spent 10 hours in bed. The

results found by Spiegel et al. are supported by results from a much larger study

conducted by Taheri, Lin, Austin, Young, and Mignot (2004). This study was part

of the Wisconsin Sleep Cohort Study. They found that ghrelin and leptin levels are

related to sleep duration. They also found an increase in Body Mass Index (BMI) for

reduced sleep duration, although BMI also increased for sleep durations greater than

8 hours and therefore there seems to be a U-shaped relationship between BMI and

sleep duration.

2.8.5 Increased Blood Pressure

Haralabidis et al. (2008), as part of the HYENA Study, examined nighttime blood

pressure. Subjects around four airports were investigated: Athens, Malpensa, Ar-

landa and Heathrow Airport. Blood pressure and heart rate were measured every 15

minutes during the night. They found that there was a 0.6 mmHg increase in systolic

and diastolic blood pressure for a 5 dB increase in noise level as measured using the

LAeq,15min which is the average A-weighted level during a 15 minute time period. Also,

they found that the mean increase in blood pressure when an aircraft noise event oc-

curred was 6.2 mmHg for systolic blood pressure and 7.4 mmHg for diastolic blood

pressure. In addition, they found that heart rate increased by 5.4 beats per minute.

This increase in blood pressure is troubling as during normal sleep the blood

pressure level should become lower. A person is classified as a “dipper” if blood

pressure during the night drops by more than 10%, compared to its daytime level. The

“non-dipping” of blood pressure may increase the risk for developing cardiovascular

and renal disease (Pickering and Kario, 2001). Loredo, Nelesen, Ancoli-Israel, and

Dimsdale (2004) determined that dipping was associated with a greater amount of
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slow wave sleep (SWS). In another study conducted by Loredo, Ancoli-Israel, and

Dimsdale (2001), the blood pressure of subjects with sleep apnea was measured during

the night. Their results indicate that time in SWS and the number of arousals may

be related to the variance seen in the diastolic blood pressure.

Guilleminault and Stoohs (1995) evaluated the blood pressure and heart rate for

both control subjects as well as those with sleep apnea when aroused by auditory

stimuli. The auditory stimuli caused an increase in blood pressure of approximately

20%. Their results also indicated that the greatest change in blood pressure occurred

when aroused from SWS.

2.8.6 Glucose Tolerance and Diabetes

Disturbed sleep may also increase the risk for developing type 2 diabetes. Spiegel,

Tasali, Penev, and Van Cauter (2004) had subjects sleep 4 hours for 6 nights and

12 hours for 7 nights. They found that glucose effectiveness was 30% lower when

subjects were sleep deprived. They also found that there was a decrease in insulin

response. They stated that the cause of the decrease in insulin response could be due

to an elevation in sympathetic and a decrease in parasympathetic activity during the

sleep deprivation nights, which might affect pancreatic function.

Tasali, Leproult, Ehrmann, and Van Cauter (2008) found similar results in a more

recent study. They suppressed SWS in subjects for three nights using acoustic stimuli

of different frequencies and intensities. They did not want to cause awakenings but

just a sleep stage change so that total sleep time and amount of REM sleep would

remain the same while the amount of Stage 2 sleep would increase. They assessed

glucose tolerance after the three nights. It was found that glucose tolerance was

decreased by 23% and insulin sensitivity was decreased by 25%. Glucose tolerance

is a measure of the decrease in glucose levels, it is measured in terms of the percent
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decrease per minute. They also performed spectral analysis of ECG recordings and

evaluated the amount of high and low frequencies, which is a measure of sympathetic

activity. They found that sympathetic activity had increased.

The study by Tasali et al. (2008) was conducted in a laboratory, with an unnatural

suppression of slow wave sleep. However, similar findings have been found in large

epidemiological studies. Gottlieb, Punjabi, Bewman, Resnick, Redline, Baldwin, and

Nieto (2005) used data from two cohort studies, which were a part of the Sleep Heart

Health Study, to evaluate glucose tolerance. A significant odds ratio for impaired

glucose tolerance and the development of diabetes was found for those sleeping less

than 6 hours or greater than 9 hours.

2.8.7 Myocardial Infarction and Stroke

One of the overall longterm effects of noise on health is that it may lead to car-

diovascular disease and Myocardial Infarction. A possible pathway which has been

discussed is the repeated elevation in the sympathetic nervous system which may

cause elevated heart rate and blood pressure.

Huss, Spoerri, Egger, and Röösli (2010) conducted a study to examine whether

aircraft noise and air pollution due to flight operations caused an increase in risk

of death from myocardial infarction in Switzerland. They used data from the Swiss

National Cohort which contains national census data and national mortality data.

They found that increased aircraft noise was associated with a higher risk of dying

from myocardial infarction and that the risk increased with the duration that an

individual had lived in the area. They found no relationship with increased risk and

air pollution which was a measure of particulate matter.

Sørensen, Hvidberg, Andersen, Nordsborg, Lillelund, Jakobsen, Tjønneland, Over-

vad, and Raaschou-Nielsen (2011) examined the risk of stroke and exposure to trans-
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portation noise. The data used was from a diet, cancer and health study that was

conducted between 1993 to 1997. Subjects were between 50 and 64 years in age and

lived in the Copenhagen or Aarhus area. A questionnaire was completed as well as

subject’s height, weight, and blood pressure were measured. Sørensen et al. (2011)

were able to link the data from the cohort study to the Danish National Hospital

Registry and were able to identify those individuals who were in the hospital and

who had suffered a stroke. The road noise levels LAeq for the day, evening, night and

Lden were predicted. They also predicted train and aircraft noise, and air pollution.

They found that a 10 dB increase in road traffic noise was associated with a 14%

increased risk of stroke. The increased risk was greater for older subjects. These

results are applicable for Lden (which is average A-weighted sound pressure level with

different weightings for noise during the day, evening, and night) levels greater than

60 dB(A). Air pollution and train and aircraft noise exposure did not result in an

increased risk of stroke.

2.8.8 Mental Health

Stansfeld and Matheson (2003) stated that aircraft noise causes annoyance and that

annoyance may lead to long term mental health issues. Several early studies were

conducted to investigate the effect of aircraft noise on admissions to mental hospitals.

Meecham and Smith (1977) examined the mental hospital admissions in a census

tract near Los Angeles International airport and a control census tract further away.

The two areas had similar socioeconomic conditions. They found a 29% increase in

admissions in the area closer to the airport. However the total number of admissions

in both areas was low.

More recently, the pathway from annoyance to mental health has been exam-

ined using survey questionnaires. Schrenkenberg, Meis, Kahl, Peschel, and Eikmann
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(2010) examined the self reported quality of life of those living around Frankfurt air-

port. They found no relationship between ratings of mental health and noise level.

However, there was a relationship between ratings of aircraft annoyance and mental

health as well as between noise sensitivity and mental health.

Noise may also effect the mental health of children. Stansfeld, Clark, Cameron,

Alfred, Head, Haines, van Kamp, van Kempen, and Lopez-Barrio (2009) examined the

effect of noise on children’s health and cognition as part of the RANCH study. They

used a questionnaire, The Strengths and Difficulties Questionnaire, to evaluate mental

health. The questionnaire had four scales relating to emotional symptoms, conduct

problems, hyperactivity, and peer relations problems. They found no relationship

between the overall score of mental health and noise. However, they did find that

aircraft noise was associated with a higher rating of hyperactivity. Contradictory

evidence though was found for road noise where a lower amount of conduct disorders

was associated with higher noise levels. While there are no conclusive findings from

this study, the authors did state that due to the transitory nature of aircraft noise it

would be expected that it would have a stronger affect on attention than road traffic

noise.

2.9 Effects of Noise on Children

For most of the studies mentioned the subjects have been adults. However, as found in

the RANCH study, noise also effects children. Öhrström, Hadzibajramovic, Holmes,

and Svensson (2006) conducted a study to examine the effect of road traffic noise on

sleep in adults and children. They conducted a main study involving a questionnaire

as well as a more detailed study in which subjects filled out sleep logs and wore

actimeters for 4 days. They found that children had better sleep quality and less

awakenings then adults when analyzing the subjective responses. However, they found
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that children had worse sleep as determined by actimeter data. They stated that

children may naturally have higher motility which could have caused the difference

between the objective and subjective measurements of sleep. For children whose

sleep was disturbed by noise, a large percentage indicated a problem with daytime

sleepiness. Lukas (1972) conducted a study in order to evaluate sleep disturbance

caused by sonic booms and jet aircraft noise. Subjects indicated awakenings by using

a switch. Their sleep was also evaluated using polysomnography. It was found that

the age of the subjects greatly affected the degree of disturbance. Children in the

study were found to be relatively insensitive to the noise. A survey conducted around

Heathrow and Gatwick airport (DORA, 1980) contained questions in which parents

were asked to state whether aircraft noise disturbed the sleep of their children. It was

found that children seemed to be far less disturbed by noise at night, it was reported

that 89% of children were not awakened by the noise. From the results of these three

studies it was concluded that children are less likely to be awakened by noise then

adults.

However, just because children are less likely to be awakened, it does not mean that

noise does not cause negative effects. Ising and Ising (2002) conducted a study with

children between the ages of 7 to 10 years. The children were exposed to heavy truck

noise approximately every 2 minutes during the night. The effect of noise on sleep

was evaluated by measuring cortisol levels. Two urine samples were collected from

each subject. One sample was taken in the morning, while the other was obtained

during the night. They found that noise seemed to cause an increase in cortisol

levels in the first half of the night. They also found that memory and concentration

problems were higher in the quarter of the group with the highest cortisol level. This

study provides some evidence that noise at night is affecting children despite the low

number of awakenings found in other studies. Also Sadeh, Gruber, and Raviv (2002)
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conducted a study involving children in second, fourth, and sixth grades. The children

were classified as either good or bad sleepers; a bad sleeper was defined as someone

that had at least three awakenings lasting more than 5 minutes and at least 10% of

the night was spent awake. They found significant differences in the performance of

children on tests as well as significant differences in behavior. Therefore, there is still

a need for studies in the future to further examine the effect of noise on children’s

sleep and next day performance.

2.10 Conclusions

Aircraft noise can cause an increase in awakenings and a decrease in slow wave and

REM sleep. These changes in sleep could lead to short term effects such as an increase

in sleepiness and a decrease in performance. Fragmented sleep due to noise could also

lead to long term effects such as hypertension, diabetes, and a change in appetite

which could contribute to obesity. However, there have been no studies that have

investigated directly the long term effects of noise-induced sleep disturbance. It still

needs to be determined whether the disturbance that occurs due to nighttime noise

is significant enough to lead to these adverse health effects.
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3. NOISE INDUCED SLEEP DISTURBANCE MODELS

Several models have been developed which predict noise induced sleep disturbance.

Most only predict the percent awakened to a single noise event. However, an ANSI

standard has been developed to predict the percent of the population that is awakened

at least once due to multiple events. A description of these models will be provided.

In order to evaluate these sleep models data was obtained from four sleep disturbance

surveys. A description of the data that was obtained and comparisons between model

predictions and behavioral awakening survey data is described.

3.1 Obtained Survey Data

As discussed in Chapter 2, there have been several studies conducted which have

provided information on the relationship between noise and sleep disturbance. It was

desired to obtain several of these datasets in order to develop new sleep disturbance

models because conducting a new sleep study would be expensive and require a sig-

nificant amount of time, and it is not guaranteed whether any new information would

be gained. Data from four sleep studies were obtained. A description of the obtained

data is provided and limitations of the datasets are discussed.

3.1.1 US Sleep Disturbance Survey Data

Data from the three most recent sleep studies conducted in the US were obtained.

The studies were conducted around Los-Angeles International Airport and Castle Air-

Force Base (Fidell, Pearsons, Tabachnick, Howe, Silvati, and Barber, 1995), DeKalb-
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Peachtree Airport, and Stapleton International and Denver International Airport

(Fidell, Pearsons, Tabachnick, and Howe, 2000). For the study conducted around

Los-Angeles International Airport and Castle-Air-Force Base, 1887 nights of data

were collected. Sleep was assessed by having subjects use push buttons; subjects

pressed a button when they were awakened. To quantify the noise, they measured

one half second LAeq levels (A-weighted equivalent noise level, the average noise level

for the defined time period). The recording of events was triggered based on a thresh-

old. To account for variation in the level of background noise from site to site, this

threshold was set specific to each site. However, to be classified as a noise event the

threshold only had to be exceeded for 2 seconds so other loud sounds may also have

been classified as aircraft noise events. The main result of this study was that the

A-weighted Sound Exposure Level (SELA) correlated best to the number of awak-

enings, although the relationship was weak. They also found that the probability of

awakening increased with the time since retiring.

The purpose of the other two US studies, conducted by Fidell et al. (2000), was to

evaluate sleep disturbance when a change in airport operations occurred. One study

was conducted around Stapleton International Airport before and after it closed, and

around Denver International Airport before and after it opened. Fidell et al. (2000)

also completed a study around DeKalb-Peachtree airport before, during, and after the

1996 Atlanta Olympics. The primary method used for evaluating sleep disturbance

was again the use of push buttons, although actimeters were also used. Both indoor

and outdoor LAeq levels were obtained. The result for all testing sites was that there

was a very low probability of awakening due to an aircraft event. For the DeKalb-

Peachtree study they also found no change in the number of awakenings for the three

different testing periods. However, behavioral awakenings are extremely insensitive
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measures of sleep disturbance and therefore the method used to measure awakenings

may be the reason for the negative findings.

The data that was obtained for these 3 studies include information on the gen-

der and age of the subjects. In terms of sleep data, the number of spontaneous

awakenings and button presses which corresponded to noise events are included in

the dataset. The timing of the noise-induced awakenings are indicated but not the

timing of spontaneous awakenings. Data for subjective evaluations of sleep was also

obtained including evaluations of tiredness, recalled sleep latency, and recalled time

awake.

The information on noise events in the dataset include indoor noise levels, SELA

and LAmax, for each aircraft event. The timing of the events is also known. A difficulty

with the dataset is that very few of the subjects experienced the same noise scenario,

as well as subjects were not all tested for the same number of nights. A summary of

the number of locations and subjects for each of the three studies is listed in Table

3.1. The maximum number of noise events at a location is also listed.

Table 3.1. Number of locations and subjects that took part in the 3
US sleep studies.

Survey Number of Number of Maximum Number
Locations People of Noise Events

(1995) LAX and Castle 43 72 435
Air Force Base
(1994/1995) DEN and 65 113 153
DIA airport
(1996) PDK airport 12 22 136

The number of events and awakenings for each indoor SELA level for the three studies

conducted by Fidell et al. (1995, 2000) are summarized in Table 3.2.
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Table 3.2. Number of events and awakenings for each noise level for
the 3 US field studies.

SELA Number of Events Number of Awakenings
52 2222 20
55 4399 36
58 3378 28
61 2716 48
64 4374 67
67 3703 71
70 4302 83
73 4984 109
76 4354 85
79 4274 95
82 4299 81
85 3096 76
88 1809 44
91 1230 34
94 680 35
97 396 15
100 166 3
103 40 1

3.1.2 1999 UK Sleep Study Data

Data from a study in which sleep was measured using polysomnography was also ob-

tained. This study was conducted in the UK in 1999 and involved both a laboratory

study conducted in Farnborough and a field study conducted around Manchester air-

port (Flindell, Bullmore, Robertson, Wright, Turner, Birch, Jiggins, Berry, Davison,

and Dix, 2000). It was funded by the UK Department for Transport and the data

is owned by the Civil Aviation Authority. Both laboratory and field were considered

trial studies. The three main objectives were to examine noise during the shoulder

hours to see if they led to premature awakenings or delayed sleep onset, to compare

sleep patterns of individuals living in high and low noise exposed areas, and to study

sleep disturbance in a group of people that considered themselves sensitive to noise.
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The field test was conducted around Manchester airport. Eighteen participants

took part in the study, 9 were from a low noise area and 9 were from a high noise area.

Only data from 12 subjects was suitable though to use for analysis. All subjects were

in the age range of 30-40 years. Also, all subjects were considered to have high noise

sensitivity as evaluated by the Weinstein scale. The high noise area was located 500

to 2500 meters from the airport, while the low noise area was located 4000 to 7000

meters from the airport. One problem with the study was that while the high and

low areas had different outdoor noise levels, there was little variation in the indoor

noise levels.

For the field study subjects participated for 5 consecutive nights. Sleep was

recorded using polysomnography. Recordings of 4 channels of EEG, 2 channels of

EOG, ECG, EMG and respiratory measurements were obtained. Sleep stages for

each subject were scored. The noise levels that were collected were A-weighted sound

pressure level noise time histories, measured both indoors and outdoors and a voltage

signal that was synchronized with the physiological measurements. The voltage signal

was not a sound recording, it only had a 10 Hz sampling rate. Information from the

airport on the timing of arrivals and departures and type of aircraft were obtained.

Also, for four sites, 10 second recordings (stored in .wav files) of the events and one

third octave band data through time were also collected.

Nine people living near Farnborough took part in the laboratory test. The sub-

jects were tested one night per week over a period of five weeks. In addition to an

adaptation night, one night was a baseline night and consisted of no noise. There was

three noise exposure nights; one noise condition was supposed to be representative of

a night around Manchester airport, for one night the noise exposure was similar to

that at Manchester airport but with more noise events added during the beginning

of the night, and for one night the noise exposure was like that at Manchester airport
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but with more events at the end of the night. Five aircraft recordings were used in

the study. As in the field study, sleep was recorded using polysomnography and a

voltage measurement of the noise was also recorded.

For both laboratory and field studies, tests to evaluate sleepiness and performance

decrements were also performed; no significant differences in results between nights

of noise exposure and baseline nights were found. In general, there was not a large

difference between results in the laboratory study and those in the field study. A

similar number of awakenings, sleep stage changes, and slow wave sleep was found

for the Manchester typical noise night in the laboratory and in the field study. Those

who participated in the laboratory study, though, did have less REM and more stage

2 sleep during the noise exposure nights.

3.1.3 1999 UK Sleep Study Data Used for Analysis

For several of the subject nights data was either missing or a recording was not

acceptable for use because an electrode most likely became loose during the night.

Only subject nights which had a C4-A1 and C3-A2 EEG recording, EOG left and

right recordings, EMG recording and scored sleep stages were used for analysis. A

list of subjects, and the subject nights used in the analysis throughout this report

are listed in Table 3.3. Subjects 1 through 18 were in the field study and Subjects 19

through 27 were in the laboratory study. A total of 76 subject nights were used for the

sleep stage classification algorithm development and for estimating the parameters of

the nonlinear dynamic models. However, when evaluating the changes in sleep due

to noise events data from subjects 1 through 7 were not used. The reason for this

elimination is that for these subjects a voltage recording of the noise event that is time

locked with the polysomnography data was not made. The timing of the noise events

were only obtained from the separate sound level meter measurements. However,
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from reviewing the data there seems to be a drift in time that occurred over the 5

days of testing in the sound level meter data. Therefore to insure that the time of

events coincides with the activity in the physiological data these subjects was not

used in the noise analysis. Also the data for subjects 26 and 27 for night 2 were

not used in the noise analysis as the timing of noise events did not match the noise

scenario that was supposed to be played that evening.

3.2 Sleep Disturbance Models

Several models have been developed to predict the effect of aircraft noise on sleep.

Many of these models predict the percent awakened due to a single noise event. A

standard has also been developed which predicts the effect of an entire nighttime sce-

nario of events on a population. Models have also been developed based on responses

to social survey questionnaires. A review of these existing models is provided.

3.2.1 Single Event Awakening Models

Most of the models that have been developed are simple dose response relationships

between the indoor noise level of an event and the percent awakened. In these models

it is assumed that the response to each event during the night is independent of its

previous responses. The noise level is measured by using either LAmax or SELA. LAmax

is the maximum A-weighted noise level of the event, SELA takes into account the

energy of the event within 10 dB of the peak of the noise event. Both metrics are

highly correlated to one another.

Finegold, Harris, and von Gierke (1994) analyzed data from several studies in

order to create an awakening model. They grouped the number of awakenings by

counting the number in each 5 dB interval. For their regression, each noise interval
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Table 3.3. UK Data used in analysis. (Dark gray indicates that data
was used in all analysis, light gray indicates data was not used in noise
analysis. Y-data available, N-data not available).

Subject Adaptation Night Night 1 Night 2 Night 3 Night 4
1 N N Y N Y
2 N Y N Y Y
3 N N N Y Y
4 N N N N N
5 N N N N N
6 N Y Y Y N
7 N N N N N

F
ie
ld

8 N N N N Y
9 N Y N Y Y
10 Y Y N Y N
11 N N N N N
12 Y Y Y Y Y
13 N Y Y Y Y
14 Y Y N Y Y
15 Y Y Y Y Y
16 N N Y Y Y
17 N N Y N Y
18 Y Y N Y N
19 Y Y Y N N
20 N Y Y Y N
21 N N N N N

L
ab

or
at
or
y 22 Y Y Y Y Y

23 Y Y Y Y Y
24 N Y Y Y Y
25 Y Y N Y Y
26 Y Y Y Y Y
27 Y Y Y Y N
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had equal weight even though there was a different number of data points in each

interval. Another weakness in this model is that the data sets were from studies that

used different noise sources and were conducted in different testing environments,

both laboratory and field. Two further analyses were done to create an updated

dose response relationship. Finegold and Elias (2002) used data from more recent

surveys, however, as in the development of the previous model, data from different

noise sources were combined. The equation for the model developed by Finegold et al.

(1994) is,

%Awake = (7.1e−6)SELA3.5, (3.1)

and the model by Finegold and Elias (2002) is,

%Awake = 0.58 + (4.3e−8)SELA4.11. (3.2)

FICAN (1997), the Federal Inter-Agency Committee on Aircraft Noise, developed a

curve based on 6 datasets examined by Pearsons et al. (1995) as well as the data

from the Ollerhead et al. (1992) study and from the Denver and Los Angeles sleep

studies by Fidell et al. (1995, 2000). In contrast to Finegold et al.’s models, the

dose response relationship that was developed predicts the upper limit of the percent

awakened found in the data. The equation for the FICAN model is,

%Awake = 0.0087(SELA− 30)1.79. (3.3)

Several other models that predict the probability of awakening because of a noise

event have been developed including: Anderson and Miller’s (2005) model

z = −10.7383 + 0.0874SELA; %Awake =
100

1 + e−z
, (3.4)
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the dose response relationship used in the ANSI (2008) Standard,

z = −6.8884 + 0.04444SELA; %Awake =
100

1 + e−z
, (3.5)

Basner et al.’s model (2006),

%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243, (3.6)

Passchier-Vermeer et al.’s model (2002),

%Awake = 0.51 + 0.000353SELA2, (3.7)

and Ollerhead et al.’s model (1992),

%Awake = 0.4(−2.96 + 0.162SELA). (3.8)

The predictions of the different awakening models are shown in Figure 3.1. The FI-

CAN and Basner et al. models predict the highest percent awakened. The FICAN

model was meant to be an upper bound of the survey data from which it was de-

rived. The model developed by Basner et al. is based on awakenings from a study

conducted around Cologne-Bonn airport where they measured awakenings by using

polysomnography which is a more sensitive measure of awakenings. Most of the other

models were developed based on behavioral awakenings data which are a less sensitive

measure of sleep and occur less often during the night.
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Figure 3.1. Output of various awakening models for each 5 dB group-
ing of SELA values. From left to right; 1) Anderson and Miller (2005),
2) ANSI dose response curve (2008), 3) Finegold and Elias (2002), 4)
Passchier-Vermeer et al. (2002), 5) Ollerhead et al. (1992), 6) FICAN
(1997), and 7) Basner et al. (2006) model predictions.

3.2.2 Models Based on Reported Sleep Disturbance

The models that were described were based on measures of awakenings from polysomnog-

raphy, button pressing to measure behavioral awakenings, or from actigraphy mea-

surements. However, dose response models have also been developed based on sub-

jective reports of sleep disturbance. In addition to the sleep studies that have been

conducted, many large social surveys on the effects of aircraft noise on communities

have been conducted. General questions on sleep disturbance that are often asked

include whether an individual’s sleep was disturbed and how often, or whether they

were annoyed because their sleep was disturbed. Miedema, Passchier-Vermeer, and

Vos (2002) developed dose-response curves based on data from these social surveys.

The models relate Lnight to the percent of the population that are a little sleep dis-
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turbed (LSD), sleep disturbed (SD), or highly sleep disturbed (HSD). They developed

curves for aircraft, road, and train noise. For aircraft noise, the models are based on

seven different community surveys. The three equations are:

%HSD = 18.147− 0.956Lnight + 0.01482L2
night, (3.9)

%SD = 13.714− 0.807Lnight + 0.01555L2
night, (3.10)

%LSD = 4.465− 0.411Lnight + 0.01395L2
night. (3.11)

One of the problems with these dose-response models are that they are based on

responses to different types of questions. For example, for most of the aircraft noise

studies, the questions on sleep were related to how annoyed an individual was if they

were awakened by aircraft noise. However, they combined data on annoyance caused

by sleep disturbance with data from another study in which the question was how

often an individual was awakened by noise. These questions are asking two different

things and thus it is questionable whether the responses can be combined. Also,

annoyance should not be considered synonymous with sleep disturbance. Therefore,

these dose-response relationships do not predict the percent of the population that is

sleep disturbed but rather they are an indication of how sleep disturbance may relate

to annoyance.

3.2.3 Multiple Events Awakening Model

In 2008, an ANSI (American National Standards Institute) standard for predicting

the probability of awakening at least once due to multiple events was published. The

use of this standard has been recommended by FICAN. It is based on behavioral
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awakening data. In the model, the probability of awakening due to a single event is

dependent on the noise level, as measured by indoor SELA. There is also a model

which accounts for the time the noise event occurred. The equation for the time

dependent model is:

z = −7.594 + 0.04444SELA+ 0.00336Tretire; %Awake =
100

1 + e−z
, (3.12)

where Tretire is the time (in minutes) an event occurred relative to the time an indi-

vidual went to bed. The process for calculating the probability of awakening at least

once for an entire night using the ANSI model is shown in Figure 3.2. It is determined

by multiplying the probabilities of not awakening to each individual event,

%Not Awake = (1− P1)(1− P2)... (3.13)

and subtracting this result from 1,

%Awakened at Least Once = 1− (1− P1)(1− P2)... (3.14)

Figure 3.2. Example of the ANSI standard method of calculating
percent awakened at least once for a full night of aircraft events.
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The ANSI standard is based on the work of Anderson and Miller (2007). One

component of their model that was not included in the standard is the sensitivity

to awakening. Anderson and Miller evaluated the data from Fidell et al.’s surveys

(1995, 2000) and found a large inter-individual difference in the number of noise

induced awakenings. They modeled this variation as a Gaussian distribution and

added a coefficient to their model to account for this.

3.2.4 Spontaneous vs Noise-Induced Awakenings

When comparing model predictions to survey data one of the challenges is defining

what an awakening is. To determine how many noise-induced awakenings occur, a

time window about each noise event has to be defined. Within the time window,

sleep disturbance is attributed to the noise. The length of the time window varies

depending on the study and the technique used to evaluate sleep. For example, Basner

et al. (2004) defined a noise-induced awakening when it occurred within 90 seconds

of a noise event in the field study and within 60 seconds in the laboratory study.

Ollerhead et al. (1992) defined a time window as beginning 16 seconds before the

start of a noise event and having a width of 64 seconds. Fidell et al. (1995), who used

behavioral (signaled) awakenings, found the strongest relationship between noise and

awakenings when using a time window of 5 minutes.

Also, there is a challenge in separating noise-induced awakenings from spontaneous

awakenings, which are awakenings that occur naturally during a non-noise disturbed

night. Brink and Basner (2009) have discussed two ways to define the probability

of awakening to just the noise events. The first is what they call P additional which is

equal to the probability of awakening due to noise events minus the probability of a

spontaneous awakening occurring. However, they recognize that a noise awakening

and a spontaneous awakening may not be mutually exclusive. A person may be in the
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process of awakening spontaneously and then an aircraft event occurs and they are

awakened by the noise. Therefore, they also defined P induced, which is the probability

of awakening due to a noise event which is not confounded with the probability that

a spontaneous awakening was jointly occurring. The practice that is most commonly

used is to calculate P additional.

3.2.5 Noise Protective Measures

Different noise metrics have also been proposed for predicting and preventing sleep

disturbance in communities. In the US only DNL is used for predicting noise impact.

However, in Europe, the noise metric, Lnight is used in order to protect communities

from adverse effects of nighttime noise. Lnight is the average nighttime noise level

for 11:00 pm to 7:00 am. It is stated in the World Health Organization’s Night

Noise Guidelines for Europe (2009) that noise leads to additional awakenings and

movements above an Lnight,outside of 30 dB. For an Lnight,outside between 40 to 55 dB

most of the population will be affected by the noise and for an Lnight,outside above 55

dB adverse health effects may occur. WHO has issued a recommendation that outside

noise levels be below 40 dB at night to prevent adverse health effects. However, as

such a limit would be difficult to obtain a target goal of 55 dB has been proposed.

A protection criteria based on the number of awakenings has been developed by

Basner, Samel, and Isermann (2006). They defined three goals to achieve by creating

this criteria: 1) Limit effects to less (on average) than 1 additional noise induced

awakening, 2) Prevent awakenings that will be remembered the next day, 3) Prevent

increases in latency of falling asleep again during the night. To obtain these goals

they defined a contour which is based on a region in which 1 or more additional

awakenings occur and 1 or more events have a LAmax greater than or equal to 80

dB(A). The dose-response curve developed by Basner, Samel, and Isermann (2006)
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was used to create these contours. This method was implemented around Leipzig-

Halle airport. Another protection criteria, the Frankfurt Night Index (FNI), is also

based on the dose-response relationship developed by Basner et al. (2006). An area

that needs to be protected is defined as one in which 0.5 or more additional noise

induced awakenings occur on average (Schreckenberg, Thomann, and Basner, 2009).

3.3 Model Comparisons

To evaluate how well awakening models predict the percent awakened found in survey

data comparisons were made between the US behavioral awakening survey data and

six dose-response awakening models. The performance of the ANSI standard method

was also examined. Comparisons were made between the ANSI model and DNL for

different numbers of nighttime aircraft noise events.

3.3.1 Awakening Model Comparison

To examine how well the dose-response models predict the percent awakened in survey

data, comparisons were made with the results from Fidell et al.’s surveys. As part of

this analysis a Monte Carlo simulation was performed in order to determine whether

enough data was collected in these surveys to validate the awakening models. For

each SELA, a vector of uniformly distributed random numbers in the range from 0 to

1 was created. The length of the vector was equal to the number of events that were

experienced in the survey data for that particular SELA level. Then using one of the

awakening models, the number of values in the vector below the specific probability

of awakening was calculated. This value is equal to the number of people awake. The

percent awakened was then calculated and this procedure was repeated 10,000 times

in order to evaluate the variation in predictions for different sampling. The results
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of the simulation were then compared to the actual percent awakened in the survey

data. The comparisons are shown in Figure 3.3. The error bars for the simulations

indicate that 95% of all outcomes of the Monte Carlo simulation were within that

range, while for the survey data the error bars are the 95% confidence intervals. From

the results of performing this analysis, shown in Figure 3.3, it is evident that there

was not a lot of data collected in the survey at the higher noise levels. Lack of data

at high noise levels was the reason why, for this analysis, the data from all three of

the studies conducted by Fidell et al. were combined. Also, the predictions of the

Passchier-Vermeer et al. model most closely matched the awakenings in the survey

data. Although most of the models predicted the percent awakened at low noise levels

reasonably well.

3.3.2 Multiple Events Model Evaluation

The process described in the ANSI standard was used to compare the change in

awakenings and the corresponding change in DNL when the number of nighttime

events are increased. For simplicity it was assumed that 1 aircraft event occurred

every 2 minutes during the day and that initially there were no nighttime events. The

number of daytime operations was 450 which is similar to the number of operations

at a medium sized airport such as Indianapolis International Airport. It was assumed

all the aircraft events were of the same noise level for simplicity. The noise level of

the events was an indoor SELA level of 57 dB(A). This level results in an initial

DNL of 60 dB(A) for this number of events. Nighttime events were then added.

The new DNL level and the percent awakened at least once, using the method of

the ANSI standard and the different awakening models (without time dependence),

was calculated for each additional nighttime event. The results of this simulation

are shown in Figure 3.4. When 110 nighttime events were added the DNL level
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Figure 3.3. The percent awakened in Fidell et al.’s surveys (red-
circles) and model predictions (blue-x). (a) Anderson and Miller
(2005), (b) Finegold and Elias (2002), (c) FICAN (1997), (d) Basner
et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f) Ollerhead
et al. (1992) model predictions.
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increased by about 5 dB while the percent awakened at least once varied from 30%

to approximately 98% depending on the awakening model that is used. The average

number of awakenings per individual as predicted by the different awakening models

are in Table 3.4. The awakening model by Basner et al. (2006) predicts on average

two noise-induced awakenings per person when there are 50 nighttime events.
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Figure 3.4. The effect of increasing the number of nighttime noise
events on DNL and percent awakened at least once. (a) Increase in
DNL and (b) increase in percent awakened at least once predicted
using different awakening models. Indoor SELA=57 dB(A).
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Table 3.4. Average number of awakenings per person. Highlighted in
dark gray are situations where on average approximately 0.5 awaken-
ings occur, light gray highlights where on average approximately one
awakening occurs. Events were all indoor SELA=57 dB(A).

Awakening Models/Number of Events 10 20 30 40 50
Anderson and Miller (2005) 0.03 0.06 0.10 0.13 0.16
ANSI Standard (2008) 0.12 0.26 0.38 0.50 0.65
Finegold and Elias (2002) 0.13 0.25 0.39 0.53 0.65
Passcher-Vermeer et al. (2002) 0.17 0.33 0.51 0.66 0.83
Ollerhead et al. (1992) 0.25 0.49 0.74 1.01 1.25
FICAN (1997) 0.32 0.64 0.95 1.27 1.60
Basner et al. (2006) 0.45 0.89 1.38 1.82 2.26

The results of this analysis demonstrate that a model other then DNL is needed

to predict the impact of noise on sleep. However, the method described in the ANSI

standard is not without limitations. Several airports have a large number of freight

aircraft operations at night and can have well over a hundred flights. Data that

was obtained for two US airports, for example, showed that there were 150 and 280

nighttime flights at these airports. In order to assess the predicted percent awakened

at least once for different noise levels and numbers of nighttime flights, the ANSI

method with the different dose-response relationships were used. The results are

shown in Figure 3.5. When there are greater than 100 nighttime events, the models

all predict that the entire population (100%) will be awakened at least once and that

there is no longer any noise level dependence. However, when the average number of

awakenings is predicted, there still is a noise level dependence. The results for the

average number of awakenings is shown in Figure 3.6.
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Figure 3.5. The percent awakened at least once for different numbers
of events from 1 (thin line) to 200 (thick line). Each line represents 1,
2, 5, 10, 20, 50, 100, 150, or 200 nighttime events. (a) ANSI standard
Model (2008), (b) Finegold and Elias (2002), (c) FICAN (1997), (d)
Basner et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f)
Ollerhead et al. (1992) model predictions.
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Figure 3.6. The average number of awakenings for different numbers
of events from 1 (thin line) to 200 (thick line). Each line represents 1,
2, 5, 10, 20, 50, 100, 150, or 200 nighttime events. (a) ANSI standard
Model (2008), (b) Finegold and Elias (2002), (c) FICAN (1997), (d)
Basner et al. (2006), (e) Passchier-Vermeer et al. (2002), and (f)
Ollerhead et al. (1992) model predictions.
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3.4 Conclusions

Several models have been developed in order to predict the percent of the population

that is awakened from nighttime aircraft events. While these models are a better pre-

dictor of nighttime disturbance than using DNL, they are not without limitations.

There are significant differences in the predictions of various models even when re-

moving the FICAN and Basner et al. models. Also only the Passchier-Vermeer et al.

model predicted the behavioral awakenings in the Fidell et al. studies to any degree

of accuracy for noise event levels above an SELA indoor of 80 dB(A). Also the ANSI

standard was found to no longer predict differences in sleep disturbance for different

aircraft operations when the number of events was greater than 100. This is because

of the use of the percent awakened at least once. The use of the average number of

awakenings per person per night may be more useful especially for busier airports.
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4. MARKOV MODELS AND AIRCRAFT NOISE INDUCED SLEEP

DISTURBANCE

Aircraft noise not only causes an increase in awakenings, but also decreases the

amount of time spent in rapid eye movement (REM) and slow wave sleep (SWS)

(Griefahn, Robens, Bröde, and Basner, 2008b). These changes in sleep may be im-

portant to predict around airports, as they may lead to next day or long term health

effects. A more sophisticated model of sleep disturbance has been developed by Bas-

ner (2006) which would allow these changes in sleep structure to be predicted, however

this model does not have a dependence on noise level. A review of this model and how

a noise level dependence was introduced into the model is described. Comparisons

made between model predictions and survey data are also discussed.

4.1 Description of Markov Model

Basner’s (2006) Markov model is based on the data from a laboratory experiment that

was conducted at the German Aerospace Center between 1999 and 2003. 128 subjects

took part in the study. Sixteen were in the control group (no noise) and 112 were

in the experimental group. Each subject slept in the laboratory for 13 consecutive

nights. The first night was an adaptation night, subjects became acquainted with

sleeping in the laboratory setting, the second night was a no noise night which was

used to establish a baseline measurement of normal non-noise disturbed sleep. Nights

3 to 11 were noise experimental nights and nights 12 and 13 were no noise recovery

nights. For the experimental nights, the number of aircraft sound events varied from

4 per night to 128. For a given night, the events were evenly spaced in time and all
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events were of the same noise level. Playback of the events began after 11:00 pm, the

exact starting time though varied depending on the number of nighttime events. The

maximum noise levels used in the study ranged from a maximum noise level (LAmax

indoor) of 45 dB(A) to 80 dB(A). Polysomnography was used to measure sleep.

By using the data from the baseline and noise-exposure nights, the coefficients

for four Markov models were estimated. These sleep disturbance models predict the

probability of transitioning from sleep stage sj to stage si given the time of night (t

is measured in the number of 30 second epochs since the first occurrence of Stage 2,

and ranges from 1 to 820). The models are of the form:

pk(si|sj) = eak(si)+bk(si)t+ck(si,sj)∑5
i=0 e

ak(si)+bk(si)t+ck(si,sj)
(4.1)

where the subscripts i=0, 1, 3,...5, and j=1, 2, ...5. In the notation so refers to wake,

s1 to s4 refers to Stage 1 though Stage 4, and s5 refers to REM. The subscript k=1,

2, 3, 4 and refers to one of the four noise models. The inclusion of four noise models

came from an examination of the data and refer to: 1-no noise, 2-noise event just

begun, 3-flyover in progress, and 4-flyover just completed. Stage 2 is the reference

stage and so

ak(s2) = bk(s2) = ck(s2, sj) = 0. (4.2)

The data from the experiments were used to estimate the 4 x (5+5+25)= 140 co-

efficients by using a multinomial logistic regression model estimation process. Basner

used the CATMOD program in SAS to complete this estimation. For reference in

Appendix C a list of the estimated coefficients values for all four models are provided.

Using the Markov models and given the stage (sj) that a person is in, the time

of night, and what noise situation is occurring, the probabilities of moving to each

of the six stages can be computed, P0, P1,...P5, where the sum of the probabilities
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is equal to 1. A sample (X) from a random process uniformly distributed from 0

to 1 is generated and the sleep stage is determined as depicted in Figure 4.1. By

repeating this process for each 30 second interval during the night a hypnogram can

be generated, an example is shown in Figure 4.2. The sleep stage an individual is in

for each 30 second segment of sleep is indicated by the hypnogram. The probability

of being in each of the six sleep stages during the night, as predicted by the baseline,

no noise model, is shown in Figure 4.3.

Figure 4.1. Method for determining what sleep stage an individual is
in using Basner’s Markov model.

One limitation of the sleep structure model is that the noise models only take into

account whether an aircraft event occurred and not the level of the noise event. The

results from numerous studies, as discussed in Chapter 3 indicate that the degree

of disturbance will increase with level. Another problem is that for each model, 35

different coefficients had to be estimated. From the SAS CATMOD outputs, included

in Basner’s report (2006), the standard error of some of the parameters was infinite,

or the standard error was very large (e.g. greater than 50). The reason for this

high variance in the estimates is that some sleep transitions, such as the transition

from Stage 4 to Stage 1 do not occur very often. Therefore the probability of this

transition occurring is or is close to zero. An individual most likely will pass through

Stage 3 and Stage 2 on the way to Stage 1. Therefore, there was not enough data to
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Figure 4.2. Sleep hypnogram, the output of the sleep structure model
using the no noise model for one person.

estimate these coefficients. The coefficients that could not be estimated well due to a

low probability of the associated sleep stage transition occurring are listed in Table

4.1.

4.2 Modification of Sleep Structure Model

To overcome one limitation of Basner’s sleep structure model, a method of adding a

noise level dependence to the model was explored. This approach was meant to be a

first attempt at adding this dependence. A linear relationship was defined between

the noise level of an event (SELA) and the model coefficients. The linear models were

developed based on the baseline coefficient and the corresponding coefficient in the

noise models. It was assumed that for the baseline coefficients the noise level was

30 dB(A) which was the background noise level in the sleep rooms of the laboratory.

The noise level for the noise model coefficients was assumed to be 63 dB(A) which

is the mean SELA level of the aircraft events used in the laboratory study when
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Figure 4.3. (a) Probability of being in a particular sleep stage through-
out the night predicted using Basner’s baseline model. Stage 5 is
REM, Stages 3 and 4 are slow wave sleep, Stage 0 is awake. (b) A
close up of the plots for Stage 0, 1, 3, and 4.
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Table 4.1. Coefficients of Basner’s Markov models that were not es-
timated well due to a low probability of the transition occurring and
thus a lack of observations on which to make a good estimate of the
probability.

Model Coefficients
Baseline c(s4,s1)

c(s4,s5)
1st Noise Model c(s4,s1)

c(s5,s4)
c(s3,s5)
c(s4,s5)

2nd Noise Model c(s3,s1)
c(s4,s2)
c(s5,s4)
c(s3,s5)
c(s4,s5)

3rd Noise Model c(s4,s1)
c(s1,s4)
c(s5,s4)
c(s3,s5)
c(s4,s5)
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the number of people, number of events, and level of each event was considered. A

conversion from LAmax which was used in Basner’s study to SELA was performed

because most sleep models are based on SELA. The method for converting between

the two was defined by Pearsons, Barber, Tabachnick, and Fidell (1995), the relation

is defined as:

SELA = LAmax + 10log10(D10)− 3.7, (4.3)

where D10 is the duration of the event when it is within 10 dB of the maximum noise

level. An average value of D10 was assumed based on aircraft recordings and was

found to be approximately 9.5 seconds. Therefore 6 dB was added to the LAmax levels

to predict the SELA values.

The change in coefficients c(si,s1) with noise levels from 53 to 103 in increments

of 10 dB for the 4 different models are shown in Figure 4.4. The coefficients are for

transitions between Stage 1, s1 to five sleep stages (so, s1, s3, s4, s5). Recall that

s2 is the reference and therefore c(s2, s1) = 0. In Figure 4.5 through Figure 4.7 the

average transition probabilities for the entire night, for increasing noise levels from 53

to 103 in increments of 10 dB, for all three noise models are shown. For the first noise

model, most of the changes in the transition probabilities followed expected trends;

the probability of a transition from each sleep stage to Stage Wake increases with

noise level. The probability of a transition to deeper stages of sleep, such as Stage 3

and 4 decreases with noise level. There was one unexpected change with noise level;

the probability of transitioning from REM sleep to Stage 4 increased with high noise

levels in the first noise model. The value of the coefficient c(s4, s5) related to this

transition was therefore reduced, and it was made equal to the value of the coefficient

for the second noise model. For the second and third noise models, in general there

is an increase in transition probabilities to lighter stages of sleep with increased noise

levels. Some of the unexpected trends, such as the decrease in probability of remaining
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in Stage Wake in the second and third noise model, may be due to the fact that most

awakenings are brief and therefore individuals will fall back to sleep after the event.
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Figure 4.4. Change in coefficients c(si,s1) (i=0, 1, 3, 4, 5) with noise
level for transitions from Stage 1 to each sleep stage. Noise 1-First
noise model, Noise 2-Second noise model, and Noise 3-Third noise
model.

Once the noise level component was added to the model it was desired to determine

whether this model would still be a reasonable estimate of the original data of Basner’s

study. Therefore, a simulated dataset was created using the level dependent version
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Figure 4.5. Change in the transition probabilities of the first noise
model with noise level: (a) to (f) transitions to so thru s5 for each
stage. Bars further to the right are results for higher noise levels. The
bar all the way to the left is for the baseline model. Levels are SELA
= 53, 63, 73, 83, 93, and 103 dB(A). * denotes unlikely scenario.
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of Basner’s model. This simulation was conducted using the same number of people,

same number and timing of aircraft events, and the same noise level of the events.

From the simulated dataset the coefficients of Basner’s original model, i.e. the model

without noise level dependence, was estimated, by using the mnrfit command in

Matlab. The simulation was performed 40 times, and the mean value and the 5th

and 95th percentiles of the estimated coefficient values are shown in Figure 4.8. The

largest differences between the original and estimated parameters typically were for

the coefficients that were not estimated well in the original model (see Table 4.1).

These coefficients are indicated by black boxes in the figure. It is noted though that

these coefficients would be difficult to estimate even with a large quantity of data as

these transitions do not occur often in sleep, an example being a transition from Stage

1 directly to Stage 4. Also there was more variance in the estimation of parameters

when the current stage was Stage 3 and 4 and also for transitions to these stages

(Figure 4.8 (b) and (d) ).

4.3 Comparison of Markov Model Predictions to Behavioral Awakening US Survey Data

To further validate the modified version of Basner’s model, with incorporated noise-

level dependence, the model was used to create simulated responses for the same

event scenarios as those of the three US surveys conducted by Fidell et al. (1995,

2000). For this simulation the same number of people, events, timing of events, and

noise levels as in the original survey data were used. For the simulation, a definition

for a behavioral or conscious awakening had to be defined since sleep was measured

in the surveys by having subjects press a button when awakened. In one simulation

it was assumed that a conscious awakening occurred if the subject was awake for at

least two and a half minutes and in the other a conscious awakening was deemed to

have occurred if the subject was awake for at least 3 minutes. The awakenings were
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Figure 4.8. Coefficients of the first noise model. Basner’s Original
model coefficients (black triangles) and the estimated coefficients from
the simulated noise-level dependent model (gray squares). Bars show
the 5th and 95th percentile of estimates.
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required to start within 90 seconds or 3 epochs from the start of the noise event. An

example of the outcome for 2 simulations for both conditions are shown in Figure 4.9.

The model over-predicted the number of awakenings when a definition of two and

a half minutes was used for conscious awakenings. A better agreement was obtained

when a definition of three minutes was used. This demonstrates how comparing model

predictions to survey data is highly dependent on the definition of awakening that is

used. The Markov model with added noise dependence tracks the Passchier-Vermeer

et al. (2002) model predictions at higher SELA, but there appears to be less noise

level sensitivity in the actual survey data.

4.4 Comparison of Markov Model Predictions to Data from UK Study

While the number of subject nights was limited in the UK Study (Flindell et al., 2000),

predictions of sleep stages using Basner’s Markov model for the baseline laboratory

nights was made. To compare the predictions for baseline non-noise disturbed nights,

the data from nine laboratory subjects in the UK study was used. The probability

of being in NREM, REM, and Wake states was calculated for each 5 minute block of

time. The results are shown along with predictions using the baseline Markov model

in Figure 4.10.

The the probability of being in REM, NREM, and Wake stages calculated using

Basner’s Markov model followed the same trends as the predictions from the 1999

UK data. However the oscillating nature in the 1999 UK data, i.e. the probability

of NREM and REM sleep varying every 90 to 100 minutes, is clearly missing in the

Markov model predictions. The variation in probability of being in NREM and REM

sleep was present in the data used to create Basner’s Markov model. The values for

the probability of being in REM sleep for his study were extracted from a graph in

the report by Basner (2006) and are shown in Figure 4.11. For direct comparison
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Figure 4.9. The percent awakened in the three US studies (light gray
x) of Fidell et. al (1995, 2000) and that predicted by a modified
version of Basner’s model (dark gray circles) with 95% confidence
intervals, the percent awakened predicted by Passchier-Vermeer et
al.’s model (2002) is shown by the black dashed line. (a,b) A conscious
awakening was defined as lasting at least 2 and half minutes. (c,d) A
conscious awakening was defined as lasting at least 3 minutes.
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Figure 4.10. Baseline Markov model predictions of the probability of
being in Wake, REM, and NREM (red line). The estimated probabil-
ity of being in these sleep stages calculated using the 1999 UK sleep
data (blue circles).
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the results from the 1999 UK data are also shown again. The oscillations in Basner’s

data are less extreme than in the UK data but are clearly present.
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Figure 4.11. Comparison of Markov model predictions for the proba-
bility of being in REM (red line), and the probability of being in the
same sleep stages calculated using the (a) 1999 UK sleep data (blue
circles) and (b) extracted from Basner (2006) (blue circles).

The predicted time spent in each of the six sleep stages and the actual time spent

in the sleep stages for non-noise nights in the 1999 UK laboratory study are listed

in Table 4.2. The durations are based on the first 410 minutes of sleep. Using the

baseline component of Basner’s Markov model, simulations of the sleep of 9 people

were performed. This was repeated 100 times and the mean of those 100 simulations

and the standard deviation of the data are listed in the table. The amount of time
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spent in Stage 2 and Stage REM in the 1999 UK study are similar to the predictions.

However, in the UK study, more time was spent in Stage 1 and less time in Stage

4 than was predicted from the Markov Baseline model. Possible reasons for the

differences found are that the model is based on 128 nights of data while the UK data

used only consisted of 9 subject nights. In the UK study all subjects were between 30

to 40 years old. Subjects in Basner’s laboratory study ranged from 18 to 65 years old,

with a mean age of 38 years old. As individuals age less time is spent in Stage 4, but

it is unknown whether the younger subjects in Basner’s dataset may have affected

the results.

Table 4.2. Mean time spent in each sleep stage for baseline no noise
nights. The standard deviation of the data is in parenthesis.

Sleep Stage 1999 U.K. Data Basner Markov Model
(minutes) Predictions (minutes)

Wake 20.7 (15.7) 35.7 (2.9)
Stage 1 45.1 (18.1) 7.3 (1.7)
Stage 2 217.6 (25.7) 210.3 (3.9)
Stage 3 37.6 (12.7) 39.9 (2.9)
Stage 4 5.2 (12.9) 26.9 (1.7)
REM 83.7 (18.1) 90.3 (2.3)

4.5 Conclusions

A Markov model for predicting changes in sleep stages through the night was de-

veloped by Basner (2006). One limitation of the model is that it does not predict

changes in sleep for noise events of different noise levels. An initial attempt to add a

noise level dependence to the model was explored by varying the model coefficients

with noise level. Predictions of conscious awakenings obtained using the modified

form of Basner’s model were found to be similar to the percent awakened found in
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the US survey data. Not surprisingly, the results are dependent on the definition of

awakening that is used. Although the number of subjects nights of data from the UK

study is limited, the probability of being in REM, NREM, and Wake stages calculated

based on 9 nights of data were compared to predictions using Basner’s Markov model

and both followed similar trends. However, there were differences in the actual and

predicted time spent in the 5 NREM stages. There are many possible reasons for the

differences found. It may be useful to have a model that incorporates age groups,

noise sensitivity and other individual characteristics as variables. Although Basner’s

model represents a significant improvement over awakening models, there are still

deficiencies that need to be addressed if a goal is to have a more accurate predictor

of sleep structure. One approach would be to gather more data and make coefficients

more complicated functions of time and of other variables. Another approach would

be to look at more physical models of sleep and adapt those to incorporate the effects

of disturbances such as aircraft noise.
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5. NON-NOISE DISTURBED SLEEP MODELS

In this chapter sleep models that predict normal, non-noise disturbed sleep patterns,

are described. While Markov models and additional simplistic sleep pattern models

are reviewed the focus of this chapter is an examination of existing nonlinear dynamic

sleep models which can be used to predict the amount of slow wave activity, REM

sleep, and awakenings during the night. The attraction of the nonlinear models is the

ability to understand at a more fundamental level the dynamic properties of sleep.

These models were examined in order to determine a candidate model that could be

modified to predict the effect of aircraft noise on sleep. A parameter variation study

conducted for several of the nonlinear dynamic models is also described.

5.1 Markov Models

Basner’s model is the only Markov model that has been developed to predict the

impact of noise on sleep, however several other Markov models have been developed to

predict normal sleep patterns. Zung, Naylor, Gianturco, and Wilson (1965) developed

a Markov model based on the data from 14 subjects. They developed one model for

subjects who were 20 to 29 years old, another for those 30 to 39 years old, and a

combined model for those between 20 and 39 years of age. For each age group, there

is a transition probability matrix for each half hour of the night. These models do

not predict the probability of transitions between the sleep stages that are currently

used (e.g. NREM Stages 1 to 4 and REM). These models are based on an earlier

definition of sleep stages which were labeled A through E. A indicates lighter sleep

while E indicates deeper sleep. These stages were defined by Davis, Davis, Loomis,
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Harvey, and Hobart (1937). There is no stage corresponding to REM Sleep. When

performing simulations with the model they assigned one sleep stage to each 3 minute

interval rather than to each 30 second epoch as Basner did in his Markov model. The

probabilities of being in a particular sleep stage during the night are shown in Figure

5.1. The probability of being in a sleep stage as predicted by Basner’s Baseline Markov

model (2006) is also shown for comparison. The probabilities through time for Zung’s

model are not smooth functions since there is a different probability matrix used for

each 30 minute block of sleep. Zung’s model predicts a much greater probability of

awakening (Stage A) at the end of the night than what is predicted by Basner’s model.

Basner’s model though was limited to 410 minutes of the sleep period. For Zung’s

model the probability of being in Stage B is much higher than the probability of being

in Stage 1. However, Stage B means there is no alpha activity therefore it includes

Stage 1, Stage 2 when there is no sleep spindles, and REM sleep. The prediction

for Stage E, or the deepest sleep is much greater at the beginning of the night than

predicted by Basner’s model. However, this stage incorporates part of Stage 3 as

well as Stage 4. Due to differences in sleep stage definitions it is difficult to make

comparisons between predictions of Basner’s and Zung et al.’s models. However, both

follow some similar trends: the probability of deep sleep decreases during the night

and lighter sleep increases.

Kemp and Kamphuisen (1986) also developed a Markov model to simulate sleep

hypnograms. Their model is based on the data of 23 subjects, 2 nights of data per

subject. They determined the number of transitions between sleep stages from Stage

si to Stage sj per second during a specific time interval (transition rates). For each

sleep stage transition, 32 transition rates, one for each 15 minute interval of the night,

was calculated. The average transition rates calculated for the entire night are shown

in Table 5.1. For comparison, the average transition rates for Basner’s baseline model
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Figure 5.1. (a) Probability of being in a particular sleep stage through-
out the night, from Zung et al.’s model: (light gray) model for 20-29
yr olds, (dark gray) model for 30-39 yr olds, and (black) model for
20-39 yr olds. (b) Probability of being in a particular sleep stage
throughout the night predicted using Basner’s baseline model.
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were estimated and are in Table 5.2. The largest difference between the two models

is that Basner’s model predicts that transitions from Stage 4 to Stage Wake happen

more often than transitions from Stage 4 to Stage 2; Kemp and Kamphuisen’s model

show the opposite. Also for Basner’s model, the transition from one of the 6 sleep

stages to Stage Wake was either the highest transition rate or the second highest

transition rate.

Table 5.1. Average (entire night) transition rates from Stage si to
Stage sj for Kemp and Kamphuisen’s model (1986): (dark gray) high-
est transition rate, (light gray) second highest transition rate.

si/sj 0 5 1 2 3 4
0 - 0.000149 0.007771 0.000130 0.00000 0.000000
5 0.000221 - 0.001409 0.000338 0.000000 0.000003
1 0.001363 0.003211 - 0.011243 0.000000 0.000000
2 0.000249 0.000405 0.001069 - 0.001033 0.000000
3 0.000137 0.000026 0.000231 0.005195 - 0.003734
4 0.000028 0.000000 0.000028 0.000198 0.005777 -

Table 5.2. Average (entire night) transition rates from Stage si to
Stage sj for Basner’s baseline model (2006): (dark gray) highest tran-
sition rate, (light gray) second highest transition rate.

si/sj 0 5 1 2 3 4
0 – 0.000179 0.000266 0.000474 0.000007 0.000000
5 0.000266 – 0.000028 0.000184 0.000000 0.000000
1 0.000072 0.000028 – 0.000276 0.000000 0.000000
2 0.000500 0.000281 0.000082 – 0.000568 0.000015
3 0.000059 0.000004 0.000000 0.000471 – 0.000285
4 0.000035 0.000000 0.000000 0.000020 0.000244 –

Yang and Hursch (1973) argued that Markov models like the ones developed by

Zung et al. (1965) and Kemp and Kamphuisen (1986) are inadequate for modeling

sleep. For a Markov model, the cumulative distribution for the length of time spent
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in a given stage should follow an exponential distribution. However, Yang and Hursch

(1973) found that their data did not follow this distribution. They instead developed

a Semi-Markov model in which the cumulative distribution of transition times can

follow any distribution. They assumed that the distribution was independent of the

stage that was being transitioned to, it only depended on the stage an individual was

currently in. Also they assumed that transitions could only occur between adjacent

stages. For example, a transition could be made from Stage 3 to Stage 2 or from

Stage 3 to Stage 4. However, a transition can not occur from Stage 3 directly to

Stage 1. Due to this assumption the probability of transitioning from Stage 3 to

Stage 2 is just 1 minus the probability of transitioning from Stage 3 to Stage 4.

These assumptions reduced the number of transition probabilities to 3 (pji is the

probability of transitioning from Stage j to Stage i): p12, p34, p23. They assumed that

the transition probabilities were constant over 1 hour. Also the probability p12 was

determined to be constant throughout the entire night. The transition probabilities

they determined for subjects between the ages of 30 to 39 years old are listed in Table

5.3. The probability for the transition p34 was only defined in the article up to hour

5.

Table 5.3. The transition probabilities for the Semi-Markov model
developed by Yang and Hursch (1973).

Hour p23 = p34 = p12 =
1− p21 1− p32 1− p10

1 0.63 0.51 0.853
2 0.3 0.33 0.853
3 0.4 0.35 0.853
4 0.14 0.28 0.853
5 0.16 0.39 0.853
6 0.1 — 0.853
7 0.04 — 0.853
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5.2 Simple Dynamic Models

There are several simple models that have been developed to predict sleep patterns

and processes regulating sleep, such as a force that pulls an individual from an awake

state to sleep. These models are briefly described.

5.2.1 Sleep Patterning Model

A simple model developed by Lawder (1984) is composed of a line with a negative

slope and a triangular waveform which are used to predict when certain sleep stages

will occur. When a defined triangular waveform is above the ramp REM sleep is

predicted, when the triangular waveform is below the ramp and the ramp exceeds

the triangular waveform by 70 arbitrary units, Stages 3/4 is considered to occur,

otherwise Stages 1/2 are predicted. The increase in duration spent in REM sleep

during the night is predicted by this model as well as the cycling between NREM and

REM sleep during the night. The ramp starting height and slope could be changed

to predict sleep for different age groups. Lawder (1984), for example, stated that a

lower initial value of the ramp and a smaller slope could be used to predict the sleep

of children as this would lead to a greater amount of REM sleep. An example of an

output of the model is shown in Figure 5.2.

5.2.2 Sleep Package Model

Kobayashi (1994) developed a model which he referred to as the Sleep Package Model.

The model can be used to predict the time out of 100 minutes that is occupied by

Stage 2, REM, or SWS (slow wave sleep). The amount of REM sleep is determined

by the circadian rhythm. The circadian rhythm is the 24-hour variation in biological

processes, such as the temperature, of the human body. For this model, the circadian
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Figure 5.2. Example of the results obtained from one simulation with
Lawder’s Model (1984). (a) The ramp (red-dotted line) and triangular
waveform (blue-solid line) and (b) estimated sleep stages.

rhythm is modeled with a sinusoidal term with a period of 24 hours. The percent of

a 100 minute time frame that is occupied by REM sleep is defined as,

%REM = 10sin(24t+ θ) + 40. (5.1)

From the results of an experiment they conducted, they found that the total

amount of SWS during the night increases with the amount of prior wakefulness
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before the sleep period in a logarithmic fashion. The equation for the total amount

of SWS during the night is defined by the equation,

SWS(Tw) = a log(b Tw + 1), (5.2)

where Tw is the duration of prior wakefulness before the sleep period. The amount of

SWS during each 100 minute interval of sleep is based on a linear decreasing function,

there is less SWS at the end of the night,

SWS = (ct+ d)SWS(Tw). (5.3)

The amount of Stage 2 sleep is just the difference between 100 minutes and the

amount of SWS and REM sleep. None of the values for the coefficients of the model

were defined in the paper by Kobayashi (1994). This model like the model developed

by Lawder (1984) involves many assumptions including the number of sleep cycles

during the night.

5.2.3 Random Walk Sleep Model

Lo, Nunes Amaral, Havlin, Ivanov, Penzel, Peter, and Stanley (2002) developed a

model which predicts sleep and wake states. The model is based on 39 nights of data,

from 20 subjects. They calculated the cumulative distributions for the durations of

sleep states and wake states during the night. They determined that the cumulative

distribution for the duration of wake states followed a power law,

P (tw) = t−αw , (5.4)



109

while the duration of sleep states followed an exponential distribution,

P (ts) = e−ts/τ . (5.5)

They found that the value of α of the power law did not change with time from sleep

onset, but the value of τ in the exponential distribution of Equation (5.5) did. It was

determined that the length of Wake states increase toward the end of the night. They

also assumed that there is a restoring force which pulls a person back to sleep if they

have entered an awake state. However, the strength of this force decreases the longer

an individual is awake. Based on these assumptions they developed a random walk

model. They decided to use a random walk model because they thought it would

account for the random competition between the firing of sleep promoting neurons

and sleep inhibiting neurons. When x is less than 0 an individual is considered to be

in a sleep state, and the equation for the model is,

x(t+ 1)− x(t) = ε(t), if −Δ ≤ x(t) ≤ 0 (sleep). (5.6)

When x is larger than 0, an individual is considered to be in an awake state and the

equation for the model is,

x(t+ 1)− x(t) =
−b
x

+ ε(t), if x(t) > 0 (wake). (5.7)

In the Equations (5.6) and (5.7), ε(t) is a Gaussian distributed random variable with

zero mean and unit standard deviation. The value of Δ and b can be altered in order

to match the cumulative probability distributions for the duration of sleep and wake

states. The equation,

α = 1/2 + b, (5.8)
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relates b, which is the term for the restoring force, to α, which is the coefficient in the

power distribution. The equation,

τ = Δ2, (5.9)

relates Δ, which limits the minimum level of x, to τ , which is the coefficient in the

exponential distribution. An example of an output simulated using Lo et al.’s model

is shown in Figure 5.3. The results are only plotted for 6 hours of sleep because only

three different values of Δ were defined for the model, one for each two hours of sleep.
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Figure 5.3. Example of the results obtained from one simulation with
Lo et al.’s model. (a) Output of model and (b) classification of sleep
stages.
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To calculate the probability of awakening as predicted by Lo et al.’s model, 1000

simulations were performed. The result is shown along with the probability of being

awakened predicted using Basner’s baseline model (2006) in Figure 5.4. The model

by Lo et al. predicted a lower probability of awakening than Basner’s baseline model

but by decreasing the values of Δ, a better agreement between the two models was

able to be obtained.
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Figure 5.4. (a) Predicted probability of awakening using Lo et al.’s
model for (black) original values of Δ and (gray) decreased values of
Δ. (b) Predicted probability of awakening using Basner’s Baseline
Markov model.

5.3 Flip-Flop Sleep-Wake Nonlinear Dynamic Models

There are two primary approaches in modeling the oscillation between sleep and wake

states during 24 hour periods and NREM and REM sleep during the night. One

approach, defined by Lu, Sherman, Devor, and Saper (2006) involves modeling the

control of REM sleep as a flip-flop switch. In their descriptive model there are two
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distinct states, one associated with high levels of REM promoting neuron activity

and another related to high levels of REM inhibiting neuron activity. Each group

of neurons will inhibit the other and thus are self exciting as they will disinhibit

and reinforce their own firing rate. The state an individual is in is dependent on

the balance of inhibition between the two states (Fort, Bassetti, and Luppi, 2009). A

descriptive flip-flop switch model for sleep and wake states has also been developed by

Saper, Chou, and Scammell (2001). Two mathematical models based on the concept

of the flip-flop switch have been developed and will be described.

5.3.1 Phillips and Robinson’s Sleep-Wake Model

Phillips and Robinson (2007) modeled the behavior of neuron activity that leads to

sleep and wake states during a 24 hour period. One population of neurons they

modeled are monoaminergic (MA) neurons which are found in the brain stem. This

group of neurons have a high firing rate during wake states and a lower firing rate

during sleep. The second group of neurons are found in the ventrolateral preoptic

area (VLPO) and have a high firing rate during sleep and a low firing rate during

wake states. The homeostatic and circadian drives act on the VLPO population in

the model. The homeostatic drive is an indication of the need for sleep and increases

during the day and decreases during the night. The equations for the two neuron

populations are,

V̇vτv + Vv = νvmQm +Do
v +ΔDv, (5.10)

and,

V̇mτm + Vm = νmvQv +Do
m +ΔDm, (5.11)
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where the subscript v refers to the VLPO neurons and the subscript m refers to the

MA neurons. In the equations V is the cell body potential and Q is the mean firing

rate of the neurons. The equation for Qj, j=m or v is:

Qj =
Qmax

1 + exp(−(Vj − θ)/σ)
. (5.12)

The circadian (C) and homeostatic (H) terms of the model cause an increase in

the VLPO population potential and this is modeled by:

Do
v = νvcC + νvhH, (5.13)

where the equation for the circadian term is,

C(t) = sinωt+ co, (5.14)

and the homeostatic term is defined by,

χḢ +H = μQm. (5.15)

The values for the model parameters are in Table 5.4. The behavior of the model

follows the concept of sleep neuron activity behaving like a flip-flop circuit. The two

populations of neurons are mutually inhibiting and it is the circadian and homeostatic

terms that lead to the imbalance in firing and the rapid transitions between the two

states. An example an output of the model, that was simulated, is shown in Figure

5.5.
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Figure 5.5. An example of an output of Phillips and Robinson’s model
(2007). (a) Vv the cell potential for VLPO neurons, (b) Vm, the cell
potential for MA neurons, (c) the Homeostatic Process and (d) the
Circadian Process.
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Table 5.4. Values of the model parameters for the Fulcher, Phillips
and Robinson sleep model (2008).

Model Parameter Value
Qmax 100 s-1

θ 10 mV
σ 3 mV
A 1.3 mV
νvm -2.1 mVs
νmv -1.8 mVs
νvh 1 mVnM-1

νvc -2.9 mV
μ 4.4 nMs
χ 45 h
τm 10 s
τv 10 s
co 4.5

5.3.2 Rempe, Best, and Terman’s Sleep Model

Rempe, Best, and Terman (2010) also developed a sleep model based on the flip-flop

concept of sleep regulation. However, unlike the Phillips and Robinson (2007) model

they also modeled NREM and REM activity. The basic form of the model equations

for wake (xA, yA) are,

δAẋA = fA(xA, yA)− IV + IA, (5.16)

ẏA = gA(xA, yA), (5.17)

and the equations for xV (sleep promoting activity) are defined in a similar manner,

δV ẋV = fV (xV , yV )− IA + IV , (5.18)

˙yV = gV (xV , yV ), (5.19)
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where f(x, y) and g(x, y) are defined as,

f(x, y) = 3x− x3 + 2− y, (5.20)

g(x, y) = ε(γH∞ − y)/τ(x), (5.21)

and H∞ is a Heaviside function. The aminergic (AMIN) wake promoting neurons

are inhibiting the VLPO sleep promoting neurons, as is expected from the flip-flop

concept of sleep modeling. As there are numerous equations for this model, the entire

set of equations are not listed here but refer to Rempe, Best, and Terman (2010). The

form of the equations for the NREM and REM promoting neurons are similar to those

listed for wake and sleep, in that the two neuron populations are mutually inhibiting.

Circadian and Homeostatic terms in the model largely control the switch from sleep

to wake. The switch between NREM and REM sleep is partly controlled through one

type of VLPO neuron, the extended eVLPO, which inhibits NREM activity. When

the level of eVLPO decreases, NREM sleep is activated. An example of the output of

the model simulated using the full model given in Rempe, Best, and Terman (2010)

is shown in Figure 5.6.

5.4 Reciprocal Interaction REM Models

McCarley (2007) argued against the flip-flop models for REM sleep regulation. He

stated that the model of Lu, Sherman, Devor, and Saper (2006) did not state what the

external force is that will lead to an imbalance in REM promoting and REM inhibiting

activity which causes the switch, between the two states. Another comment made

by McCarley is that transitions from one stage to another are not immediate. It is

evident from EEG, and other sleep data, that there are short periods of transitions

between sleep states. McCarley instead stated that REM sleep regulation is controlled
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Figure 5.6. An example of the output of Rempe, Best, and Ter-
man’s model (2010). (a) Firing rate of aminergic wake promoting xA

(black) and VLPO sleep promoting xV neurons (red dashed line), (b)
firing rate of wake promoting xA (black), NREM sleep promoting xN

(red dashed line) and REM sleep promoting xR neuron activity (light
gray),(c) firing rate of wake promoting xA (black), NREM sleep pro-
moting xN (red dashed line) and REM sleep promoting xR neuron
activity (light gray) between 15 and 28 hours, and (d) scored sleep
stages between 15 and 28 hours.

by the reciprocal interaction between REM promoting and REM inhibiting neuron

activity. Two models of this reciprocal interaction have been developed and both

are described. These models seemed to represent the best approach for modeling

REM sleep patterns for normal sleep and have a structure that could be adapted
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to incorporate effects of noise disturbance. Therefore they are examined in greater

detail than the models that have previously been discussed.

5.4.1 McCarley and Hobson Lotka-Volterra REM Sleep Model

McCarley and Hobson (1971) examined the firing of neurons in the brain during dif-

ferent stages of sleep. The results were used to develop the REM Sleep Reciprocal

Interaction Model. To determine which neurons are related to REM sleep they com-

pared the firing rates of different neurons in cats during REM, NREM, and Wake

periods. They measured the rate of firing for 69 neurons in 4 different areas; giganto-

cellular tegmental field (FTG), tegmental fields adjacent to FTG, tegmental reticular

nucleus, and the pontine gray matter. They found that firing rates in the FTG cells

are greater in REM sleep than in Wake or NREM sleep. This trend was not found

in the other cells examined. Therefore, they hypothesized that the FTG cells may

excite REM sleep.

Hobson, McCarley, and Wyzinski (1975) further examined individual neuron fir-

ings in cats. They found that some LC (locus coeruleus) cells had firing rates that

were opposite to those of the FTG cells. Thirteen of 21 LC cells showed a decrease

in firing in REM sleep compared to NREM and Wake states. Eight out of the 21

LC cells showed similar trends to those of the FTG cells. It was stated that there

must be two types of LC cells. There are LC cells that are related to the excitation

of REM sleep and those cells related to the inhibition.

McCarley and Hobson (1975) wanted to model the reciprocal interaction found

between some of the LC cells and the FTG cells. They found evidence that the rate of

change of activity of the FTG cells is dependent on the current level and is excitatory

while the LC cell activity is also dependent on the current level but in an inhibitory

fashion. The firing rate of the neurons was non-sinusoidal in behavior, which they



119

assumed must be due to an interaction between the FTG and LC cells. They decided

to model this as a multiplication of the terms representing the FTG and LC cells.

The resulting equations they used are known as the Lotka-Volterra equations, X is

the level of activity of the FTG or REM promoting (REM-ON) cells and Y is the

level of activity of the LC or REM inhibiting (REM-OFF) cells. The two equations

of the model are,

Ẋ = aX − bXY, (5.22)

Ẏ = −cY + dXY, (5.23)

where a, b, c, and d are positive constants. These equations can also be written as:

Ẋ + γ1X = 0, (5.24)

where γ1 = (bY − a). If (bY − a) ≈ constant, then X ≈ e−γ1t and

Ẏ + γ2Y = 0, Y = e−γ2t, (5.25)

where γ2 = (c− dX). If (c− dX) ≈ constant, then Y ≈ e−γ2t.

When γ1 or γ2 are less than 0, there is an increase in activity, and when γ1 or γ2 are

greater than zero there is a decrease in neuron activity. If Y decreases γ1 becomes

negative and X increases, but if X gets too large γ2 becomes negative and Y increases

causing γ1 to become positive and X decays.

The Lotka-Volterra equations have been extensively studied (Strogatz, 2000), they

are often also referred to as Predator-Prey equations. The equilibrium points of the

equations can be found by setting the left hand sides of the Equations (5.22) and

(5.23) equal to zero. The stability of the equilibrium points can be determined by
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calculating the Jacobian J and determining the eigenvalues (λ) for each equilibrium

point (Strogatz, 2000),

J =

⎡
⎢⎣ a− bY −bX

dY −c+ dX

⎤
⎥⎦ . (5.26)

The equilibrium point at the origin has one positive and one negative eigenvalue,

X = 0, Y = 0, λ = a, −c, (5.27)

and is therefore a saddle point and unstable. The other equilibrium point has two

imaginary eigenvalues,

X =
c

d
, Y =

a

b
, λ = ±i√ca, (5.28)

and is therefore a center. The solution in the phase plane is a set of ellipses. Each

elliptical path is neutrally stable. There is a different path for each set of initial

conditions.

The dependence of the solution on initial conditions can be more clearly seen by

obtaining an intrinsic solution for the Lotka-Volterra equations,

dY
dt
dX
dt

=
(−c+ dX)Y

(a− bY )X
. (5.29)

The solution is,

a ln(Y )− bY + c ln(X)− dX + C(Xo, Yo) = 0, (5.30)

where C(Xo, Y o) is a constant dependent on the initial conditions and is equal to,

−a ln(Yo) + bYo − c ln(Xo) + dXo. (5.31)
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and ln denotes loge. When the initial conditions are varied the different solutions in

the phase plane can be clearly distinguished. The initial conditions for both X and Y

were varied from 0.5 times the original value (Xo=1, Yo=4.5) to 1.5 times the original

value in increments of 0.25 in order to emphasize the differences in the solution paths.

The obtained solutions for different initial conditions in the phase plane are shown in

Figure 5.7 and in the time domain in Figure 5.8. The initial conditions of the solution

clearly have a large effect on the solution both in the magnitude and period of the

response.
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Figure 5.7. Solutions in the phase plane for different initial values of
REM-ON (X) and REM-OFF (Y ) activity.

The effect of varying the parameters of the model, in addition to varying the

initial conditions was also examined. The values for the coefficients in the report by

McCarley and Hobson (1975) were used. The coefficients are listed in Table 5.5. The

Lotka-Volterra equations can be rescaled, the equation for X becomes,

x = (d/c)X, ẋ = a(x− xy), (5.32)
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Figure 5.8. REM-ON (X) (green/light gray) and REM-OFF (Y )
(blue/black) activity for different initial conditions, (a) 0.5 times the
original initial conditions, (b) the original initial conditions, and (c)
1.5 times the original initial conditions.
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and the equation for Y becomes,

y = (b/a)Y, ẏ = c(−y + xy). (5.33)

Therefore, according to McCarley and Massaquoi (1986) the dynamic behavior of the

equations is dominated by the a and c terms and b and d just scale the responses. In

Table 5.5 the coefficients for a and b, and c and d are equivalent. Despite the ability

to simplify the equations, the effect that varying all four coefficients (a, b, c, and d)

has on the solution was examined because the intersection of the X and Y curves

(affected by b and d) is used to define REM thresholds.

Table 5.5. Coefficients of the REM Reciprocal Interaction model (Mc-
Carley and Hobson, 1975).

Coefficient Original Value
a 0.3029
b 0.3029
c 0.1514
d 0.1514
Xo 1.0
Y o 4.5
Phase 2.3

In the absence of Y , the coefficient a determines the exponential growth of X

(REM-ON) activity. An increase in a will increase the growth rate of X. This

increase in X will also increase the growth of Y . These changes are shown in Figure

5.9. The result is that when a is increased the number of REM cycles increase and

the length of REM sleep during a given cycle decreases. The duration of REM sleep is

defined by a threshold. The threshold level is based on the point at which REM-OFF

activity intersects REM-ON activity as depicted in Figure 5.10.
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Figure 5.9. Results for different values of a, (a) a = 0.75 times the
original coefficient, (b) a = the original coefficient value, and (c) a =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the decrease
in the X-Y period with increased a.
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The coefficient b determines the inhibiting effect that Y (REM-OFF) cells have

on the level of X (REM-ON) activity. When b is increased the rate of increase of X

(REM-ON) activity decreases, therefore the first cycle occurs later and the number

of REM cycles decreases. Increasing b will also decrease the rate of increase of Y

(REM-OFF) activity. The result is that the duration of REM sleep during a given

cycle will increase, which is shown in Figure 5.11.

The coefficient c determines the inhibiting effect that the activity of Y (REM-

OFF) cells have on themselves. If the value of c is increased, this leads to an increase

in the decay rate of Y . The level of Y activity becomes low which is why in Figure 5.12

the X (REM-ON) activity grows to a higher level when c is increased. An increase

in the coefficient c also results in an increase in the number of REM cycles and an

increase in the duration of REM sleep for one cycle.

The coefficient d determines the excitatory effect of X (REM-ON) cells on Y

(REM-OFF) cells. This coefficient affects the rate of growth of the Y (REM-OFF)

activity. An increase in d will cause an increase in Y activity which results in a de-

crease in the level of X (REM-ON) activity, which is shown in Figure 5.13. Increasing

d also results in a decrease in the duration of REM sleep for one cycle.

From varying all of the coefficients in the Lotka-Volterra equations, it was found

that changing the level of coefficients had an affect on the number of REM cycles

during a given period of time. Also the duration of REM sleep during one sleep cycle

changed. Coefficients a and d caused a decrease in duration of REM sleep for one

cycle, while the coefficients b and c caused an increase. The change in the duration

of REM sleep for one sleep cycle when the model coefficients were varied is listed in

Table 5.6.
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Table 5.6. Duration of REM sleep and period of X in minutes for
different coefficient values. (See Table 5.5 for original values of a, b,
c, and d).

Coefficient 0.75 times the Original Value 1.25 times the
Original Value Original Value

R
E
M

D
u
ra
ti
on a 6.4 5.1 4.3

b 4.5 5.1 5.5
c 5.0 5.1 5.2
d 6.1 5.1 4.4

R
E
M

P
er
io
d

a 58.4 45.0 36.9
b 38.3 45.0 52.2
c 55.9 45.0 38.5
d 45.1 45.0 45.1
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Figure 5.11. Results for different values of b, (a) b = 0.75 times the
original coefficient, REM duration = 4.5 minutes and REM period =
38.3 minutes, (b) b = the original coefficient value, REM duration =
5.1 minutes and REM period = 45.0 minutes and (c) b = 1.25 times
the original coefficient, REM duration = 5.5 minutes and REM period
= 52.2 minutes. REM-ON (X) (green) and REM-OFF (Y ) (blue).
See Table 5.5 for original values. Note the increase of the X-Y period
with increased b.

5.4.2 REM Limit Cycle Reciprocal Interaction Model (LCRIM)

McCarley and Massaquoi (1986) updated the REM Reciprocal Interaction model.

One of the primary reasons for updating the model was that the behavior of the
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Figure 5.12. Results for different values of c, (a) c = 0.75 times the
original coefficient, (b) c = the original coefficient value, and (c) c =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the decrease
in the X-Y period with increased c.

Lotka-Volterra model is highly dependent on the initial conditions. They decided

to model the reciprocal interaction of REM neuron activity as a limit cycle model.

The solutions for a limit cycle model are a group of spirals that all converge to the

same path (Strogatz, 2000) unlike the Lotka-Volterra equations. Initial conditions

determine whether the limit cycle is approached from the interior or exterior.
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Figure 5.13. Results for different values of d, (a) d = 0.75 times the
original coefficient, (b) d = the original coefficient value, and (c) d =
1.25 times the original coefficient. REM-ON (X) (green) and REM-
OFF (Y ) (blue). See Table 5.5 for original values. Note the small
change in the X-Y period with increased d.

The difference between the Limit-Cycle model and the Lotka-Volterra model that

was previously described is that the coefficients a and b are now functions of the level

of X (REM-ON activity) and there are two saturation functions that have been added

which limit the growth of X and Y activity. The Limit-Cycle model equations are,

Ẋ = a(X)S1(X)X − b(X)XY, (5.34)
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Ẏ = −cY + dcircS2(Y )XY, (5.35)

a(X) = 2− 1.8

(
1− 1

1 + e−4(X−0.5)

)
, (5.36)

b(X) =
2

1 + e−80(X−0.1)
, (5.37)

S1(X) = 1− 1.4

(
1

1 + e−0.8(X−2.5)

)
+ 0.167, (5.38)

S2(Y ) = 1− 1.5

(
1

1 + e−20(Y−2)

)
. (5.39)

The term dcirc in Equation (5.35) accounts for the circadian variation in sleep.

It is a sinusoidal function with a period of 24 hours. Each of the coefficients and

saturation functions are shown in Figure 5.14. The function a(X) reduces the growth

rate of X when the level of X is low. Therefore a(X) decreases the level of X and

Y for the first cycle, but it will cause a large increase in level of X and Y for the

second cycle because a low level of Y will lead to an increase in the growth of X. The

purpose of b(X) is to prevent the level of X activity from decaying to zero. When X

is low the second term, b(X)XY in Equation (5.34), will also be low and will be less

than the first term in the equation. S1(X) limits the growth of X and S2(Y ) limits

the growth of Y .

The effect of the term dcirc on the solution was examined. This circadian term

affects the growth rate of Y . When the phase is changed so is the number of REM

cycles. Also a change in phase will result in each REM period having a different

duration. Without dcirc, the duration of each REM cycle would be the same. For the

results shown in Figure 5.15 (a) the duration of the first REM cycle is 18.7 minutes,

the duration of the second cycle was 25.2 minutes, the third cycle was 28.3 minutes,

and for the fourth REM cycle the duration was 30.0 minutes.
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Figure 5.14. Coefficient and saturation functions for the REM Limit
Cycle Reciprocal Interaction model; (a) a(X), (b) b(X), (c) S1(X),
and (d) S2(X).

5.5 Two Process Model of Slow Wave Activity

In addition to models of REM sleep there are also models that have been developed

to predict slow wave activity during the night which is related to the depth of sleep.

A model developed by Achermann and Borbély (1990) is referred to as the Two

Process Model. This model is based on the results of laboratory studies by Borbély,

Baumann, Brandeis, Strauch, and Lehmann (1981) in which they measured sleep

using polysomnography for two baseline nights and for two recovery nights following

40.5 hours of sleep deprivation. They found that during the recovery night there was a

greater need for sleep which resulted in an increase in slow wave activity particularly in

the first sleep cycle. Slow wave activity is measured by calculating the power between

0.5 and 4.5 Hz in the EEG signal. They also found that there was an exponential

decay in the amount of slow wave activity during the night. These two observations

serve as the foundation of the Two Process Model.



133

0 50 100 150 200 250 300 350 400
0

2

4

Time (min)

R
E

M
−

O
N

 (
X

)
&

 R
E

M
−

O
FF

 (
Y

) (a)

0 50 100 150 200 250 300 350 400
0

2

4

Time (min)

R
E

M
−

O
N

 (
X

)
&

 R
E

M
−

O
FF

 (
Y

) (b)

0 50 100 150 200 250 300 350 400
0

2

4

Time (min)

R
E

M
−

O
N

 (
X

)
&

 R
E

M
−

O
FF

 (
Y

) (c)

Figure 5.15. Solutions for a different phase of dcirc; (a) 0.5 times
the original phase, (b) original phase = 2.3, and (c) 1.5 times the
original phase. REM-ON (X) (green/light gray) and REM-OFF (Y )
(blue/black).
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One process accounted for in the model is the Homeostatic process, called Process

S, which increases while an individual is awake and decreases during sleep. The longer

a person is awake the greater their need for sleep and the greater the level that Process

S is at the beginning of the sleep period. The decay of Process S is approximately

exponential, but is dependent on the level of slow wave activity (SWA). The equation

for Process S is,

Ṡ = −gc SWA. (5.40)

The model also predicts the amount of slow wave activity (SWA). The level of slow

wave activity varies during the night in cycles, it increases when an individual is in

Stage 3 or 4 and decreases when the individual is in REM sleep or Stages 1 and 2.

The equation for slow wave activity is,

˙SWA = rc SWA

(
1− SWA

S

)
− fc SWA REMT + SWA n(t). (5.41)

The values for the coefficients of the model are in Table 5.7, and So and SWAo are

the values of S and SWA, respectively, at the start of sleep (t=0). In Equation (5.41)

n(t) is Gaussian random noise with a zero mean and a standard deviation of 0.2. The

term REMT refers to a REM trigger. This trigger is equal to 1 during REM sleep

and 0 during NREM sleep. The REM trigger causes the level of slow wave activity

to increase when REM sleep is not occurring and to decrease when REM sleep is

occurring.

An estimate of the timing of REM sleep (REMT ), that was used for simulations,

was obtained from the data of the 1999 UK study (Flindell et al., 2000). The dataset

includes information on the sleep stages each subject was in during the night. There-

fore, the time when an individual is in REM sleep and not in REM sleep could be

determined. The value of REMT was set equal to 1, 12 minutes before REM sleep
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Table 5.7. Coefficients of the Two Process Model (Achermann and Borbély, 1990).

Coefficient Original Value
rc 0.2
fc 0.4
gc 0.008
So 0.624
SWAo 0.007

began in the data so that a decrease in slow wave activity could occur before the on-

set of REM sleep. This procedure was also done by Achermann and Borbély (1990).

Figure 5.16 contains an example of results obtained using Achermann and Borbély’s

model, using the timing of REM sleep, determined for two different subjects in the

UK study. The values of REMT were rescaled in this plot for viewing purposes only.
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Figure 5.16. Example of results from Achermann and Borbéy’s Two
Process Model (1990). Process S (Green), slow wave activity (SWA)
(Blue), and scaled REMT (Red). (a) Example 1 and (b) Example 2.
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In order to further understand the model a parameter variation study was con-

ducted. The term for Gaussian noise (n(t) in Equation (5.41)) was not included when

results were obtained in order to better demonstrate the effect that each individual

coefficient has on the solutions. For the parameter variation study, the nonlinear

equations were solved by using the ode45 solver in Matlab.

In Equation (5.41), rc is the rise constant. The original value was varied from 0.8

times the original value to 1.2 times the original value in increments of 0.1. The slow

wave activity obtained for different values of rc is shown in Figure 5.17. When the

value of rc is increased the rise time of slow wave activity decreases.
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Figure 5.17. Slow wave activity for different values of rc. (a) Slow
wave activity for the entire night and (b) slow wave activity between
50 and 150 minutes.

The term fc in Equation (5.41) is called the fall constant. The value of fc was

varied from 0.5 times the original value to 1.5 times the original value in increments

of 0.25. The effect that fc has on the level of slow wave activity is shown in Figure

5.18. When the value of fc is increased, the rate of fall of slow wave activity increases.

Also the minimum level of slow wave activity during the REM period decreases. This

decrease in the minimum level results in an increase in rise time for the next NREM

sleep cycle. The level of SWA reaches a maximum later and the shape of SWA

changes.
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Figure 5.18. Slow wave activity for different values of fc. (a) Slow
wave activity for the entire night and (b) slow wave activity between
40 and 150 minutes.

The equation for Process S contains only one coefficient gc, which is referred to as

the gain constant. The original value was varied from 0.8 times the original value to

1.2 times the original value in increments of 0.1. When gc is increased it will result in

a lower level of Process S and slow wave activity. These changes are shown in Figure

5.19.

The initial values of slow wave activity and Process S were also varied. The initial

value of Process S (So) was varied from 0.8 times the original value to 1.2 times the

original value in increments of 0.1. The initial value of slow wave activity (SWAo) was

varied from 0.5 times the original value to 1.5 times the original value in increments

of 0.25. The resulting changes in the solutions are shown in Figure 5.20. Increasing

So results in a higher level of Process S and slow wave activity for the entire night.

Increasing SWAo results in an earlier increase in SWA for the first sleep cycle, though

the change is small. An overview of how each coefficient affects the solution of the

model is listed in Table 5.8.

Several variations in the form of the equations for the Two Process Model have

been proposed including an extra S term in the SWA equation and the addition of a

lower bound for the slow wave activity (Achermann and Borbély, 1992),

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT. (5.42)
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Figure 5.19. Results for different values of gc. (a) Slow wave activity,
(b) slow wave activity from 50 and 150 minutes, and (c) Process S.
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Table 5.8. Effect of an increase in coefficient value on the solution of
the Two Process Model.

Coefficient SWA Process S
rc Decrease in rise time No significant change
fc Decrease in fall time No significant change

Increase in rise time
gc Decrease in level Decrease in level
So Increase in level Increase in level
SWAo Earlier increase in level No significant change

for first sleep cycle
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The additional S term primarily affects the shape of the SWA activity. The changes

are shown in Figure 5.21. The SWAL term acts as a lower asymptote.
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Figure 5.21. Illustration of the effect of the extra S term on the
outcome of slow wave activity, without the extra term (blue/black)
and with the extra term (green/light gray). (a) SWA and (b) level
of Process S for the entire night.

Two other variations in the form of the model have been proposed which includes

a different form of the Process S equation (Achermann, Dijk, Brunner, and Borbély,

1993),

˙SWA =
rc

Su
SWA (S − SWA)− fc (SWA− SWAL)REMT, (5.43)

Ṡ = −gc SWA+ rs(Su − S). (5.44)

An upper asymptote Su was added to the model. Increasing Su results in an increase

in slow wave activity. Also, for some variations of the Two Process Model, the

Gaussian noise term n(t) (which has a zero mean and a standard deviation of 0.18) is

applied within the differential equation (Achermann and Borbély, 1990), and in other

variations the noise is applied to SWA after solving the differential equations,

SWA := SWA(1 + n(t)). (5.45)

Due to the slow dynamics of the SWA equation, the noise term causes smaller, lower

frequency oscillations when it is within the differential equation. A version of the
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model in Achermann, Dijk, Brunner, and Borbély (1993) also has a term for brief

awakenings,

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−

fcw (SWA− SWAL)w(t),

(5.46)

where w(t) is equal to one when awake and zero otherwise. A specification of timing

and duration of the awakenings used to simulate normal sleep, spontaneous awaken-

ings, was not specified.

5.6 Combined Two Process SWA and Reciprocal Interaction REM Models

In order to predict both REM and slow wave activity, several models have been

developed which have combined one of the variants of the Two Process Model and

the Reciprocal Interaction REM Model.

5.6.1 REM and Slow Wave Activity LCRIM-Based Integrated Sleep Control Model

Massaquoi and McCarley (1992) developed a model called the LCRIM-based Inte-

grated Sleep Control Model (LCRIM/I). The coefficients of the model are in Table

5.9. The equation for REM-ON (X) activity is the same as in the LCRIM model,

Ẋ = a(X)S1(X)X − b(X)XY. (5.47)

One change was made to the equation for REM-OFF (Y ) activity. An excitatory

term E was added to the equation,

Ẏ = −cY + dcircS2(Y )(X + E)Y. (5.48)
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The addition of E allows spontaneous awakenings to be predicted. The term E

represents neuron activity from the forebrain or brainstem that act as an excitatory

input to the REM-OFF neurons. The equation for the excitatory term E is,

Ė = N − kE, (5.49)

The equation can also be written as,

Ė + kE = N. (5.50)

This is a first order system and behaves as a low pass filter with a cut-off frequency of

k rad/time units. The equation for the frequency response and the cut-off frequency

for the filter is defined as,

H(ω) =
1

jω + k
, (5.51)

ωc = k. (5.52)

For a step input N = No for t <= 0 and N = N1 for t >0,

E =
1

k
(N1 − (N1 −No)e

−kt). (5.53)

The term N is a Poisson noise process. A Poisson process is one in which the inter-

arrival time between pulses T follows an exponential distribution p(T ) = e−γT for T ≥
0 and p(T ) = 0 for T < 0 which for this model had a mean (1/γ) of 1.1. The shape of

the pulses were assumed to be square waves and with varied amplitude and duration.

The amplitude is uniformly distributed from 1.25 to 25 and the duration is uniformly

distributed from 2.7 to 5.4 minutes. E exponentially increases and decreases. The
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excitatory term (E) can also be thought of as low pass filtered impulse noise. An

example of N and E for 1 pulse are shown in Figure 5.22.
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Figure 5.22. An example of the terms for excitation, N and E, (k = 10).

The amplitude of the excitatory term E is greatly reduced compared to the level

of the noise term N . The form of Equation (5.50) does not allow the cutoff frequency

of the lowpass filter and the gain of the filter to be controlled independently. A

correction should perhaps be applied to the model to allow the two to be separately

defined, e.g.,

Ė + kE = kAN. (5.54)

where k is the cut-off frequency and A is the gain.

Massaquoi and McCarley (1992) also made a change to the equation for slow wave

activity,

˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t). (5.55)



145

The REM trigger was removed and a dependency on the level of REM-ON (X)

behavior through the term SWAmaxwas added,

SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05). (5.56)

This term also includes a dependence on the excitatory term E, which causes a

decrease in the level of SWA. The equation for the homeostatic Process S is of the

form,

Ṡ = −gc SWA+ rs(1− S), (5.57)

Using this model, the time spent in NREM, REM, and Wake states can be deter-

mined. Massaquoi and McCarley (1992) classified REM when the level of X (REM-

ON) activity exceeded 1.4, Wake is scored when the slow wave activity is below 0.1

and the level of E exceeds 0.5 and the remaining time is classified as NREM sleep.

An example of how the outputs of the model could be used to classify sleep states is

shown in Figure 5.23. The values for the coefficients of the model are listed in Table

5.9.

The excitatory term E causes a decrease in the slow wave activity and causes an

increase in the Y (REM-OFF) activity. This increase in Y can lead to an increase

in the duration of NREM periods and a decrease in REM sleep. An example of the

outcome for more noise is shown in Figure 5.24 along with the results for the original

level. For this example, the amplitude of N was increased by 50% and exactly the

same process was used (just scaled). The noise term (n(t)) was not included in the

SWA equation for this comparision as the desire was to purely observe the effect of

E on the model ouput. Increasing the interarrival time or duration of the events will

similarly also lead to a greater decrease in slow wave activity and REM-ON activity.
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Figure 5.23. An example of using Massaquoi and McCarley’s
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Table 5.9. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).

Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n Uniformly distributed between -10 and 10
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model parameters, (b,d,f,h) amplitudes of N used to obtain E was in-
creased by 50%, (Thresholds used for scoring sleep stages, red-dashed
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5.6.2 Acherman and Borbély’s Combined REM and Slow Wave Activity Model

Achermann and Borbély (1992) also combined the Two Process Model with the REM

Sleep Limit-Cycle Reciprocal Interaction model (LCRIM). They combined the two

models by using the value of REM-ON (X) activity to determine when to initiate the

REM trigger. When the level of X activity is greater than 1.4, REMT is equal to

1, otherwise it is equal to 0. This model, unlike the Integrated Sleep Control model

(LCRIM/I), is a 24 hour model. The main purpose of extending the model to 24

hours is that Achermann and Borbély (1992) also included a model for predicting

alertness during the day. The alertness portion of the model, though, will not be

discussed further because the emphasis of this research is on predicting sleep. The

equations for the REM model are the same as those used in the LCRIM/I model,

Ẋ = a(X)S1(X)X − b(X)XY, (5.58)

Ẏ = −cY + dcircS2(Y )(X + E)Y, (5.59)

however, the term E is very different. The excitatory term is defined as,

E = e+ 0.95W. (5.60)

where e is defined as,

e = 0.39 + 0.3CSO − 0.05

10.7
(t− tSO) if e > 0 else, e = 0. (5.61)

The term e, in Equation (5.60), has a small effect on the results. This term, is

dependent on the value of the circadian oscillator C at sleep onset (CSO) and linearly

decreases with time. However this decrease is for only a short time period, until e

becomes less than zero, at which point it is reset to 0. Changing the value of CSO
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will either slightly increase or slightly decrease the number of ultradian oscillations.

The term tSO is the time of sleep onset.

The purpose of E in this model is to turn off the ultradian oscillations. Ultradian

oscillations are the oscillations in the slow wave activity, or REM and NREM sleep

during the night. When the sleep period has ended W (Wake) is equal to 1, during

sleep it is equal to zero. E becomes a large number when W is 1. This high level of E

causes an increase in Y (REM-OFF) activity which causes the ultradian oscillations

during the night to end.

The final difference between this model and the LCRIM/I model is the circadian

oscillator term. In the combined model developed by Massaquoi and McCarley (1992),

the circadian dependence was modeled by a sinusoidal term. Achermann and Borbély

have modeled the circadian behavior with a set of nonlinear equations dependent on

the light intensity I,

dcirc = 0.975 + do C, (5.62)

Ċ =
( π

720

)(
Cc + μc

(
C − 4C3

3

)
+B

)
, (5.63)

Ċc =
( π

720

)
(−C +BCc) , (5.64)

B = (1−mC)kI1/3. (5.65)

The resulting term C is still oscillatory in nature. The values of all the coefficients of

the model are listed in Table 5.10 and an example of an output of the model is shown

in Figure 5.25.

5.6.3 Additional Combined REM and Slow Wave Activity Models

Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) also developed a combined

model for predicting REM sleep and slow wave activity. Unlike the two previously
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Table 5.10. Coefficients of Achermann and Borbély’s Combined REM
and Slow Wave Activity model (1992).

Model Component Coefficient Original Value
C and Cc μc 0.26

m 0.3333
k 0.018
I 1000 during day

0 during night
SWA and S rc 0.283

fc 0.236
SWAL 0.0177

gc 0.00835
rs 0.0009167
n mean 0

st. dev 0.182
X and Y c 1

do 0.08
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Figure 5.25. An example of the outcome of the combined Limit-
Cycle Reciprocal Interaction Model and the Two Process Model by
Achermann and Borb́ely (1992). (a) REM-ON (green) and REM-
OFF Activity (blue), (b) Process S (green) and SWA (blue), (c) the
circadian oscillator, and (d) scored sleep stages.
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discussed combined models, they used the simpler Lotka-Volterra equations to model

REM sleep. To predict slow wave activity they used equations that were similar to the

Two Process Model. The reason for using the simpler REM model was that Ferrillo

et al. (2007) wanted to fit the models to sleep data, which would have been difficult

with the saturation functions in the REM model.

Comte, Schatzman, Ravassard, Luppi, and Salin (2006) created a three state

model to predict Wake, REM (sometimes termed paradoxical sleep) and slow wave

sleep. This model is also based on the simpler Lotka-Volterra REM sleep model.

The equation for the change in level of slow wave neuron activity (sw) has a cubic

dependence on its current level and is also dependent on the product of the level of

Wake neuron firing (w) and REM neuron firing (p). The equations for the model are,

ẇ = −αow + βowp, (5.66)

ṗ = α1p− β1wp, (5.67)

˙sw = −α2(sw − swo)
3 − β2wp. (5.68)

The coefficients for the model are listed in Table 5.11.

Table 5.11. Comte et al.’s model cofficients (2006).

Model Coefficient Value
αo 4
α1 2
α2 1
βo 1
β1 4
β2 1
SWo 5.5
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In order to define sleep states, the levels of REM, NREM and Wake neuron firing

are all normalized so that they are between 0 and 1. Sleep Stages are then assigned

based on the highest neuron firing rate. Limitations of this model include the fact

that the duration of REM sleep does not increase during the night and also brief

arousals during REM and NREM sleep are not predicted. Also sw does not provide

information on the depth of sleep. An example of an output of the model is shown

in Figure 5.26.

Diniz Behn, Brown, Scammell, and Kopell (2007) also developed a model of neu-

ron firing activity during sleep. They used Massaquoi and McCarley’s reciprocal

interaction concept to model REM sleep regulation, the REM sleep promoting neu-

rons excite the Wake promoting neurons and the Wake promoting neurons inhibit

the REM promoting neurons. Their model is more complex than those already men-

tioned, readers are referred to Diniz Behn, Brown, Scammell, and Kopell (2007) for

further details. They not only modeled neuron firing activity, but also the dynamics

of neurotransmitters which drive the change in neuron firing rate. An example of the

output of the model is shown in Figure 5.27.

5.7 Use of Nonlinear Dynamic Models to Predict Noise-Induced Sleep Disturbance

In Table 5.12 is a summary of the features of the various models discussed. The

nonlinear dynamic models were reviewed because it was desired to identify a model

that could be altered and used to predict the effect of aircraft noise on sleep structure.

The best candidate model that was identified was the LCRIM-based Integrated Sleep

Control Model developed by Massaquoi and McCarley (1992). It is the only combined

model that could be used to estimate slow wave activity, REM, and spontaneous

awakenings.
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Figure 5.26. An example of the output of Comte et al.’s model (2006).
(a) Wake neuron activity (w), (b) REM neuron activity (p), (c) SWS
neuron activity (sw), and (d) sleep stages.
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Figure 5.27. An example of the output of Diniz Behn and Booth’s
model (2010). (a) Firing rate of different neuron populations. Wake
promoting neurons locus coeruleus and dorsal raphe (green), sleep
promoting neurons VLPO (red), and REM promoting neurons (blue).
(b) Homeostatic sleep drive (h) and (c) sleep stages.
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Table 5.12. Summary of nonlinear dynamic sleep model structures.

Model SWA REM Activity Brief Awakenings
Two Process Model (1990) ✓
Lotka-Volterra REM Model (1975) ✓
REM LCRIM Model (1986) ✓
Achermann and Borbély’s ✓ ✓
Combined Model (1992)
Behn and Booths’s ✓ ✓
Sleep Model (2007)
Comte et al.’s Model (2006) ✓
Ferrillo et al.’s ✓ ✓
Combined Model (2007)
Massaquoi and McCarley’s ✓ ✓ ✓
LCRIM/I Model (1992)
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While the Massaquoi and McCarley model was found to be best candidate model,

it is not without its limitations. When examining the model, there does appear to

be one immediate problem with the excitatory term. It seems that the excitatory

term will never cause awakenings to occur during REM sleep, only during NREM

sleep. The reason is that the excitation term increases Y (REM-OFF) which in turn

will decrease X (REM-ON) activity. The time-scale of the dynamics of X and Y

interplay and mirror the slow-term behavior observed in subjects REM and NREM

sleep. However, the level of Y is low when the level of X is high. Therefore changes

need to be made to the model in order predict changes in sleep structure that are

similar to those found in sleep studies. This limitation and approaches for overcoming

it are discussed in more detail in Chapter 7.

5.8 Conclusions

Several models are reported in the sleep literature that predict sleep patterns. The

nonlinear dynamic models that have been developed predict spontaneous awakenings,

rapid eye movement (REM) sleep, and slow wave activity which is related to the depth

of sleep. These models are based on a more physical explanation for changes in sleep,

than the Markov models such as the one developed by Basner (2006). Out of all the

models that have been reviewed the best candidate model for predicting sleep patterns

of individuals exposed to aircraft noise is the LCRIM-based Integrated Sleep Control

model by Massaquoi and McCarley (1992). It is the most complete model out of those

reviewed. However, changes to the excitatory term (E) in the model will need to be

made, both to predict spontaneous awakenings and to model aircraft noise induced

awakenings.
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6. ARTIFACT REMOVAL AND SLEEP STAGE CLASSIFICATION

This chapter contains a description of some of the methodologies used to remove

artifacts from polysomnography data. A description of methods used to automatically

detect characteristics that are present in different sleep stages, and the development

of an algorithm for automatically classifying sleep stages is presented.

6.1 Overview of EEG Artifacts

An understanding of how the time history and spectrum of the EEG signal may be

affected by artifacts is needed to reduce the number of incorrect evaluations. Several

artifacts occur in EEG signals. A list of the artifacts that can occur, frequencies

they affect, and potential methods for successful removal or significant attenuation

of them are listed in Table 6.1. Two types of artifacts; sweating and breathing affect

low frequencies. Sweat artifacts appear as high amplitude, low frequency activity.

They can be removed by high pass filtering the EEG signal with a cut-off frequency

between 0.75 and 1.0 Hz. Breathing artifacts appear as slow waves and are caused by

movement of an individual when they are breathing in and out. Breathing artifacts

are typically below the lowest frequency of the delta band (0.5 Hz or 1 Hz) (Devuyst,

Dutoit, Stenuit, Kerkhofs, and Stanus, 2008), which is the lowest frequency range

that is examined. Another artifact that can be easily removed are those caused by

interference or from a loose or faulty electrode, these artifacts will appear around 60

Hz and can be removed by using a notch filter. Sweat, breathing, and 60 Hz artifacts

though do not occur very often in EEG sleep recordings (Schlögl, Anderer, Barbanoj,
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Klösch, Gruber, Lorenzo, Filz, Koivuluoma, Rezek, Roberts, Värri, Rappelsberger,

Pfurtscheller, and Dorffner, 1999).

Table 6.1. Artifacts in EEG signals. PCA-Principal Components
Analysis, ICA-Independent Components Analysis, Regression-Linear
regression using other recorded signals such as ECG and EOG.

Artifact Frequency Range Methods for Removal
Breathing Below 1 Hz High pass filter
Sweat Below 1 Hz High pass filter
EOG Artifact Primarily Delta Band Regression, Adaptive

filtering, PCA, ICA
ECG Artifact Maximum energy Regression, Adaptive

approx. 15Hz filtering, PCA, ICA
Muscle Activity Strongest in high Remove epoch

frequencies from analysis
Movement Strongest in high Remove epoch

frequencies from analysis
Interference, Loose Electrode 60 Hz Notch filter

The artifacts that occur more often are caused by body movements and muscle

activity, eye movement commonly referred to as an EOG artifact, and heart activity

which is referred to as an ECG artifact. ECG artifacts are caused by the heart beat

being picked up in the EEG signals because the electrode is located near a vein or

artery (Spriggs, 2008). These artifacts will appear as a repetitive spike in the EEG

signal occurring about once every minute. An example of an ECG artifact is shown

in Figure 6.1. Garcés Correa, Laciar, Patiño, and Valentinuzzi (2007) stated the

maximum energy of the ECG artifact is at approximately 15 Hz in the EEG signal.

Eye movement may also be picked up in the EEG signal. It will appear as

large amplitude oscillations and will primarily affect the delta frequency band (Inuso,

La Foresta, Mammone, and Carlo Morabito, 2007). This artifact most strongly con-

taminates the frontal EEG channels. The effect on other EEG channels decreases

with the square of the distance. The data from the 1999 UK study contains EEG
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Figure 6.1. (a) The ECG signal and (b) the EEG signal where the
heart beats are being picked up in addition to the EEG information.

.

data for the central and occipital channels, therefore eye movement artifacts can still

appear but not as strongly. Also between EOG and EEG signals there is bidirectional

contamination, therefore while eye movement may contaminate the EEG signal, brain

activity may contaminate the EOG signal. This makes it more difficult to remove

EOG artifacts from an EEG signal. An example of an EOG artifact is shown in

Figure 6.2.

Muscle artifacts may also occur, which are caused by movement of facial and neck

muscles. These artifacts affect frequencies primarily above 15 Hz (van de Velde, van

Erp, and Cluitmans, 1998). The last type of artifact is caused by whole or partial

body movement and will appear as a high amplitude, high frequency component and

will affect most channels that are recorded, an example is shown in Figure 6.3.
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Figure 6.2. An example of an EOG artifact in an EEG signal, (a)
EOG and (b) corresponding EEG signal with artifact.

6.2 Description of Artifact Removal Methods

The most common technique for removing artifacts is still through visual scoring.

The epochs containing artifacts are identified and removed before conducting further

analysis. While this is possible for movement artifacts, other artifacts such as ECG

and EOG, can affect many epochs of the data. Eliminating these epochs would result

in a large loss of data. Therefore, several methods for removing artifacts from EEG

signals have been proposed. The first method is based on a linear regression approach

which can be performed either in the frequency or the time domain. This method

can only be applied if a reference signal was recorded, i.e. if ECG or EOG activity

was recorded. For linear regression it is assumed that the obtained or recorded EEG

signal is a linear combination of the actual EEG signal and the artifact signal (An-

derer, Roberts, Schlögl, Gruber, Klösch, Herrmann, Rappelsberger, Filz, Barbanoj,

Dorffner, and Saletu, 1999). The portion of the signal that contains the artifact can

be estimated and subtracted from the EEG signal. One problem with this linear
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Figure 6.3. An example of a movement artifact in the (a) EEG, (b)
EMG, (c) Right EOG, and (d) Left EOG signal.
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regression approach is that the EEG signal and the artifact signal may not be aligned

in time. Also, the relationship between the two signals may be more complicated

than a simple amplification and offset and the bidirectional contamination may result

in removal of desired information.

Another method for removing the artifacts that allows for a more complex rela-

tionship to exist between the EOG or ECG and the EEG signals is to use an adaptive

filter. Most often in the literature, a recursive least squares (RLS) algorithm is used

to estimate the filter coefficients (He, Wilson, and Russell, 2004) which defines the

relationship between the artifact measurement and the signal affected by the artifact.

The input (x) is the artifact signal, either the ECG or the EOG signal. An estimate

is made of the ECG or EOG component in the EEG signal (ŷ). The error e, which

is the difference between the recorded EEG signal (y) and the estimate of the ECG

or the EOG signal, is the uncontaminated EEG signal. A diagram of the process for

removing an ECG artifact is shown in Figure 6.4.

Figure 6.4. A diagram of the process used to remove ECG artifacts
from the EEG signal.
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For an (RLS) adaptive filter there are two parameters that have to be specified; M

which is the filter order and λ which is the forgetting factor. The goal is to estimate

the filter coefficients hk in the equation,

ŷ(n) =
M−1∑
k=0

hkx(n− k). (6.1)

Note this is a M-point finite impulse response filter. The forgetting factor is related

to an exponential weighting on the cost function (J), data points in the past have

less effect on the estimate of the weighted sum of the magnitude squared error e,

e(n) = y(n)− ŷ(n), (6.2)

ε =
n∑

k=0

λn−k|e(k)|2, (6.3)

(Haykin, 1996). At each time step the coefficients of the filter are estimated by

updating the previous values. Garcés Correa, Laciar, Patiño, and Valentinuzzi (2007)

used an adaptive filter to remove ECG artifacts and found that the maximum energy

at 15 Hz due to the artifact was attenuated anywhere from 4 to 50% depending on

the subject. Therefore, the effectiveness of adaptive filters at reducing ECG artifacts

varies greatly for different subject nights. An example of using adaptive filtering to

remove the ECG artifact from an EEG signal of the UK dataset is shown in Figure

6.5. A filter order of 3 and a forgetting factor of 0.9999 was used.

A challenge in using adaptive or regression methods for removing EOG artifacts

from EEG data is bidirectional contamination. When a portion of the EOG signal is

subtracted from the EEG signal, not only is the artifact removed but so is part of the

EEG signal. Several researchers have pre-filtered the EOG signal to reduce the brain

wave activity in the recording. Wallstrom, Kass, Miller, Cohn, and Fox (2004) used a
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Figure 6.5. An example of an outcome obtained using an RLS adap-
tive filter to remove ECG artifacts. The (a) ECG, (b) EEG with
artifact, and (C) EEG after minimizing artifact signals.

Bayesian adaptive regression spline. They wanted to smooth out the high frequency

small amplitude activity (this is due to brain wave activity) of the EOG signal and

retain the high frequency large amplitude activity which is more likely to be caused

by eye movement. For a spline the signal is divided into segments. For each segment

a polynomial is defined to represent the data, the end points of the segments are

called knots. A Bayesian adaptive regression spline is a free-knot spline. This means

the placement of the knots are determined by the data rather then being placed at

fixed locations. More knots are placed in locations where the data has large changes

in values (DiMatteo, Genovese, and Kass, 2001). Another challenge with removing
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the EOG signal is that at least two channels, vertical and horizontal EOG, have been

found to be needed to fully remove artifacts from the signal (Anderer et al., 1999).

However, only 1 channel was recorded in the 1999 UK sleep study. Therefore, using

adaptive or regression techniques, it may not be possible to remove all of the artifacts

caused by ocular motion.

One disadvantage of both adaptive filtering and regression is that a reference sig-

nal is needed. While EOG and ECG signals were recorded for the UK sleep study, for

some subjects the recordings have poor quality or the electrodes became loose during

the night. Two methods that have been used to remove artifacts which do not re-

quire a reference electrode are Principal Component Analysis (PCA) and Independent

Component Analysis (ICA).

PCA involves finding a matrix that separates the signals into the contributing

components. PCA finds components which are uncorrelated. The definition for two

random variables (X, Y ) being uncorrelated is that the covariance is zero (E is the

expected value) and it is assumed that E[X] and E[Y ]=0:

E[XY ] = E[X]E[Y ] = 0. (6.4)

Using PCA, the components can be found through singular value decomposition of

the covariance matrix (Sanei and Chambers, 2007).

For ICA analysis it is also assumed that you have N signals which are mixtures

of N components (Jung, Makeig, Humphries, Lee, McKeown, Iragui, and Sejnowski,

2000). The goal once again is to find a matrix that will result in the calculation of the

individual components. ICA is used to find independent components, which means

that unlike PCA in which the results or components can be rotated, the components
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of ICA cannot because they would no longer be independent (Stone, 2009). The

definition of independence is that:

p(x, y) = px(x)py(y), (6.5)

where p(x, y) is the joint probability density function and p(x) and p(y) are each

individual probability density functions (DeVore, 2008). For Independent Compo-

nent Analysis the assumption is also made that the components are non-Gaussian.

Vigário, Särelä, Jousmäki, Hämäläinen, and Oja (2000) stated that artifacts tend to

be non-Gaussian and therefore this method is more applicable then PCA. The meth-

ods used to calculate the Independent components maximize the non-Gaussianity of

the components.

A problem with both PCA and ICA is determining which of the components are

artifacts. The artifact components are usually determined based on a combination

of spectral features, spatial topography, and time domain features. Particularly for

spatial topography this requires that a large number of EEG channels were recorded.

In studies in which ICA or PCA have been used more than 10 channels of recordings

were typically made. However, for the data that was obtained from the 1999 UK

study only 4 channels of EEG were recorded for each subject.

The most common method for dealing with muscle and movement artifacts is to

eliminate contaminated epochs from the analysis. Brunner, Vasko, Detka, Monahan,

Reynolds III, and Kupfer (1996) developed a method to automatically detect muscle

artifacts to remove that data from subsequent analysis. They determined the average

power in the range of 26.25 and 32.0 Hz for each four second epoch. They then applied

a 45 point median filter to smooth the power estimate and multiplied this smoothed

power time history by some constant and used this as a threshold for detecting muscle

artifacts. When the threshold is exceeded it is assumed that an artifact has occurred.
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They found a threshold at 4 times the level of the smoothed average power worked

well for identifying artifacts. An example of the use of this method for removing

artifacts from an EEG signal in the UK dataset is shown in Figure 6.6.
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Figure 6.6. An example of the use of Brunner et al.’s (1996) method
to remove muscle and movement artifacts. (a) Power between 26.0
and 32.0 Hz of an EEG signal with artifacts present and (b) power
after removing epochs which exceeded the threshold.

After examining several artifact removal methods, the best approach for removing

artifacts from the EEG data of the 1999 UK Sleep Study was determined to be the use

of recursive least squares (RLS) estimated adaptive filters to remove EOG and ECG

artifacts. All subject nights of data did have EOG measurements, however not all

had ECG recordings that could be used. Therefore, for some EEG signals examined

ECG artifacts could not be removed. For the removal of EOG and ECG artifacts a

filter order of 3 and a forgetting factor of 0.9999 was used. The method developed

by Brunner et al. (1996) was used to identify epochs with muscle and movement

activity. For calculations of slow wave activity or power in other frequency bands,

segments containing movement artifacts were identified and not used in the analysis.
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6.3 Review of Existing Sleep Stage Classification Methods

Many approaches have been developed to extract different features from polysomnog-

raphy data, such as sleep spindles and rapid eye movements, which are then used

to classify sleep stages. Some of these methods for feature detection and sleep stage

classification are described.

6.3.1 Slow Wave Sleep Detection

Slow waves are the defining feature of Stage 3 and Stage 4 sleep. They are defined

as having a frequency between 0.5 and 2 Hz and having a peak-to-peak amplitude of

at least 75 μV . A method that can be used to identify these waves is a peak ampli-

tude detection method similar to an approach used by Kuwahara, Higashi, Mizuki,

Matsunari, Tanaka, and Inanaga (1988). This method involves applying a 4th or-

der Butterworth band-pass filter, with cutoff frequencies of 0.5 and 2.0 Hz, to the

EEG signal, identifying the zero crossings of the signal and then the peak amplitude

between each zero crossing. The peak-to-peak amplitude can then be calculated by

taking the magnitude and then adding together adjacent peak amplitudes and then

the percent of an epoch that contains slow wave activity, defined by when the peak-

to-peak amplitude exceeds 75 μV , can be calculated. An example of the use of this

approach for detecting slow wave sleep is shown in Figure 6.7. The percentage of

each 30 second epoch, sliding 1 second through time, that contains slow wave sleep,

calculated for one subject night in the UK dataset, is shown in Figure 6.8.

6.3.2 Rapid Eye Movement Detection

In order to classify Stage REM, rapid eye movements need to be identified. The

primary method used to identify the occurrence of rapid eye movement is to calculate
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Figure 6.7. An example of slow wave sleep detection. (a) An EEG
signal filtered between 0.5 and 2.0 Hz (blue) and zero crossings (red
x) and (b) detected slow wave sleep.
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Figure 6.8. The percent of each epoch containing slow wave sleep (SWS).

the correlation of the right EOG and left EOG channel. The standard placement of

the EOG electrodes is to have one electrode placed outside and above the corner of

one eye, and the other electrode placed outside and below the corner of the other

eye. Therefore, when an eye movement occurs one of the measurements will have
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a negative value while the other will have a positive value and therefore the two

channels will be negatively correlated.

In most of the methods developed to detect rapid eye movements the EOG signals

have been filtered to retain only energy below 5 Hz before further analysis. Agarwal

and Gotman (2001) applied a 6th order low-pass filter with a cutoff frequency of 5 Hz

to the EOG signals. Gopal and Haddad (1981) used a low pass Butterworth filter of

order 3 with a cutoff frequency of 6.5 Hz. Agarwal, Takeuchi, Laroche, and Gotman

(2005) used a 4th order Butterworth bandpass filter with cutoff frequencies of 1 and

5 Hz, Boukadoum and Ktonas (1986) stated that most REM movements are between

200 ms and 1 second in duration, which would correspond to a frequency range of 1

to 5 Hz, while Smith, Cronin, and Karacan (1971) used a slightly smaller frequency

range than the other researchers for their detection of REM; they only examined

activity between 1 to 3 Hz.

In addition to filtering the EOG signals and calculating the correlation between

the EOG channels, a few additional methods have been used. Hatzilabrou, Greenberg,

Sclabassi, Carroll, Guthrie, and Scher (1994) used a method of matched filtering for

detecting rapid eye movements. They created a template of the shape of a rapid

eye movement and then calculated the cross-correlation between the template and

the EOG signal. Virkkala, Hasan, Värri, Himanen, and Härmä (2007) also used

cross-correlation to identify rapid eye movements. They bandpass filtered the EOG

signals with a passband between 0.5 to 6 Hz and 1 to 6 Hz. The difference in the

cross-correlation results of the 0.5 to 6 Hz band and the 1 to 6 Hz band was used to

separate slow eye movements from rapid eye movements.

McPartland, Kupfer, and Foster (1973) used an 11 point moving average filter

in order to smooth the EOG signals before extracting additional features to identify

rapid eye movements including: requiring the two channels to be negatively corre-
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lated, the events on each channel to occur within 100 ms of each other and have a

minimum amplitude of 25 μV . Smith, Cronin, and Karacan (1971) also set minimum

requirements for the amplitude of the EOG signals. They required that the maxi-

mum amplitude of a rapid eye movement must be greater than or equal to 50 μV in

one EOG channel and greater than 30 μV in the other channel. Gopal and Haddad

(1981) derived a method to automatically detect rapid eye movements in infants. In

one method used they calculated the average of the first derivative of the slope for

the segment of the EOG signal between the local minimum and maximum value. A

rapid eye movement was considered to occur if the slope was between 0.33 to 0.66

mV/s. Agarwal, Takeuchi, Laroche, and Gotman (2005) also examined the slope of

the EOG signals. They calculated the deflection angle, the angle of the peak of the

eye movement, to determine if the eye movement was a rapid or a slow eye movement.

The primary methods found in the literature for detecting rapid eye movements

only utilize EOG activity below 5 Hz, calculate the correlation between the left and

right EOG channels and set a minimum threshold for EOG activity. Therefore, this

was the approach taken to identify rapid eye movements in the 1999 UK sleep study

EOG data. A 4th order Butterworth bandpass filter was used with cutoff frequen-

cies of 0.5 and 5 Hz. The correlation between the two EOG channels was calculated

and if the correlation was below -0.2 a rapid eye movement was considered to occur.

This threshold for the correlation was used by Agarwal, Takeuchi, Laroche, and Got-

man (2005). A minimum amplitude threshold of 25 μV was used. This minimum

threshold as well as the cutoff frequencies of the bandpass filter were determined

after visually identifying and extracting over 1000 examples of rapid eye movement

and then analyzing the frequency content and maximum amplitudes. An example

of the cumulative sum of power in every 0.25 Hz frequency block is shown in Figure

6.9 for all samples of rapid eye movements that were extracted, and it can be seen
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that a significant amount of power of the EOG signal is below 1 Hz which was the

reason for defining a lower cutoff of 0.5 Hz, compared to other researchers who set the

lower threshold at 1 Hz. An example of the correlation between the filtered left and

right EOG channels calculated for one subject night is shown in Figure 6.10. The

oscillations between REM and NREM sleep can be identified from the correlation

between EOG channels. Eye movements that occur during Stage Wake may also be

identified using this method. By also using other characteristics, including amplitude

of the EMG signal and power in the alpha frequency band of the EEG signals, these

eye movements can often be distinguished from the rapid eye movements which occur

during REM sleep.
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Figure 6.9. Cumulative power of 1,166 samples of rapid eye movement
(black-dash line is at 0.5 Hz).

6.3.3 Sleep Spindle Detection

Sleep spindles were defined by Rechtschaffen, Hauri, and Zeitlin (1966) as short bursts

of activity between 12 and 14 Hz (sigma band). These bursts of activity must last at
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Figure 6.10. Correlation between right and left EOG Channels for
one subject night in 1999 UK study.

least 0.5 seconds. However, the frequency range for sleep spindles has been expanded

and in automatic detection methods activity as low as 11 Hz and as high as 16 Hz

has been considered. Two methods have been primarily used to detect sleep spindles,

one approach is to detect sigma activity exceeding a set amplitude threshold while

the second approach is to use autoregressive modeling to detect sigma activity.

Devuyst, Dutoit, Didier, Meers, Stanus, Stenuit, and Kerkhofs (2006) applied a

bandpass filter to their EEG signals, the filter had cutoff frequencies of 11.5 and 15

Hz. If a defined amplitude threshold was exceeded for more than 0.5 seconds then a

sleep spindle was considered to occur. Their threshold was defined as:

threshold = μ+Kσ, (6.6)

where μ is the mean amplitude of the filtered EEG signal and σ is the standard

deviation. They found that a value of K equal to 2 provided the best sensitivity

and specificity for identifying sleep spindles. This approach allows the threshold for

detecting sleep spindles to be set separately for each subject which is different from a
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method used by Schimcek, Zeitlhofer, Anderer, and Saletu (1994) in which a minimum

peak to peak amplitude of 25 μV was used for identifying spindles.

Dang-Vu, McKinney, Buxton, Solet, and Ellenbogen (2010) automatically identi-

fied sleep spindles in their analysis of the relationship between the number of sleep

spindles and the probability of awakening to a noise event. Like Devuyst et al. (2006)

they also used a variable threshold. To calculate sleep spindles they bandpass filtered

the central EEG channels using an FIR filter with cutoff frequencies of 11 and 15 Hz.

They then calculated the rms (root-mean-square) power of the filtered EEG signal for

each 0.25 second segment of the signal. They assumed that a sleep spindle occurred

when the rms power was above the 87th percentile of activity within the sigma band.

They also required that the peak-to-peak amplitude of the sigma activity was between

10 and 100 μV and that the duration of the sleep spindle was at least 0.5 seconds.

In many algorithms a minimum duration for sleep spindles is defined however Ray,

Fogel, Smith, and Peters (2010) also defined a maximum duration. The criteria they

defined were that spindles had to have a minimum duration of 0.5 seconds, maximum

duration of 3 seconds and an interval of at least 0.1 seconds between spindles.

Olbrich and Achermann (2008) and Venkatakrishnan, Sangeetha, and Sukanesh

(2008) used autoregressive (AR) modeling to identify sleep spindles. An autoregres-

sive model is defined as (Haykin, 1996),

yn =
M∑
k=1

akyn−k + εn, (6.7)

where εn is white noise or can be thought of as an error term. It is called an auto-

regressive model because the value yn is a combination of past values. The transfer

function of an AR model is defined as,

H(z) =
1∑M

n=0 anz
−n

. (6.8)
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As can be seen from the transfer function, AR models are all pole models. Where

the the poles zm are defined as,

zm = rme
iθm , m = 1, 2, ...M (6.9)

the decay rate is defined as,

γm = −ln(rm)/Δ, (6.10)

and the frequency of that component is:

fm = θm/(2πΔ). (6.11)

Olbrich and Achermann (2008) examined the use of an AR(M=8) model and a

AR(M=4) model. They noted that the AR(8) model resulted in frequencies being

identified that are not found in oscillatory events like sleep spindles during the night.

The coefficients of the AR model were calculated using the Burg Algorithm (Olbrich

and Achermann, 2005) and the frequencies and the decay associated with the poles

were calculated. The decays of the AR model components were used as an indicator

for whether a sleep spindle could be occurring. From Equation (6.10), the higher the

value of rm the lower the damping of a particular frequency component. Therefore,

if a sleep spindle was occurring it would be expected that the damping coefficient for

a frequency between 11.5 and 16 Hz would be low and the value of rmwould be high.

Olbrich and Achermann (2008) set a threshold for detecting sleep spindles, if the

value of rm was greater then 0.95 and the frequency was within the sigma frequency

band, then it was assumed that the occurrence of a sleep spindle was probable. The

duration of a potential sleep spindle was defined by the duration that rm was greater

than 0.9.
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In order to characterize sleep spindles a similar approach to that of Olbrich and

Achermann (2008) was used. The EEG signal was segmented into 1 second segments.

An AR(4) model was used and the coefficients were calculated by using arburg in

Matlab. The frequency component with the lowest decay rate was then found. If the

frequency was within the sigma frequency band then the occurrence of a sleep spindle

was considered probable. The frequency with the lowest decay rate calculated for

each 1 second segment of an EEG signal for an entire night is shown in Figure 6.11.

Periods in which the dominant frequency was within the sigma frequency band can

be seen to correspond to periods of Stage 2 sleep.
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Figure 6.11. (a) Scored sleep stages for one subject night from the
1999 UK Dataset and (b) the frequency with lowest decay rate calcu-
lated using an AR(4) model.

An example of identifying a sleep spindle in a single brief 20 second segment of

EEG data is shown in Figure 6.12.
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Figure 6.12. (a) EEG Segment and (b) the frequency with lowest
decay rate for each 1 second segment determined from an adaptive
AR(4) model.

6.3.4 Additional Features

Additional features of EEG signals that are sometimes identified as part of sleep

stage classification algorithms include K-complexes and Vertex Waves. A K-complex

is defined as a sharp negative deflection followed by a positive deflection that lasts at

least 0.5 seconds. They occur during Stage 2 sleep and may or may not be followed

by a sleep spindle. The peak-to-peak amplitude of a K-complex should be greater

than 75 μV . To identify K-complexes, Devuyst, Dutoit, Stenuit, and Kerkhofs (2010)

extracted several features of the wave including the peak-to-peak amplitude and the

second derivative of the waveform in order to obtain an estimate of the sharpness of

the negative component of the wave.

Bremer, Smith, and Karacan (1970) also examined different features that could

be used to classify K-complexes. They found that an interval of 2 seconds typically

occurred between K-complexes and that the maximum amplitude of the EEG signal

both before and after a K-complex should not exceed 50 μV . They stated that

requiring an interval of low EEG activity before and after a K-complex was a way
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to distinguish K-complexes from bursts of delta activity. Bankman, Sigillito, Wise,

and Smith (1992) also attempted to automatically classify K-complexes. They stated

that when visually detecting K-complexes the distinction between them and Delta

waves is the sharpness of the waveform, therefore possible measures to help separate

the two include the rise time, or the slope of the signal.

Vertex Waves have also been detected as part of sleep stage classification algo-

rithms and are a key feature of Stage 1 sleep. Exarchos, Tzallas, Fotiadis, Konit-

siotis, and Giannopoulos (2006) and Da Rosa, Kemp, Paiva, Lopes da Silva, and

Kamphuisen (1991) defined Vertex Waves as having a duration between 70 and 200

milliseconds. The amplitude of Vertex Waves are typically greater than 100 μV and

should not exceed 250 μV .

While the ability to identify K-complexes and Vertex Waves was examined, Stage

1 sleep was not estimated separately as part of the sleep stage classification algorithm

that was developed as it is a transitory stage and it won’t be estimated as part of

the developed nonlinear model described in Chapter 7. K-complexes often have very

similar features as slow wave sleep, therefore epochs which had nonzero slow wave

activity calculated using the peak-to-peak amplitude detection approach often also

provided an indication of whether a K-complex occurred. Therefore, K-complexes

were not identified separately.

6.4 Sleep Stage Classification Algorithm

There were two methods for automatically classifying sleep stages which were iden-

tified in the sleep literature. One approach is to use some type of classifier. Becq,

Charbonnier, Chapotot, Buguet, Bourdon, and Baconnier (2005) for example exam-

ined the use of linear and quadratic classifiers, k nearest neighbors, Parzen kernels

and neural networks to classify sleep stages. Others have developed a set of rules,
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a series of (if-then statements) in their code, to identify sleep stages (Agarwal and

Gotman, 2001). As sleep stages are traditionally scored visually based on a set of

rules/criteria the second approach was used. A list of key features of each sleep stage

and methods to identify these characteristics are listed in Table 6.2.

Table 6.2. Key features of sleep stages and characteristics of
polysomnography data that were extracted.

Sleep Stage Key Features Extraction Method
REM Fast Eye Movements Correlation

Low EMG between EOG channels
Stage Wake Alpha waves (8-12 Hz), Amplitude of EMG

Movement, High EMG Power in different
Stage 2 Sleep Spindles (12-14 Hz), Frequency Bands

K-complexes, Peak-to-Peak Amplitude
Theta activity (4-8 Hz) Detection

Stage 3/4 Low freq. activity (0.5-2 Hz), AR(4) Modeling
> 75 μV Peak to Peak amplitude
for > 20 % of epoch

In addition to features already described including the use of AR modeling to

identify sleep spindles, the calculation of the correlation between left and right EOG

channels to identify rapid eye movements, and peak-to-peak amplitude detection for

identifying slow wave sleep, the power in several EEG frequency bands including

delta, theta, alpha, sigma, and gamma was also calculated. To calculate the power

in each frequency band, the EEG signals were band-passed filtered using 4th order

Butterworth filters and the total power within each 30 second segment, sliding one

second through time was calculated. An example of the percent of the total power in

several frequency bands for one subject night is shown in Figure 6.13.

The mean and standard deviation of the power in each frequency band during

each of the 6 sleep stages was also calculated using all 76 subject nights of data in the

UK dataset, the results are shown in Figure 6.14. The Delta1 frequency band refers



182

to power between 0.5 to 2 Hz, while the entire Delta frequency band ranges from 0.5

to 4.5 Hz. The mean and standard deviation for the ratio of alpha to theta is shown

in Figure 6.15 (a). The mean and standard deviation for the the average percentile of

the EMG amplitude is shown in Figure 6.15 (b). The mean and standard deviation

of the percent of a 30 second epoch occupied by slow wave sleep calculated using the

peak-to-peak amplitude detection method described earlier, are shown in Figure 6.15

(c). The mean values shown were useful in determing thresholds to use in the sleep

stage classification algorithm.

The standard method for scoring sleep stages is to assign a stage to each 30

second epoch or block of time. However, it was desired to create a more continuous

method for scoring sleep stages. Therefore while sleep stages were still scored for 30

second segments a sliding window of 1 second was used. Thus for each 30 second

interval there are 30 classifications, one for each 1 second interval derived from a 30

second period around that time. To compare the results to 30 second sleep stages,

the probability of being in each stage for each 30 second epoch was calculated and

then the 30 second sleep stage was assigned according to which stage had the highest

probability of occurrence. The 4 main steps of the algorithm are shown in Figure

6.16.

To classify the sleep stages for each 1 second (center of 30 second window), a

set of rules were developed, which are shown in Figure 6.17. First of all, if the 30

seconds of data contained a movement artifact for 20% or more of the 30 second

segment or it contained alpha activity in greater than 50% of the epoch, then the

sleep stage was classfied as wake. If the segment did not contain an artifact or high

alpha activity then the next step was to seperate segments according to whether it

contained eye movement, which was classified according to whether the correlation

of the two filtered EOG channels was less than -0.2. If the segment did not contain
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Figure 6.13. Percentage of the total power in an EEG signal in the
(a) Delta1 band, (b) Theta band, (c) Alpha band, (d) Sigma band,
and (e) Gamma frequency bands.

eye movement then the sleep stage was either Stage 3/4, Stage 2 or Wake. Stage 3/4

was identified according to the amount of delta power and whether the percentage

of slow wave sleep identified (using the peak-to-peak amplitude detection method)

was greater then 15 %. The sleep stage was classified as Stage 2 if the amount of

slow wave sleep was greater than zero and if sleep spindles occured. When rapid eye
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Figure 6.14. Average percentage of power for 76 subject nights in
each of the frequency bands for sleep stages Wake (0), NREM Stages
1 through 4, and REM sleep (5).

movement was identified, if the EMG activity was greater than the 85th percentile

or the power in the alpha frequency band was greater than the power in the theta

frequency band by a factor of 1.5 then the segment was categorized as Stage Wake

otherwise it was classified as Stage REM. An example of the probability of being in

each sleep stage through the night calculated using the developed algorithm for one

subject night is shown in Figure 6.18.
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Figure 6.15. The average (a) ratio of power in the alpha frequency
band to the power in the theta frequency band, (b) percentile of
the EMG and (c) percent of an epoch occupied by slow wave sleep
(SWS) for 76 subject nights for sleep stages Wake (0), NREM Stages
1 through 4 and REM sleep (5).

Figure 6.16. Steps used in developing sleep stage classification algorithm.

The estimated 30 second sleep stages and the original stages for one subject night

from the 1999 UK dataset are shown in Figure 6.19. The mean agreement between

original and estimated sleep stages was 0.70. This was found by calculating the

proportion of sleep stages correctly identified for each subject night and then taking

the average of all scores. The minimum agreement for one subject night was 0.51 and

the maximum agreement was 0.83. The specificity and sensitivity were also calculated
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Figure 6.17. Rules used in scoring sleep stages.

for each sleep stage. The sensitivity is a measure of how well a sleep stage can be

identified, while the specificity is related to how well the lack of a certain sleep stage

can be identified. Both sensitivity and specificity would be equal to 1 if the sleep

stage algorithm was correct in identifying each sleep stage. A reasonable specificity
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Figure 6.18. Probability of being in (a) Stage Wake/S1, (b) Stage 2,
(c) Stage 3/4 and (d) REM calculated using the developed algorithm.

and sensitivity similar to other sleep stage classification approaches were obtained for

Stage 2, Stage 3/4 and Stage REM (Agarwal and Gotman, 2001). The results are

listed in Table 6.3. However, a low sensitivity was obtained for Stage Wake/1. Part

of the reason for the low sensitivity is that Stage 1 sleep was not identified separately
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Figure 6.19. (a) Original Sleep Stages from the UK dataset and (b)
sleep stages scored using the developed algorithm.

because it is just a transient stage and is often grouped with Stage Wake in noise

induced sleep literature (Basner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet,

Müller, Müller, Plath, Quehl, Samel, Schulze, Vejvoda, and Wenzel, 2004), another

reason is that awakenings and transitions to Stage Wake and Stage 1 are brief. If

the sensitivity is calculated considering a period of plus or minus 1 minute about the

current epoch then the sensitivity for classifying Stage Wake/1 is greatly improved,

the resulting sensitivity was 0.66.
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Table 6.3. Sensitivity and Specificity for identifying sleep stages.

Sleep Stage Specificity Sensitivity
Wake/1 0.92 0.21
Stage 2 0.66 0.85
Stage 3/4 0.97 0.48
REM 0.95 0.74
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6.5 Conclusions

Methods for processing the polysomnography data that was obtained as part of the

UK dataset were reviewed. To remove artifacts, movement artifacts were identified

based on power in the gamma EEG frequency band and a recursive least squares

adaptive filtering approach was used to remove both EOG and ECG artifacts. To

identify characteristics of different sleep stages various methods including AR mod-

eling, calculation of power in different frequency bands, and correlation of the EOG

signals was used. Based on these characteristics a sleep stage classification algorithm

was developed in which sleep stages were assigned based on Tp seconds of data cen-

tered on each 1 second of the dataset. Here Tp = 30 seconds was used. The data

in each 1 second interval contributed to 30 windows of data, each of which results

in a classification. The probability of being in a sleep stage can be calculated from

these 30 results. The time intervals Tp can be varied. Small Tp intervals will produce

highly variable results while intervals that are too large will produce oversmoothed

sleep stage plots. The choice of 30 seconds was used to be consistent with visual

scoring and the sliding window was used to remove sensitivity to the starting point

of the window. The contribution made, was to build on previous people’s automatic

sleep stage classification algorithms, combining and refining their approaches and to

introduce the sliding window and window size flexibility to provide a more continuous

assessment of changes in sleep stages during the night.
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7. NONLINEAR SLEEP MODEL DEVELOPMENT AND PARAMETER

ESTIMATION

After reviewing the literature on sleep models, the Massaquoi and McCarley nonlinear

dynamic model was found to be the best candidate for altering so it could be used to

predict the effect of aircraft noise on sleep. However, the model has slow dynamics

which makes it difficult to predict brief awakenings including those that occur due

to noise. To overcome this limitation additional components were introduced into

the models. These components include an additional excitation term which has a

dependence on noise level and a model that predicts faster dynamics during a REM

period. The parameter values for the modified model were estimated using the 1999

UK study data. This required developing parameter estimation methods and also

methods to process the polysomnography data to produce signals that are closely

related to the E, n(t), X, Y , SWA and S of the original Massaquoi and McCarley

model. Similarly, parameters in the new fast REM part of the model had to be

estimated from signals derived from the sleep study data. A method to determine

whether a person is in Tonic or Phasic REM sleep, based on the occurrence of Rapid

Eye Movement was also developed. The results of simulations using the model will

also be presented later in this chapter.

7.1 Limitations of Massaquoi and McCarley Model

Before determining how to add a noise level dependence to the Massaquoi and Mc-

Carley model, simulations were conducted using the original model to determine if it

could be used to predict trends in sleep stages similar to those observed with other
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models. The values of the coefficients of the model, used in the simulations, are listed

in Table 7.1 and the equations were provided in Chapter 5 (Equations (5.47), (5.48),

(5.49), (5.55), (5.56), (5.57)) . One hundred simulations were performed using the

model. The variability in the predictions for each simulation was due to the impulsive

excitation term E (filtered square waves) where each impulse has a random arrival

time, height, and duration (Massaquoi and McCarley, 1992). The probability of be-

ing in NREM, REM and Wake stages was calculated and the results were compared

to predictions using Basner’s Baseline Markov model (2006). The results are shown

in Figure 7.1. The Massaquoi and McCarley model predicted a higher probability of

being in NREM sleep than Basner’s model, and lower probability of being awake or in

REM sleep. In order to improve the predictions of the model the value of c (in Equa-

tion (5.48)), which controls the rate of decay of Y (REM-OFF) activity, was increased

by 40%. A better agreement was obtained between the predicted probabilities.

Table 7.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).

Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10
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Figure 7.1. Probability of being in Wake, REM, and NREM sleep
predicted using the original parameters of the Massaquoi and McCar-
ley model (blue), with the parameter c increased by 40% (green) and
with Basner’s Markov model (red).
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Another difference between the predictions of the two models is that the Massaquoi

and McCarley model predictions have oscillations in the probability of being in NREM

and REM sleep which Basner’s Markov model does not. These ultradian oscillations

are partly due to the assumption when performing the simulations that everyone falls

asleep at the same time. In one set of simulations it was assumed that everyone

retired at the same time (11:00 pm), and in another set of simulations the time to fall

asleep was varied randomly for each simulation according to a normal distribution

which had a mean start time of 11:00 pm and a standard deviation of 30 minutes. One

hundred simulations were conducted using Basner’s Markov model (Equation (4.1))

and the Massaquoi and McCarley model (Equations (5.47), (5.48), (5.49), (5.55),

(5.56), (5.57)). The results are shown in Figure 7.2. The ultradian cycles in the

predictions of the Massaquoi and McCarley model were smoothed out when the sleep

onset time was varied and the predictions were more similar to those of Basner’s

Markov model but with a less pronounced increase in REM towards the end of the

night.

While the overall trends in sleep stage predictions between the two models are

in agreement, the Massaquoi and McCarley model is not without limitations. One

limitation of the model is that awakenings or transitions to lighter sleep are not

predicted by the model during a REM sleep period. A transition from REM to Wake

and then back to REM cannot occur. In Figure 7.3, an example of a REM period

and transitions from REM sleep to Stage Wake and Stage 1 during that period for

one night of sleep, from the UK dataset, is shown. The Massaquoi and McCarley

model in its current form cannot predict awakenings during REM sleep because the

level of X (REM-ON) activity does not oscillate during a REM period. The level of

Y (REM-OFF) neuron activity is low when X (REM-ON) activity is high and will

not cause a large change in the level of X when an excitation occurs. An alternative
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Figure 7.2. Probability of being in Wake (light gray), REM (dark
gray), and NREM sleep (black) predicted using, (a) and (b) the Mas-
saquoi and McCarley model and (c) and (d) Basner’s Markov model.
(a) and (c) All individuals retired at 11:00 pm and (b) and (d) Gaus-
sian variation in sleep onset was assumed. Results based on 100 sim-
ulations.
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sleep stage scoring rule could be used in which an awakening is considered to occur

if the excitation term is greater than a certain value, instead of always scoring the

stage as REM when X is greater than 1.4. This type of approach was taken by

Comte, Schatzman, Ravassard, Luppi, and Salin (2006) when scoring sleep stages

using their model. However, an inadequacy of this approach is that an awakening

will not play a more dynamic role in the sleep process and whether an individual

awakens during REM sleep has been found to depend on ongoing brain activity and

whether an individual is in Phasic or Tonic REM sleep (Ermis, Krakow, and Voss,

2010).

0 50 100 150 200 250 300 350 400 450
Stage 4

Stage 3

Stage 2

Stage 1

REM

Wake

Time (min)

Last REM
   Cycle

Figure 7.3. Example of a REM sleep period and the change in sleep
stages within that period.

The second limitation of the Massaquoi and McCarley model is that it has slow

dynamics. While the model can predict the slow ultradian 90-100 minute oscillation

between NREM and REM sleep, it cannot be used to adequately predict brief awak-
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enings. To emphasize the slow dynamics, the equations of the REM sleep portion of

the model can be rewritten where the equation for REM promoting (X) activity is,

Ẋ + ωc1X = 0, (7.1)

ωc1 = b(X)Y − a(X)S1(X). (7.2)

The equation for REM inhibiting (Y ) activity can also be rewritten as,

Ẏ + ωc2Y = 0, (7.3)

ωc2 = c− dcircS2(Y )(X + E). (7.4)

Both equations have the form of a low pass filter with time varying cutoff frequencies.

In Figure 7.4 the variations in the two frequencies are shown. The majority of the

behavior of the model is on the order of hours not seconds. Dynamics on a timescale

of several seconds are needed to predict awakenings during REM periods.

In order to further examine the use of the Massaquoi and McCarley model for

predicting brief awakenings, simulations were conducted in which excitation events

(N(t)) were of equal spacing, amplitude, and duration. The duration of the impulses

was one minute, which is approximately the duration of an aircraft event, the ampli-

tude of the impulses was varied in increments of 1, from 1 to 10. For these simulations

the following equation was used for E,

Ė + kE = kN, (7.5)

where k was equal to 10, which is the value in the original Massaquoi and McCarley

model. The duration spent in NREM, REM, and Wake states were calculated for each
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simulation. In Figure 7.5 the results of two simulations, with low (Emax=2.4) and

high excitation levels (Emax=6.0) for 16 events are shown. The number of REM sleep

periods and the level of slow wave activity were found to decrease as the amplitude

of the events were increased. However, due to the sleep stage scoring thresholds of

the original model, the number of predicted awakenings did not increase when the

amplitude of the impulses was increased. In Figure 7.6 the duration of REM, NREM,

and Wake stages for various amplitudes of the excitation parameter (N(t)) are shown.

Simulations were also conducted for 64 events of varying amplitudes. The results

are shown for low amplitudes (Emax=1.8) and high amplitudes (Emax=3.6) in Figure

7.7 and the duration of REM, NREM and Wake stages for various amplitudes of the

excitation parameter are shown in Figure 7.8. As the amplitude of the noise events

was increased, the NREM and REM sleep cycles during the night disappeared and

there was still not a large increase in the number of predicted awakenings.

The addition of an excitation term to the equation for X (REM-ON) activity was

examined to determine if more variations in the level of activity and an increase in

the prediction of awakenings could be obtained without destroying the slow ultradian

cycling. One approach was to use the following equation,

Ẋ = a(X)S1(X)X − b(X)XY − EX. (7.6)

The term EX was added rather than just E alone in order to prevent the level of X

from becoming negative. The results for a simulation using this approach is shown

in Figure 7.9. The addition of the E term caused a decay in REM-ON (X) activity

which caused the ultradian cyclic behavior to end. Therefore, another approach in

which a saturation function (f(X)) was added was also examined, the equation for

which is,

Ẋ = a(X)S1(X)X − b(X)XY − f(X)EX. (7.7)
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Figure 7.5. Massaquoi and McCarley model predictions for 16 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=2.4, Nmax=4) and (b) high amplitude (Emax=6.0, Nmax=10)
impulses.
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202

0 100 200 300 400
0

2

4

R
E

M
−

O
N

 (
X

)
&

 R
E

M
−

O
F

F
 (

Y
)

(a)

0 100 200 300 400
0

1

2

P
ro

c
e
s
s

S
&

S
W

A

0 100 200 300 400
0

5

10

E
x

c
it

a
to

ry
T

e
rm

 (
E

)

0 100 200 300 400
NREM

REM

Wake

Time (min)

0 100 200 300 400
0

2

4

R
E

M
−

O
N

 (
X

)
&

 R
E

M
−

O
F

F
 (

Y
)

(b)

0 100 200 300 400
0

1

2

P
ro

c
e
s
s

S
&

S
W

A

0 100 200 300 400
0

5

10
E

x
c
it

a
to

ry
T

e
rm

 (
E

)

0 100 200 300 400
NREM

REM

Wake

Time (min)

Figure 7.7. Massaquoi and McCarley model predictions for 64 events
of 1 minute duration occurring during the night. (a) Low amplitude
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impulses.
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Figure 7.8. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 64 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 7.5 minutes.
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In Figure 7.10 the saturation function is shown. The form of the saturation function

was chosen so the excitation term only affected X when the level of X was high. The

results for a simulation conducted with the added saturation function are shown in

Figure 7.11, where the labels A and B, in the Figure, indicate the decay in the X

activity due to the addition of the excitation term to the REM-ON (X) equation.

While awakenings were predicted during the REM periods this behavior is still not fast

enough for predicting awakenings during sleep, which can be as brief as 15 seconds.

Also not all simulations using this approach resulted in desirable results, such as the

example shown in Figure 7.12, in which the X and Y activity no longer appears

cyclic.
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Figure 7.9. Prediction of the Massaquoi and McCarley model when an
excitation term (EX) was introduced in the REM-ON (X) equation.
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Figure 7.12. Prediction of the Massaquoi and McCarley model when
an excitation term with a saturation function was added to the REM-
ON (X) equation. Less desirable changes in sleep were obtained. (a)
X (green) and Y (blue); (b) Process S (green) and SWA (blue);
(c) excitatory term (E) (filtered rectangular pulses with uniformly
distributed amplitudes and durations and exponentially distributed
arrival times); and (d) sleep stage classification.
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The only approach that did result in fast oscillations in REM-ON (X) activity

was when a band-passed noise or sinusoidal noise term, denoted by (q) in Equation

(7.8) was added to the X equation,

Ẋ = a(X)S1(X)X − b(X)XY + qX. (7.8)

An example of the results obtained using this approach is shown in Figure 7.13. The

example results shown in Figure 7.13 (a) is for when q is equal to a sinusoidal term

with an amplitude of 40 and 4 oscillations per minute. For results shown in Figure

7.13 (b) q is uniformly distributed band passed noise with frequencies of oscillation

between 1 and 4 per minute and has an amplitudes between -50 and 50. While fast

oscillations were predicted, the impulsive, random occurrence of awakenings during

REM periods was not.

7.2 Altering Ultradian Oscillator-Slow REM Model

Based on the limitations of the Massaquoi and McCarley model, it was determined

that slow and fast activity during REM sleep needed to be modeled separately. There-

fore, instead of trying to manipulate the REM-ON and REM-OFF equations to obtain

oscillations in activity that could lead to awakenings using scoring rules, the REM-ON

and REM-OFF equations would be used for just controlling the ultradian cycling.

Having a slow term whose only role is to control the ultradian oscillations in the

model is not a new concept, Achermann, Beersma, and Borbély (1990) used a Van der

pol oscillator with the two-process model to control the ultradian oscillations between

NREM and REM sleep, which was defined by the equation,

Ẍ = a(b−X2)Ẋ − wX. (7.9)
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Wever (1980) used two coupled nonlinear oscillators one for circadian and one for

ultradian oscillations. The form of his equations are,

ÿ + ε1(y
2 − y−2 − a1)ẏ + ω1

2(y + g1y
2) = ω1

2(c1(ẍ+ ẋ+ x)), (7.10)

and

ẍ+ ε2(x
2 − x−2 − a2)ẋ+ ω2

2(x+ g2x
2) = ω2

2(c2(ÿ + ẏ + y)). (7.11)

The excitation term E in the REM-OFF equation of the Massaquoi and McCarley

REM model though will remain in the slow REM model. If the maximum amplitude

of the excitation is limited the loss of NREM-REM cycling will not occur as in the

the simulations in the previous sections. The reason for keeping the E term in a slow

REM model is that several researchers have found that the duration of sleep cycles

is affected by awakenings. Foret, Touron, Clodoré, and Bouard (1990) examined the

effect of forced awakenings on the duration of NREM sleep during one sleep cycle.

They interrupted sleep one time a night, for 3 nights. The time of the interruption

varied per test night and occurred at either 1:30, 3:30, or 5:30 am. The duration

of the interruption was 10 minutes. To calculate the effect of the interruption on

the NREM-REM timing they calculated what they called the inter-REM interval

which was the time between the start of one REM period until the start of the next

period, however the 10 minute interruption time was not included when calculating

the inter-REM interval duration. They found that compared to a baseline night, the

interruption caused a decrease in cycle duration if it occurred in the first half of the

cycle but it caused an increase in cycle duration if the interruption occurred in the

second half of the cycle.

Massaquoi and McCarley (1990) compared predictions using their model to the

data from the study conducted by Foret, Touron, Clodoré, and Bouard (1990). They
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applied excitations at various locations during a sleep cycle. Each pulse in the E term

in the model had a duration of one unit or 10.7 minutes. They examined the effect of

different amplitudes of excitation on the duration of a sleep cycle. They found that

the strength of the excitation does have an effect on the change in cycle length. A

strong excitation will result in a linear relationship between the time an excitation

occurs and the change in cycle duration. However, they found that moderate or weak

pulses have more of a curvilinear relationship.

7.3 Fast REM Model

The development of a fast REM sleep model is based on the notion that during REM

sleep the probability of awakening to a noise event is dependent on ongoing brain

activity and, in particular, whether an individual is in Tonic or Phasic REM sleep.

The Tonic and Phasic activity in the UK dataset was examined and used to develop

the model.

7.3.1 REM Density Calculation

While it might not be well understood yet what exactly is causing the variation in

stimulus response during REM sleep, what is clear is that response to auditory stimuli

cannot be assumed to be constant during this stage. Results from Wehrle et al. (2007)

indicate that a noise stimulus will be processed differently depending on whether an

individual is in Tonic or Phasic REM sleep, and this in turn affects whether they

awaken.

In order to evaluate the timing and duration of Phasic and Tonic REM sleep in

the data from the 1999 UK study, the density of rapid eye movements was calculated.

To calculate the density of rapid eye movements first the left and right EOG channels
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were bandpass filtered between 0.5 and 5 Hz by using a 4th order Butterworth filter.

The beginning and end of each REM period was identified. Within the defined REM

period the two EOG channels were segmented into 30 second segments. The corre-

lation between the two channels was calculated and then the process was repeated

moving in 1 second increments through time. If the correlation of the two channels

was below -0.2, rapid eye movements were considered to occur. A second method was

also used to identify rapid eye movement which was similar to an approach used by

Agarwal, Takeuchi, Laroche, and Gotman (2005). The inverse or negative of the left

EOG channel was multiplied by the Right EOG channel and then amplitudes greater

than 625 μV 2 were identified. A 2 second segment of both the right and left EOG

channel was obtained around each peak. The correlation between the 2 seconds of the

left and the 2 seconds of the right EOG channels was calculated. If the correlation

was below -0.2 and the peaks of the two channels were within 100 ms of one another,

then rapid eye movement was considered to occur. Then, for each 30 second segment,

the proportion of the segment that was occupied by rapid eye movement was calcu-

lated in order to obtain a measure of REM density. The measure of REM density

was again calculated for 30 second segments, moving 1 second in time. The results

for one REM period are shown in Figure 7.14. The REM Indicator is an indicator

of Phasic and Tonic REM activity, it is equal to 1 when the REM density is greater

than zero and Phasic REM sleep is occurring, and is equal to zero when Tonic REM

sleep is occurring. Tonic REM periods of less than 15 seconds duration were set equal

to Phasic REM sleep though, this approach has been used by others (Ermis, Krakow,

and Voss, 2010) to define Tonic and Phasic REM sleep.
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7.3.2 Form of Fast REM Model

A few researchers have tried to identify/model the process that causes the occurrence

of rapid eye movements. Trammell and Ktonas (2003) stated that the occurrence of

rapid eye movements may not be due to a random process. One method they used to

determine if the process that caused rapid eye movement bursts was deterministic or

stochastic was the correlation dimension. They calculated the correlation dimension

using the inter-REM periods or the time between rapid eye movements and found

values near 2. This indicated to Trammell and Ktonas (2003) that a low order non-

linear process may explain the intervals between rapid eye movements. Boukadoum

and Ktonas (1988) analyzed the probability density function of inter-REM intervals

between rapid eye movements. They categorized inter-REM periods according to two

criteria: (1) the time between rapid eye movements within a burst, (a burst is defined

if the inter-REM period is less than 2 seconds), and (2) inter-REM period between

isolated bursts of rapid eye movement. From the estimated probability density func-

tion they concluded that two separate processes may be involved in the occurrence of

rapid eye movements, one process controlling the brief bursts of activity and another

controlling the longer intervals between rapid eye movements. They stated that the

inter-REM intervals cannot be predicted by using an exponential distribution.

After examining the occurrence of Phasic and Tonic REM sleep in the UK data,

it seemed that the oscillation between the two states, along with the change to awake

states during REM sleep could be modeled using a Duffing equation with the harmonic

excitation in a region in which chaotic response behavior is possible. The form of the

Duffing equation with up to a 5th order stiffness term was examined (Li and Moon,

1990). This equation has the form,

ẍ+ δẋ+ β5x
5 + β4x

4 + β3x
3 + β2x

2 + β1x+ βo = Acos(ωt); (7.12)
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which can also be written as,

ẍ+ δẋ+ β(x− α1)(x− α2)(x− α3)(x− α4)(x− α5) = Acos(ωt); (7.13)

If the unforced case is considered the corresponding set of first order differential

equations are,

ẋ = y, (7.14)

ẏ = −δy − β5x
5 − β4x

4 − β3x
3 − β2x

2 − β1x− βo. (7.15)

There are 5 equilibrium points and they occur when,

y = 0, (7.16)

β5x
5 + β4x

4 + β3x
3 + β2x

2 + β1x+ βo = 0. (7.17)

The Duffing equation (usually with only a 3rd order polynomial rather than the

5th order shown here) has been used to model the behavior of an elastic beam which

is clamped vertically above magnets of fixed position. The entire system consisting of

the beam and the magnets are shaken horizontally. When the system is shaken with

a low amplitude the beam will oscillate about one of the magnets which are stable

equilibrium points. If the system is shaken with a large enough sinusoidal force, in

certain frequency and amplitude regions the beam will jump chaotically from magnet

to magnet (Moon and Holmes, 1979). This is illustrated in Figure 7.15 for a third

order nonlinearity and in Figure 7.16 for a fifth order nonlinearity.

For the Duffing equation with a 5th order stiffness term, three of the equilibrium

points are stable, the other two equilibrium points are saddle points and are unstable.

For the fast REM model, two of the stable points were considered to be Tonic and

Phasic REM sleep. The third stable point represents Stage 1/Wake. As research
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on auditory awakening thresholds have indicated that an individual is more likely to

awaken during Tonic than Phasic REM sleep, the awakening stable point was posi-

tioned closer to the stable point representing Tonic REM sleep. Also as awakenings

are less likely to occur than Phasic or Tonic REM sleep during a REM sleep period,

the distance between the Tonic and Wake stable point was greater than the distance

between the Tonic and Phasic stable point. The positions of the equilibrium points

for the baseline no-noise conditions are listed in Table 7.2. The phase plane and

position of the equilibrium points for the fast REM model is shown in Figure 7.17,

where, δ = 0.06.

Table 7.2. Positions of the equilibrium points for the baseline fast
REM sleep model.

Equilibrium Point Position
Phasic REM sleep 0.5
Tonic REM sleep -0.5
Wake -2.5
Unstable Point Between Tonic and Phasic 0
Unstable Point Between Wake and Tonic -2

To simulate awakenings due to noise events the position of the saddle point be-

tween the Wake stable point and Tonic stable point was allowed to vary and it moved

closer to the Tonic stable point when an excitation term occurred. The equation for

the model is,

ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt). (7.18)

where, (−2 + γw(t)), is the unstable saddle point which moves when an excitation

occurs. Here w(t) is an excitation, a different naming convention then the slow model
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in which the excitations are labeled as (E) is used as the two may or may not have

the same form.

The term γw(t) is always positive so this impulsive excitation, which models brain

activity pushes the unstable equilibrium position at x = −2.0 toward the “Tonic”

equilibrium position at x = −0.5 making it easier for the beam to move to the Wake

equilibrium position at x = −2.5. In Figure 7.16 (b) w(t) = 0 and the unstable

equilibrium point is at -2.0 and in Figure 7.16 (c) there were 8 evenly spaced events

of 1 minute with (−2+γw(t))=-0.6 when events were occurring and equal to -2 when

events were not occurring (w(t) = 0). By moving the unstable equilibrium point the

likelihood of transitioning to an awake state increases as the noise level increases.

In Figure 7.18 the potential function of the Duffing equation is shown for different

positions of the unstable point between Wake (m3) and Tonic REM (m2); in Figure

7.18 (a) the potential function when the unstable point is at -2.0 is shown, if the beam

is close to m1 (Phasic REM) and m2 (Tonic REM) it would be difficult to jump out

of the well at lower amplitudes of excitation to reach m3 (Wake). In Figure 7.18 (b)

the unstable point is at -1.5 and you can see that escape from the m1-m2 region to m3

would be easier and in Figure 7.18 (c) when the unstable point is at -1.0 it would be

very easy to escape from the m1-m2 region to m3 and it would be difficult to escape

the m3 region to return to the m1-m2 region.

An example of the output of the model with awakenings is shown in Figure 7.19.

Here the unstable equilibrium point is defined as −2 + γN(t) and N(t) is a series

of impulses of duration 1 minute and are spaced 5 minutes apart. To classify sleep

states, a set of thresholds were defined. If the value of x is greater than 0 then Phasic

REM sleep occurs and if the value of x is less than zero then Tonic REM sleep is

occurring. However, there are exceptions used in order to eliminate very brief sleep

stage changes. If the peak value, when the signal is above zero, is never greater than
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equation for different positions of the unstable equilibrium point be-
tween Wake and Tonic REM sleep, (a) -2.0, (b) -1.5, and (c) -1.0. m1,
m2, m3 represent the magnet locations in the beam system analogy
corresponding to “Phasic REM”,“Tonic REM” and “Wake” respec-
tively.
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0.25, i.e. it never approaches the Phasic stable equilibrium point, which is at 0.5, then

the activity above zero was set equal to the previous classified state, a similar approach

was taken when activity is below zero but the minimum never approaches the Tonic

stable equilibrium or Wake stable equilibrium point. Wake states are classified if the

level of x is below -2.0 during an excitation. An example of scoring REM sleep stages

using these rules is shown in Figure 7.19.
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Figure 7.19. (a) Solution of the Duffing equation, oscillations are
about 3 stable equilibria, (red-dashed line) thresholds used to assign
sleep stages. (b) Unstable equilibrium position (−2 + γN) and (c)
classified sleep stages. The driving frequency ω = 2π(0.3), δ = 0.06
and the amplitude (A) was 0.5.

In order to determine the remaining parameters of the Duffing equation, simula-

tions were completed in which the frequency (ω) and the amplitude of the driving
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force (A) were varied in order to match the percentage of time spent in Tonic and

Phasic sleep and the inter-arrival time between Phasic activity as calculated based

on the 1999 UK data. For these simulations the location of the stable and unstable

points and the damping (δ) which was set equal to 0.06, remained constant. The

damping was set at a low enough value so that chaotic behavior could be obtained,

and it was not varied for the simulations as changing the amplitude and the damp-

ing would have similar effects. The initial conditions were randomized for each trial

between -0.5 and 0.5, and the drive frequency and amplitude were systematically var-

ied. One hundred simulations were conducted for each combination of parameters.

A reasonable agreement was found when the drive frequency was set equal to 0.3 Hz

and the amplitude of excitation was set equal to 0.5, the results are shown in Figure

7.20. The time t, also had to be scaled after each solution was obtained to match

values, t for the solutions was set equal to (1/5)t to obtain agreement between the

simulated and actual values.

Simulations using the fast REM model for different numbers, level, and duration

of excitations (w(t) = N(t)) were completed. For each combination of parameters,

25 simulations were completed, the initial conditions were varied for each simulation.

The average proportion of a REM period classified as Wake based on the simulation

results is shown in Figure 7.21 and the average proportion of a REM period classified

as Tonic and Phasic REM sleep is shown in Figure 7.22. The proportion of the REM

period classified as Wake increased with both excitation level and duration of the

event, while the proportion spent in Tonic and Phasic REM sleep both decreased.

The proportion of the REM period classified as Wake also increased with the number

of events. The probability of awakening to a noise event is shown in Figure 7.21,

and it increases with the duration of an event and the excitation level. From the

simulations it was found that an impulse that moved the unstable equilibrium point
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Figure 7.20. Statistics of Tonic and Phasic REM sleep for simula-
tions (red) and survey data (blue). (a) Inter-arrival time of Phasic
activity, (b) proportion of REM period (without awakenings) occu-
pied by Tonic REM sleep and (c) proportion of REM period (without
awakenings) occupied by Phasic REM sleep.
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to -1.6 will start to cause transitions to Stage Wake. The baseline position of the

unstable equilibrium between Wake and Tonic was set at -2 because at this location

the probability of moving to the Wake state without an excitation term is essentially

zero.
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Figure 7.21. Proportion of the REM period defined as awake for (a) 2,
(c) 4, and (e) 8 events as a function of level. Probability of awakening
to, (b) 2, (d) 4, and (f) 8 noise events as a function of level.
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Figure 7.22. Proportion of the REM period defined as Phasic REM
sleep for (a) 2, (c) 4, and (e) 8 events as a function of level. Proportion
of the REM period defined as Tonic REM sleep for (b) 2, (d) 4, and
(f) 8 events as a function of level.
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Based on simulations and the classification of Tonic and Phasic REM sleep in

the UK dataset, the Duffing equation appears to predict the behavior of fast REM

activity. The use of a Duffing type equation for modeling brain activity does have

support in the sleep literature. There have been many models developed for neuron

bursting activity. Phasic REM sleep can be thought of bursting activity. One of the

most commonly used models is the Hodgkin-Huxley model. This is a model of the

behavior of 3 channels through a neuron membrane: sodium, potassium and a leakage

channel (Gerstner and Kistler (1996); Izhikevich (2004)). Either a constant current

or a short current pulse is applied as input to the model and the output is the voltage

potential which may contain a spike.

A simplification of the Hodgkin-Huxley equations was made, that model is called

the Fitz-Hugh Nagumo model and consists of the following two equations (Gerstner

and Kistler, 1996),

ẋ = x− 1

3
x3 − y, (7.19)

ẏ = a+ bx− cy. (7.20)

The two equations can be combined to create a second order differential equation by

solving Equation (7.19) for y,

y = x− 1

3
x3 − ẋ, (7.21)

taking the derivative,

ẏ = ẋ− ẋx2 − ẍ, (7.22)
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and substituting them into Equation (7.20). The equation that is obtained is:

ẍ+ (1− c)

(
1

1− c
x2 − 1

)
ẋ+ (b− c)x+ c

1

3
x3 + a = 0, (7.23)

which with an applied sinusoidal force can be written as,

ẍ+ p(kx2 − 1)ẋ+ ω2
ox+ βx3 = ao + Acos(ωt). (7.24)

This equation has the same form as the Duffing Van der Pol equation. If k is zero then

the equation has the form of a Duffing oscillator. Curtco, Sakata, Marguet, Itskov,

and Harris (2009) modeled neuron activity in the auditory cortex when urethane-

anesthetized rats were exposed to auditory stimuli using the Fitz-Hugh Nagumo

equations, though the form of the Fitz-Hugh Nagumo model they used was slightly

different, in that the model had an x2 term in addition to the x and x3 in Equation

(7.19).

In addition to neuron bursting models, Zeeman (1976) discussed how there are

different scales at which to model brain activity. He described small-scale theory as

consisting of models of individual neurons, synapses, and nerve impulses. Large-scale

models are models of the end result like thinking and responding. He stated that

what is needed is a model of medium-scale behavior. The medium-scale model he

believes could be something like the Duffing oscillator because it has the oscillatory

behavior found in neurons and he stated that it would be expected that some neuron

activity would be stable and some would not.

The Duffing equation has also been used to model epileptic seizures as well as

visual evoked responses. Stevenson, Mesbah, Boylan, Colditz, and Boashash (2010)

wanted to create a model of newborns EEG activity including seizure activity. The

model developed consisted of a Duffing oscillator driven by Gaussian noise for the
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background EEG and a Duffing oscillator driven by impulsive noise to simulate the

seizure activity. The two signals output from the models were added in order to

obtain a simulated newborn’s EEG signal. Srebro (1995) used a Duffing equation

to model visual evoked potentials observed in EEG data. The visual stimulus that

was used consisted of a checkerboard pattern that was shown at intervals. Srebro

(1995) was mostly interested in modeling the response of the system to impulsive

perturbations and matching the increase and subsequent decay of the response to the

individual evoked potentials that were observed in experiments. They found that the

result with the Duffing oscillator was a better match to the evoked potentials then

what would be predicted by using a linear stiffness.

7.4 Model Parameter Estimation

Now that a fast REM sleep model has been developed and the fast dynamic behavior

limitations of the Massaquoi and McCarley model have been overcome, the parame-

ters of the different components of the sleep model needed to be estimated using the

1999 UK data. The methods used and the values of the estimated parameters for the

different components of the model are described.

7.4.1 The Homeostatic Process S Model

The term S in the Massaquoi and McCarley model represents the need for sleep

and decreases through the night. While there have been several variations in the

equation for this term, in its most basic form S is an exponentially decaying function

(Achermann and Borbély, 1990) of the form:

S = Soe
−gc t, (7.25)
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where the parameter gc controls the decay rate. While there is no direct measure-

ment of Process S, it can be estimated from the decay of slow wave activity (SWA).

Process S is an upper bound on the level of slow wave activity. To estimate the initial

value of S and the decay rate, first SWA during the night was calculated. Slow wave

activity was calculated in a manner similar to that used by Ferrillo, Donadio, De Carli,

Garbarino, and Nobili (2007). The EEG signals, from the 1999 UK study were seg-

mented into 30 second segments of sleep. This segmentation was repeated moving

through the signal in 1 second increments. Using the segment average (pWelch in

Matlab) the power spectral density was calculated. The 30 second segment was fur-

ther segmented into 4 second segments with 75% overlap. The total power between

0.5 and 4.5 Hz was calculated from the estimated power spectral density. To smooth

the result further, a moving average filter was used in which the averaging was per-

formed over three minute segments (Achermann, Dijk, Brunner, and Borbély, 1993).

The smoothed SWA estimate was then normalized by the mean of the SWA activity

for the entire night. This normalization was also done by Achermann, Dijk, Brunner,

and Borbély (1993).

Once the SWA estimate was smoothed and normalized then the 95th percentile of

SWA during each NREM period was calculated. Before performing this calculation,

though, first the boundaries of each REM period during the night had to be calculated.

To calculate these limits the original scored sleep stages from the 1999 UK study

for each subject were used. First, all stages scored as REM sleep during the night

were identified. Then, if there were less than 15 minutes duration of NREM sleep

or Wake between scored REM stages, the REM and intervening NREM stages were

considered to be in the same REM period. REM periods that were less than 5 minutes

in duration were ignored because REM periods should be greater than 5 minutes in
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duration (Achermann, Dijk, Brunner, and Borbély, 1993). An example of the scored

sleep stages during the night and the defined REM periods are shown in Figure 7.23.
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REM
Wake

Time (min)

Figure 7.23. An example of Sleep Stages (blue) and identified REM
periods (red dashed line).

The 95th percentile of SWA levels for each intervening NREM period was then cal-

culated and the time of these points was determined. The 95th percentile rather than

the maximum level was used to reduce the likelihood that the point was associated

with an artifact. An exponential function was then fitted to the set of points. An

example of the estimated slow wave activity and the values used to to estimate the

exponential function are shown in Figure 7.24. The mean and standard deviation

for both the decay parameter gc and the amplitude at the start of the night (So)

estimated from the data are listed in Table 7.3.

The data from the 1999 UK study that was used to estimate the model parameters

comes from measurements of subjects between the ages of 30 and 40. Dijk, Beersma,

and van den Hoofdakker (1989) calculated the decay rate of Process S for two different

age groups, 20-28 and 42-56. They found a decay rate of -0.225 units/hour for the

younger group and -0.155 units/hour for the middle age group. The results listed in

Table 7.3 need to be scaled by 60 minutes/10.7 minutes, due to differences in time

scaling, however when rescaled the resulting decay rate based on the data from the

UK study is -0.1794 units/hour which is in-between the results found for the two age
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Figure 7.24. (a) Sleep Stages. The start of each REM period is
indicated by a red dot and the end of each REM period is marked by
a black dot. (b) Estimated SWA (blue), 95th percentile of SWA for
each NREM period (red dot) and the estimated Homeostatic Process
S (black-dashed line).
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groups by Dijk, Beersma, and van den Hoofdakker (1989). This gives an indication

of how the coefficients of Process S need to be varied in order to account for different

age groups.

7.4.2 Slow Wave Activity

The model for slow wave activity that is being used is not the model in Massaquoi and

McCarley (1992). The model in Achermann, Dijk, Brunner, and Borbély (1993) is

being used. The primary reason for this is that this model of SWA has separate terms

for controlling (1) the fall of SWA due to the onset of REM sleep and awakenings

and (2) the rise of the slow wave activity. The equations for the slow wave model are,

Ṡ = −gc SWA (7.26)

and

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−

fcw (SWA− SWAL)E.

(7.27)

The parameters in the slow wave activity equation were estimated using the 1999

UK data. The initial value of slow wave activity (SWAo), was determined by first

identifying the onset of sleep, which is the first occurrence of Stage 2, and then

calculating the mean of the slow wave activity for the first minute of sleep. The

method Achermann, Dijk, Brunner, and Borbély (1993) used to estimate SWAL was

used. They set the parameter SWAL, which is the lower bound for the level of slow

wave activity, equal to a value that is five percent lower than the lowest value of slow

wave activity observed during periods of REM sleep. The mean values and standard
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deviation for these two coefficients, estimated using the 1999 UK data, are listed in

Table 7.3.

To calculate the rise parameter (rc), the first 30 minutes of the slow wave activity

was extracted. The maximum value for the segment of SWA was calculated and

only the portion of the segment between the first point and the maximum value was

used to calculate rc. An example of SWA for one subject and the portion used to

calculate rc is shown in Figure 7.25 (a).
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Figure 7.25. SWA activity (blue), REM periods (black) and (a) por-
tion of segment used to calculate rc (red) and (b) portion of segment
used to calculate fc (red).

To calculate rc, a continuous time system identification approach/least squares

approach was used (Doughty, Davies, and Bajaj, 2002). When SWA is increasing

in level the second term in Equation (7.27), REMT , is equal to zero. Therefore the

equation is,

˙SWA = rc SWA (S − SWA) . (7.28)
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The value of ˙SWA was calculated by taking the derivative of the segment of SWA.

Taking the derivative of a signal can increase high frequency components therefore the

derivative was also low pass filtered. The value of S used was based on the estimated

value of S.

To calculate the fall parameter (fc), 15 minutes of the slow wave activity before

each REM period plus the slow wave activity within the first quarter of each REM

period was extracted. The maximum value of SWA for the segment was calculated

and only the portion of the segment between the maximum value and the last data

point was used to calculate fc. An example of SWA and the portion used to calculate

fc are shown in Figure 7.25 (b).

The value of fc can be calculated in a similar manner as rc in which the equation,

˙SWA− rc SWA (S − SWA) = −fc (SWA− SWAL), (7.29)

is solved for fc. The model parameters rc and fc were calculated in order to obtain an

estimate of the rise and fall of slow wave activity and to verify that the values in the

literature are also applicable to the UK data. However, real slow wave activity is more

variable than the slow wave activity simulated by using the model due to awakenings

and other ongoing activity, therefore, for all subject nights of data a reasonable single

rise and fall constant could not be calculated. As the mean values for rc and fc for

all subject nights was similar to the mean values reported in the literature, the mean

values were used in the combined model, but it should be noted that they actually

vary by subject and also probably by situation and are perhaps better characterized

by a distribution.

To estimate the characteristics that define the noise (n(t)) in the model Acher-

mann, Dijk, Brunner, and Borbély (1993) calculated the difference between a smooth

version of the slow wave activity and that of an unsmoothed version of the slow
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wave activity. The SWA activity within each 3 minute block of time was averaged

to obtain the smoothed SWAS. The noise time histories can be estimated for each

subject-night by using,

n =
SWA− SWAS

SWAS

, (7.30)

where SWA is the unsmoothed version of slow wave activity and SWAS is the

smoothed version of the slow wave activity. An example of the original SWA, the

smoothed SWA and the noise term n, that was calculated for one subject night using

the UK dataset is shown in Figure 7.26. A distribution of the amplitude of the noise

is shown in Figure 7.27. A Gaussian function was fit to this distribution data and is

shown for comparison. There appeared to be a skewness in the distribution of n(t).

A possible reason for this skew, maybe, is that while most large artifacts in the data

were removed perhaps smaller movement artifacts were not. To examine if this is the

reason for the positive skew, the mean, standard deviation, skewness, and kurtosis

for n(t) were calculated when only portions of the data were considered. The noise

(n(t)) data for each subject night was sorted and the lower and upper 0.5% of the

data was eliminated. The statistics of n were then calculated through time using a

sliding 30 minute segment. This procedure was repeated eliminating larger protions

of the lowest and highest values in the dataset up to an elimination of 5% (the upper

and lower 2.5%) of the data. The results for one subject night are shown in Figure

7.28. When portions of the data were removed, as expected, kurtosis is reduced but

a skew in the data is still prevelant. This is also clearly seen in the data, Figure 7.26

(a). The results for all subjects indicate a skewness in the data, the results of which

are shown in Figure 7.29. Therefore in the model to simulate n a skewed Gaussian

distribution was used based on the parameters in Table 7.3.
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Figure 7.26. (a) Estimated noise term ˜n(t), (b) the original SWA
(blue), and smoothed SWA (red).

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

n

p(
n)

Figure 7.27. Probability density function of n(t) (black) and Gaussian
distribution resulting from a fit to the data (red).
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Figure 7.28. Statistics of n(t) with tails of the distribution removed.
Gray to black results from eliminating 1% to 5% of the tails of the
distribution of n(t) before calculating the statistics for each 30 minute
segment.
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Figure 7.29. Range of values for the (a) mean, (b) standard deviation,
(c) skewness, and (d) kurtosis for all subjects based on statistics cal-
culated from each moving 30 minute segment of the estimated random
noise term n(t). The results are shown as a boxplot: red line median,
edge of each box is the lower and upper quartile, the red plus signs
are outliers.
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The last parameter of the SWA model is the fall in slow wave activity due to

noise events (fcw). Achermann, Dijk, Brunner, and Borbély (1993) considered the

rate of fall in slow wave activity when awakenings occur to be four times faster than

the rate when a REM period occurs. However, they assumed that the wake term was

never larger than 1 in their model. A value for E other than 1 was used, and this

will be discussed in the following section. The value for fcw that was chosen was 2

times the value of fc.

Table 7.3. Coefficients of the SWA model estimated from data taken
from 76 subject nights of the 1999 UK study. Mean and standard
deviation of these estimates, based on the data, and original values
from Achermann, Dijk, Brunner, and Borbély (1993).

Coefficient Mean (std. dev) Original Values
gc 0.03 (0.01) 0.0893
fc 2.1 (1.0) 2.5252
rc 0.4 (0.1) 0.5368
So 3.7 (0.7) 3.138
SWAo 0.8 (0.3) 0.468
SWAL 0.17 (0.04) 0.1
nt−mean -0.017 (0.005) 0
nt− std 0.25 (0.04) 0.182
nt− skew 0.5 (0.1) 0
nt− kurtosis 3.0 (0.2) 3

7.4.3 The Wake Term

The characteristics of the excitation term E, that can lead to spontaneous non-noise

induced awakenings, was calculated by using the data from no noise laboratory nights

in the UK study. It was decided to use the power in the gamma band of the EEG

signal (activity between 25 and 35 Hz) to represent this term. The calculation of

activity in the different frequency bands of the EEG signal were described in Section



241

6.4. It is noted that this band contains both movement activity and EEG activity,

however, as movements are an indicator of awakenings this was considered acceptable

activity to include in the Wake term. The time between the occurrence of these pulses

or the inter-arrival time was calculated. An example of the gamma activity and the

definition of duration, amplitude and inter-arrival time are shown in Figure 7.30 and

the distributions of these parameters are shown in Figure 7.31. The distribution for

the inter-arrival time appears to be exponential. The mean value for the inter-arrival

time was 6.1 minutes. The value used by Massaquoi and McCarley (1992) in their

model was 11.8 minutes, therefore, the inter-arrival time found in the UK dataset was

half the value of the original model.
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Figure 7.30. An example of gamma activity, arrows indicate inter-
arrival time, duration and amplitude of the excitations.

The values for the duration of N(t) ranged from 3 seconds to 1.2 minutes, with

a mean of 0.5 minutes and a standard deviation of 0.2 minutes. The minimum and

maximum values for the duration ofN(t) used in the original Massaquoi and McCarley

model were 2.7 minutes and 5.4 minutes. This range is obviously too high and does not

allow brief awakenings to be predicted. The amplitude of N(t) is difficult to determine

based on the gamma activity. There is not a direct relationship between the level

of the impulses in the model and the level of gamma activity. However, the current
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Figure 7.31. (a) Distribution of inter-arrival times between estimated
N(t), (b) distribution of the duration of N(t), and (c) distribution of
the amplitude of N(t) in the UK dataset.
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approach used to estimate the amplitude was to take the log based 10 of the power

in the gamma band. The minimum value obtained was 2.0, the maximum value was

5.4, the mean was 3.1, and the standard deviation of the data was 0.65. A summary

of the parameters for the spontaneous wake model are in Table 7.4. To model N(t)

for spontaneous awakenings, the duration and amplitude was defined by Gaussian

distributions based on the statistics that were calculated and the inter-arrival time

was defined by an exponential distribution.

Table 7.4. Estimated values for the statistics of the impulsive excita-
tion (N(t)) that leads to the spontaneous wake model based on the
UK dataset and original values from Massaquoi and McCarley (1992).

Coefficient Estimated Value Original Values
mean inter-arrival time 6.1 minutes 11.8 minutes
minimum duration 3 seconds 2.7 minutes
maximum duration 1.2 minutes 5.4 minutes
mean duration 0.5 minutes 4.0 minutes

7.4.4 Slow REM Sleep

The Massaquoi and McCarley model (1992) contains two equations for defining REM

sleep, one representing REM-ON or REM promoting neuron activity (X) and one

representing REM-OFF or REM inhibiting neuron activity (Y ) (see Equations (5.47)

and (5.48)). The difficulty in estimating the parameters of the REM model is that the

UK dataset can be used to estimate the timing of REM sleep but not REM neuron

activity.

Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) tried to estimate the

parameters of the REM sleep model based on data. They calculated the parameters

for the Lotka-Volterra REM model by using a stochastic search of parameters and
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minimizing the difference between slow wave activity from their dataset and the slow

wave activity that was predicted. One problem with their parameter estimation

method is that they calculated only one set of parameters for the model, i.e. they

assumed that the duration of successive REM periods are the same.

From the UK dataset, the mean duration of REM and NREM sleep were calculated

for the first 4 REM periods based on 76 subject nights of data. The results are shown

in Figure 7.32. The mean duration of REM sleep does increase during the night while

the duration of NREM sleep decreases. Therefore, the assumptions made by Ferrillo,

Donadio, De Carli, Garbarino, and Nobili (2007) in estimating the parameters of their

model may be incorrect.
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Figure 7.32. (a) REM sleep duration and (b) NREM sleep duration.
Mean values and ± one standard deviation of the estimated mean,
estimated from the 1999 UK study.

A different approach than that of Ferrillo et al. (2007) was used to estimate the

REM model parameters. The parameters were estimated separately for each REM

period. Signals for REM-ON and REM-OFF activity were created based on the

timing of REM sleep in the UK data. The equations for the simplified REM model

were used and these are:

Ẋ = aX − bXY, (7.31)
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Ẏ = −cY + dXY. (7.32)

If an assumption is made that c and d are equal and a and b are equal, which is a

necessary step in order to create REM-ON and REM-OFF signals, then the equations

are,

Ẋ + aX(Y − 1) = 0, (7.33)

and

Ẏ + cY (1−X) = 0. (7.34)

When Y is varying slowly compared to X the solution is approximately of the form,

X = e−a(Y−1)t, (7.35)

and when X is varying slowly compared to Y then Y is approximately,

Y = e−c(1−X)t. (7.36)

Therefore, Y grows when X is greater than 1 and decays when X is less than 1, and

X grows when Y is less than 1 and decays when Y is greater than 1. The value

of X was set equal to one at the start of the REM period and at the end of the

REM period. The value of Y was set equal to 1 when X is at a maximum and it

reaches its maximum level at the end of the REM period. Based on these values, an

exponential function was used to create the rise and decay of each signal and where

the exponential functions join the transition was smoothed by rounding out the slope

of the signals. An example of the signals generated with this approach is shown in

Figure 7.33 (a) and the smoothed signals are shown in Figure 7.33 (b).
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Figure 7.33. An example of creating REM-ON (X) and REM-OFF
(Y ) signals based on the timing of REM sleep periods in the 1999 UK
study data and Equations (7.33) and (7.34).

To estimate the parameters of the X and Y model the derivative of both of the

constructed signals were calculated and then the following two linear equations in

parameters (a and b, and c and d):

Ẋ

X
= a− bY, (7.37)

Ẏ

Y
= −c+ dX, (7.38)
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were fitted to the data. An example of the estimated linear relationships for REM-ON

and REM-OFF activity are shown in Figure 7.34.

Using the estimated parameters, the REM-ON and REM-OFF activity was then

calculated by solving Equations (7.31) and (7.32) using ode45 in Matlab. Based on

the obtained solution, the value for the coefficient a was altered in order to align the

calculated REM-ON activity (when X is greater than 1) with the actual start of REM

sleep in the survey data. Similarly the value for c was altered, if needed, in order to

better match the duration of the calculated REM activity and the duration of REM

sleep in the UK data. The coefficients, a and c, were increased or decreased until the

error between the duration and start time of actual and simulated REM sleep, was

less than 2 minutes. However, sometimes a low error value could not be obtained

due to brief or long REM periods. The error for these values for all REM periods

in the UK dataset are shown in Figure 7.35. The duration of NREM sleep is the

duration prior to the start of a REM period, therefore it is related to the start time of

each REM period. An example of the agreement between a created signal for REM-

ON activity and the REM-ON activity, calculated using the estimated parameters, is

shown in Figure 7.36. The interest was in matching the start and end of each REM

signal, when the REM-ON signal is greater than 1.

The estimated coefficients are plotted against the duration of a REM sleep period

in Figure 7.37. The coefficients, c and d, decreased with REM duration. The decrease

in c with REM duration is partly due to the fact that it was systematically altered

so that the duration of the simulated REM sleep period matched the values derived

from the UK dataset. The estimated coefficients are plotted against the duration of

NREM sleep in Figure 7.38. The decrease in a with NREM sleep duration is again

partly due to the fact that it was altered so that there was agreement between the

simulated and actual start time of each REM sleep period.
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Figure 7.34. An example of the fitting of REM sleep model parameters
of (a) the REM-ON model and (b) the REM-OFF model. Blue line
is based on created signals and the red line is the linear model using
the estimated parameters.

The mean and standard deviation of the estimated coefficients for the first four

REM periods were also calculated and are shown in Figure 7.39. The coefficients

a and b show similar increasing trends while coefficients c and d both show similar

decreasing trends during the night. The change in all parameters though during

the night was small. Therefore, for the slow REM model, only a and b were varied

with time. The variations are modeled in a similar manner to that in the original

Massaquoi and McCarley model, i.e., with a sinusoidal term which has a period of 24

hours. The equation for which is,

dc = 1.55 + 0.8sin(0.0467t+ 4). (7.39)
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Figure 7.35. (a) Error between the estimated start time of each REM
sleep period and the value derived from the UK dataset. (b) Error
between the estimated duration of the REM sleep period and the
value derived from the UK study data. The NREM duration is for
the NREM period just before the REM period.

Note again that in the Massaquoi and McCarley model time is measured in units and

1 unit is equal to 10.7 minutes.
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Figure 7.37. Estimated parameters of slow REM model versus the
duration of REM sleep.
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Figure 7.38. Estimated parameters of the slow REM model versus
the duration of the NREM sleep period prior to the REM period.
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Figure 7.39. Mean and standard deviation of the estimated REM
model parameters for each REM period.

7.5 Overview of The Model So Far

The complete nonlinear model is the result of all issues addressed and noted in this

chapter and what follows in this and the following sections. So far, to recap, the SWA,

S, the slow REM (X, Y ) model and the fast REM model have been described. These

models contain an impulsive term based on N(t). N(t) is a series of square pulses

whose amplitudes and durations are Gaussian distributed, and the inter-arrival time

has an exponential distribution. The parameters of these models have been estimated

based on the data from the UK study. The following issues, though, still need to be

resolved.
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1. The desire is to have a model that results in the prediction of sleep stages.

To calculate different stages, thresholds based on the level of SWA need to be

assigned.

2. How should a noise event impact the sleep model? One possibility is to increase

the number of excitations N(t) and this will be a function of the LAmax of the

noise event.

These issues will be addressed in the following sections.

7.6 Thresholds for Scoring Sleep Stages

The output of the model being developed includes REM sleep, slow wave activity

and awakenings. However, it is desired to also estimate different NREM stages (i.e.

Stage 2 and Stage 3/4). In order to determine at what level to set the thresholds

for this classification, first the mean, minimum and maximum level of SWA activity

associated with Stage 3/4, Stage 2, and Stage 1/Wake were calculated for the 76

subject nights of the UK study. The results are listed in Table 7.5. Based on these

levels a set of scoring rules were developed and are as follows:

1. Stage 3/4 was scored if SWA was greater than 2.75.

2. Stage Wake/1 was scored if SWA was less then 0.3.

3. Stage Wake/1 was scored if SWA was less than 1 and E was greater than 0.5.

4. At all other times when REM sleep was not occurring, stages were scored as

Stage 2 sleep.

To evaluate the accuracy of these thresholds, simulations of slow wave activity for

each subject night of data from the 1999 UK study, were completed using the model
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parameters estimated in the previous sections, and the timing of REM sleep. The

gamma activity for each subject was used to create the impulsive excitation term E.

The fast REM model was not used for these simulations as the focus was on setting

thresholds for scoring NREM sleep. Based on the thresholds and simulated levels of

SWA, sleep stages were assigned to each 30 second epoch. The agreement between

the actual scored sleep stages in the UK dataset and the simulated sleep stages was

calculated. The agreement was defined as the fraction of all stages that were correctly

identified. The overall agreement statistics are listed in Table 7.6 and the mean and

standard deviation of the fraction of correctly identifying stages for each sleep stage is

listed in Table 7.7. An example of the simulation that yielded the highest agreement

is shown in Figure 7.40, and the simulation that had the lowest agreement is shown

in Figure 7.41.

Table 7.5. Statistics of slow wave activity during different sleep stages
for 76 subject nights in the 1999 UK dataset.

Sleep Stage Mean (std. dev of data) Min. Max.
Stage Wake/1 0.42 (0.14) 0.14 1.24
Stage 2 1.06 (0.21) 0.67 1.53
Stage 3/4 3.41 (0.52) 1.86 5.08

Table 7.6. Overall statistics of the fraction of times there was agree-
ment in sleep stage classification between scoring of the original data
and automated scoring of simulated data for each of 76 subject nights.

mean 0.66
std. dev 0.07
max 0.79
min 0.43
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Figure 7.40. Best agreement between simulated and actual slow wave
activity for one subject night of the 1999 UK dataset, thresholds used
for scoring sleep stages (red-dashed lines).



257

0 50 100 150 200 250 300 350
0

5
(a)

E

0 50 100 150 200 250 300 350
0

0.5
1

(b)

R
E

M

0 50 100 150 200 250 300 350
0
2
4

(c)

SW
A

E
st

im
at

ed

0 50 100 150 200 250 300 350
0
2
4
(d)

SW
A

O
ri

gi
na

l

0 50 100 150 200 250 300 350
S3/S4

S2
REM

Wake/S1
(e)

E
st

im
at

ed

0 50 100 150 200 250 300 350
S3/S4

S2
REM

Wake/S1
(f)

Time (min)

O
ri

gi
na

l

Figure 7.41. Worst agreement between simulated and actual slow
wave activity for one subject night of the 1999 UK dataset, thresholds
used for scoring sleep stages (red-dashed lines).
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Table 7.7. Statistics of the fraction of times that there was agreement
in sleep stage classification between scoring of the original data and
automated scoring of simulated data for each of the 76 subject nights,
for each sleep stage.

Sleep Stage Mean (std)
Wake/S1 0.43 (0.17)
Stage 2 0.73 (0.09)
Stage 3/4 0.51 (0.29)

7.7 Adding Noise Dependence to Model

As discussed N(t) is impulsive noise. The inter-arrival time of N(t) is exponentially

distributed and the amplitude and duration are both defined based on Gaussian

distributions. The N(t) term is low-pass filtered to obtain E which is used in the

slow wave model and as mentioned in Section 7.3, is rescaled and also used in the fast

REM model. Some of the examples shown for the fast REM model have used scaled

versions of N(t) (square impulses), not E. A diagram of the use of the impulsive

terms is shown in Figure 7.42. The concept for introducing noise into the model was

to create an excitation term for spontaneous (non-noise related excitations) and one

for aircraft noise related excitations. The two components, both non-noise induced

and noise induced excitations, are summed together and then fed into other parts of

the model.

In order to determine how to add a noise level dependence to the nonlinear dy-

namic model, the amplitude of E from the UK data, was examined when noise events

of different maximum levels occurred. Characteristics of E including the duration

and amplitude of the events were examined, for every aircraft event that occurred

during sleep Stage 2. Due to the limited amount of data, only two noise groups were

examined: events which had a noise level below 50 dB(A) and events that had a max-

imum level greater than 50 dB(A). A small difference in amplitude of E was found,
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Figure 7.42. Diagram of impulsive noise as used in nonlinear dynamic model.

however, the primary difference was in the number of events that elicited additional

impulses. Therefore, when modeling the effect of noise on sleep a linear relationship

between the percentage of the population that will have a response to the noise event

and the Indoor LAmax of an event was created. The equation used is,

fraction responding = 0.0084LAmax − 0.1256. (7.40)

Only LAmax levels above 35 dB(A) cause a change in the fraction responding. Re-

searchers have found from studies on aircraft noise and sleep that aircraft events with

a LAmax level below 35 dB(A) do not increase the probability of awakening (Bas-

ner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet, Müller, Müller, Plath, Quehl,

Samel, Schulze, Vejvoda, and Wenzel, 2004). The percent increase in response with

noise level was added based on existing awakening models (see Chapter 3 for more

information) because the data from the UK study was limited and could not be used

to create a reliable dose response relationship. The duration and height of N(t) is as-

signed randomly based on normal distributions with mean and standard deviation as
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defined in Table 7.8. Perhaps with more data, a variation in amplitude and duration

with noise level will be identified and can be added to the model.

7.8 Combined Model

The components of the nonlinear dynamic model that was developed include a fast

and a slow REM model, a SWA activity model, and impulsive excitations N(t) for

both spontaneous and noise induced awakenings. To simulate the sleep pattern of a

person for a single night the following steps are performed:

1. The spontaneous excitation term N(t) is generated based on an exponential

inter-arrival time and Gaussian duration and amplitude distributions and is

low-pass filtered to obtain E(t).

2. If aircraft noise is present, the additional noise excitation term is generated and

then the spontaneous and noise-induced excitation terms are summed together.

3. Both noise and spontaneous excitation terms are scaled to generate w(t) for the

fast REM model.

4. The excitation term E(t), that includes both spontaneous and noise induced

activity is fed into the slow REM activity model. The output of the slow REM

model is REM-ON and REM-OFF activity which is used to generate a REM

sleep indicator which is equal to 1 when the level of REM-ON X activity is

above a level of 1. This REM indicator defines the REM periods.

5. The REM indicator that is generated is used to signal when to model fast REM

activity. The term w(t) is fed into the fast REM model in order to predict

transitions to Stage Wake during a REM period.
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6. The REM indicator and excitation term (E(t)) are fed into the Slow Wave Ac-

tivity Model. For the SWA model, the rise and fall terms for the slow wave

activity (fc, rc), and the mean, standard deviation, and skewness of the noise

term (n(t)) are not varied for each simulation (one person night). The other pa-

rameters are varied according to Gaussian distributions, the mean and standard

deviations of which are listed in Table 7.8.

7. Based on the SWA, REM-Indicator, excitation terms, and fast REM model,

sleep stages are assigned for each 1 second. In order to compare predicted sleep

stages though to other existing models, the probability of being in each sleep

stage for each 30 second epoch is calculated from the 1-second sliding sleep

stage classification and then a sleep stage is assigned according to the highest

probability.

In Table 7.8 is a list of the model parameters and the values used in the simulations.

An example of the individual output components of the combined model are shown

in Figure 7.43. An example of sleep stages calculated from a simulation with and

without aircraft noise is shown in Figure 7.44. For the simulation with aircraft events,

there were 32 evenly spaced events with an LAmax of 60 dB(A). Note the additional

awakenings that occur during the REM sleep period.

The predictions of the nonlinear model were compared to those of Basner’s Base-

line Markov model (2006). Six hundred simulations, each simulation contains a differ-

ent choice of random variables for parameters that are described by distributions, for

baseline conditions without aircraft noise events were completed using the nonlinear

model. The probability of being in each sleep stage was calculated. For these simu-

lations the threshold used to assign Stage 3/4 was lowered to 2 instead of 2.75. The

reason is that perhaps the properties of N(t) are more time varying, with less excita-

tions occurring during Stage 3/4, this should be explored in the future. The results
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Figure 7.43. Example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM which is
the X or REM-ON activity, REM sleep period indicator, Fast REM
model and the spontaneous and noise induced excitation terms.
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Table 7.8. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution, + parameters varied according
to a uniform distribution, and x parameter varied according to an
exponential distribution.

SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean

std. dev 0.67 std. dev 0.1 inter-arr
6.1 min

*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min

*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min

SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0

fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65

fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0

rc 0.4 +Yo min 0.5
max 3.0

n(t) mean 0
std. dev 0.2
skewness 0.53

are shown in Figure 7.45. Similar predictions for time spent in Stage Wake/Stage

1 were obtained from both of the models. The Markov model did, however, predict

a higher probability of being in Stage 3/4 at the start of the night and the increase

in the probability of being in REM sleep toward the end of night was greater for

that model. However, the subjects in the UK study did have less Stage 3/4 sleep

than those in Basner’s study which might explain some of the difference in predicted

probabilities. Note that the nonlinear model has been tuned to the UK study data

and the Basner model to data from a laboratory study (Basner et al., 2004).

Simulations with the nonlinear model were also conducted for scenarios with 16

and 32 noise events of different noise levels. For each simulation, the noise events
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were all of the same level. Fifty simulations were conducted for each noise level which

ranged from 40 to 90 dB(A), LAmax. The increase in the predicted probability of being

awakened with noise level is shown in Figure 7.46 and the change in duration spent in

the Slow Wave, REM, and Wake states is shown in Figure 7.47. Fifty simulations for

each condition were also completed using Basner’s Markov model with added noise

level dependence (see Chapter 4). The probability of awakening predicted by the

nonlinear model did increase with noise level. Also an increase in duration spent in

Stage Wake and a reduction in time spent in Stage 3/4 was found, and the changes

were greater for nights when there were 32 events than for nights with only 16 events.

The change in REM sleep was less predicable in that it did not vary with noise level.

The results for the probability of awakening is in agreement with the modified version

of Basner’s Markov model. The nonlinear model does predict a higher duration spent

awake and a greater reduction in slow wave sleep. However, in Basner’s laboratory

study (Basner and Samel, 2005) when subjects were exposed to 32 noise events at

an LAmax of 70 dB a reduction in Slow Wave Sleep of 10.7 minutes was found, the

prediction of the nonlinear model is a reduction of 10 minutes. Also an increase

in duration of time spent awake of 11.4 minutes, for the same number and level of

events, was found in Basner’s Laboratory study while the nonlinear model predicts

12.6 minutes. It is not clear whether the the nonlinear dynamic model needs to

be altered to predict less change in sleep stage duration or if the altered version of

Basner’s Markov model needs to be modified further to predict a larger change in

duration, perhaps both modifications are needed.

7.9 Conclusions

The Massaquoi and McCarley sleep model had two primary limitations: it had slow

dynamics and could not predict brief awakenings during the night and it could not



266

0 100 200 300 400
0

0.5

1
(a)

Time (min)

Pr
ob

. W
ak

e/
S1

0 100 200 300 400
0

0.5

1

Time (min)
Pr

ob
. R

E
M

(b)

0 100 200 300 400
0

0.5

1

Time (min)

Pr
ob

. S
2

(c)

0 100 200 300 400
0

0.5

1

Time (min)

Pr
ob

. S
3/

S4
(d)

Figure 7.45. Probability of being in each sleep stage predicted for a
baseline no noise night using the developed nonlinear model (blue)
and Basner’s Markov model (red): (a) Wake/S1, (b) REM, (c) S2,
(d) S3/S4 Stages.
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Figure 7.46. Percent awakened predicted with the nonlinear dynamic
model developed in this research (blue/dark gray) and the modified
version of Basner’s Markov model (red/light gray).
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Figure 7.47. Change in duration of Wake/S1, SWS, and REM sleep
for (a,c,e) 16 evenly spaced events and (b,d,f) 32 evenly spaced events.
The nonlinear dynamic model predictions are shown in blue/dark gray
and the predictions from the modified version of Basner’s Markov
model are shown in red/light gray.
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predict awakenings during REM sleep. To overcome these challenges a modified

version of the Massaquoi and McCarley sleep model was developed. With this model

it is possible to predict spontaneous and noise induced awakenings, slow wave activity

and fast and slow REM sleep. The parameters of the developed model were estimated

using the data from the 1999 UK data. The predictions of changes in sleep stage

duration and increase in probability of awakening for events of different noise levels,

using the developed nonlinear model, was found to be similar to other sleep models.
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8. NOISE MODEL COMPARISONS FOR AIRPORT OPERATIONS

Data on flight operations from two US airports, aircraft and flight tracks, were ob-

tained. This was used as input to noise prediction software so that noise levels inside

houses could be estimated for each aircraft event. By using this information, it is

possible to compare sleep disturbance model predictions for different models and for

different flight operation scenarios. Comparisons of both awakening model predictions

and changes in sleep stages predicted using Basner’s Markov model and the nonlinear

dynamic sleep model developed in this research are described in this Chapter.

8.1 Airport Noise Modeling

Flight operations data were obtained for two US airports. The airports will be referred

to as Airport A and Airport B. The data included the arrival and departure flight

paths and the timing of aircraft events, whether they occurred during the day, evening,

or night. The specific time of each flight operation was obtained for one of the

airports. Information on type of aircraft and distance the aircraft was traveling was

also obtained.

A list of aircraft responsible for approximately 90 percent of the operations at

each airport was made, to reduce the amount of computation. This was not felt to

be a significant problem because a few aircraft made up the majority of operations.

By having a smaller number of aircraft it was feasible to calculate the noise for these

aircraft on many different flight paths. For Airport A there were 3 runways, 89 arrival

and 80 departure flight paths. For Airport B there were 4 runways, 44 arrival and 76

departure flight paths. The primary aircraft for Airport A are given in Table 8.1 and
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the primary aircraft for Airport B are listed in Table 8.2. The departure standard,

in both tables, refers to how far an aircraft is traveling. The higher the departure

standard the farther the aircraft is traveling. In general an aircraft that is flying

farther will be heavier at takeoff due to a greater amount of fuel and it will take

longer for the aircraft to reach higher altitudes. Therefore, for the same aircraft, as

the departure standard increases so do the noise levels on the ground.

Table 8.1. Aircraft at Airport A.

INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
7373B2 Boeing 737-300/CFM56-3B-2 1, 2, 3, 4
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 3, 4, 5
767300 Boeing 767-300/PW4060 1, 2, 3, 4
A300-622R Airbus A300-622R/PW4158 1, 2, 3, 4
BEC190 Beech 1900 1
CL601 CL601/CF34-3A 1
CNA560 Cessna 560 Citation V 1
EMB145 Embraer 145 ER/Allison AE3007 1
EMB170 Embraer EMB-170 1
FAL20 FALCON 20/CF700-2D-2 1
MD11GE MD-11/CF6-80C2D1F 1, 2
MD82 MD-82/JT8D-217A 1, 2
SD360 SD360 1

For the consolidated list of aircraft, the LAmax and SELA noise levels for single

event operations on every flight path were calculated by using the Federal Aviation

Administration’s Integrated Noise Model (INM) (FAA, 2007). The grid size used for

the calculations was 0.1 by 0.1 nautical mile. Different flight operation scenarios were

created based on the single event data and then sleep disturbance was predicted using
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Table 8.2. Aircraft at Airport B.

INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4, 5
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
767CF6 Boeing 767-200/CF6-80A 1, 2, 3, 4, 5, 6
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737400 Boeing 737-400/CFM56-3C-1 1, 2, 3, 4
737500 Boeing 737-500/CFM56-3C-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
737800 Boeing 737-800/CFM56-7B26 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 4, 7
767300 Boeing 767-300/PW4060 1, 2, 3, 4, 5, 6, 7
777200 Boeing 777-200ER/GE90-90B 1, 2, 3, 4, 7
A319-131 Airbus A319-131/V2522-A5 1, 2, 3, 4
A320-232 Airbus A320-232/V2527-A5 1, 2, 3, 4
A321-232 Airbus A321-232/IAE V2530-A5 1, 2, 3, 4
A340-211 Airbus A340-211/CFM 56-5C2 1, 2, 3, 4, 5, 6, 7
CL600 CL600/ALF502L 1
CLREGJ Canadair Regional Jet 1
DHC8 DASH 8-100/PW121 1
EMB14L Embraer 145 LR / Allison AE3007A1 1
EMB120 Embraer 120 ER 1

Pratt and Whitney PW118
MD82 MD-82/JT8D-217A 1, 2, 3, 4
MD83 MD-83/JT8D-219 1, 2, 3, 4
SF340 SF340B/CT7-9B 1

different models including the ANSI sleep model, Basner’s Markov Model, and the

nonlinear dynamic model developed in this research.

8.2 Awakening Model Comparisons

A baseline scenario for Airport A and Airport B was created. The scenario for Airport

A had 150 operations and the scenario for Airport B had 281 operations. These

numbers were the same for all the different scenarios investigated at each airport.
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The aircraft and flight paths used were assigned randomly after calculating usage

statistics for both airports. The percentage of the population awakened at least once

for the airport scenarios was predicted using the ANSI standard method, however

no time dependence was used, and different dose-response relationships were used

(see Chapter 3) in order to compare models in a more comprehensive manner. Also

as the sleep models are based on indoor noise levels and INM only predicts outdoor

levels, for all simulations an outdoor to indoor noise attenuation of 25 dB(A) was

used. In the future, it would be desirable to improve the outdoor-to-indoor prediction

using characteristics of typical houses, window opening habits, house orientation, etc.

This 25 dB(A) level of attenuation is similar to the reduction in noise level found in

numerous studies (WHO, 2009).

The results for the baseline scenario for Airport A is shown in Figure 8.1 (a,b,c)

for predictions calculated using the the ANSI (2008), FICAN (1997), and Basner et

al. (2004) awakenings models. The results in Figure 8.1 (d,e,f) are percent awakened

at least once predictions for a scenario in which 25 of the 150 operations were assigned

to the third cross runway. For comparison, the 40 and 55 dB(A) Lnight,outside contours

are shown. According to the WHO Night Noise Guidelines for Europe (2009) an

Lnight,outside of 40 dB(A) should not be exceeded in order to prevent adverse health

effects caused by noise. However, as this contour encompasses a large area and it

would be difficult to reduce noise levels below this level, reducing nighttime noise

to levels below an Lnight,outside of 55 dB(A) is the target goal. The ANSI standard

model was found to predict the lowest percent awakened at least once. This is due to

the fact that the model is based on behavioral awakening data. This low prediction

(compared to that of other models) is particularly noticeable for the scenario in which

there were 25 events on the cross runway.
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Figure 8.1. Gray-scale shading indicates percent awakened at least
once. Black to dark gray 75%, dark gray to light gray 50%, and
light gray to white 25%. (a,b,c) Scenario 1 and (d,e,f) Scenario 2 for
Airport A. (a,d) ANSI, (b,e) FICAN and (c,f) Basner et al. model.
Red contours are the 40 and 55 dB(A) Lnight,outside contours.
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The number of people predicted to be awakened in communities surrounding Air-

port A and Airport B was also calculated. Population data was obtained from the US

census and the number of people living within each 0.1 by 0.1 nautical mile block was

calculated. The number of people in each block was then multiplied by the percent

awakened at least once predicted using Basner et al.’s dose-response model. In Figure

8.2, the number of people living in each block for both Airport A and Airport B are

shown and in Figure 8.3 the number of people predicted to be awakened at least once

is shown. For comparison the Lnight,outside 40 to 55 dB(A) contours are also plotted.

People living outside the WHO guideline of 55 dB(A) are clearly still awakened, this

is especially noticeable at Airport B which has a larger population of people living

near the airport. Awakenings occurred out to the 40 dB(A) contour.

40

55 40

55

Figure 8.2. Population distribution living around the Airports. (a)
Airport A and (b) Airport B. Red contours are the 40 to 55 dB(A)
Lnight,outside contours.
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Figure 8.3. Number of people awakened at least once around the
Airports, predicted using Basner et al.’s awakening model. (a) Airport
A and (b) Airport B. Red contours are the 40 to 55 dB(A) Lnight,outside

contours.
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8.3 Sleep Disturbance Comparisons for Different Time Scenarios

Sleep disturbance predictions for different distributions of aircraft events during the

night were also examined. Comparisons of sleep disturbance predictions made us-

ing the ANSI standard model with time dependence, a modified version of Basner’s

Markov model and the nonlinear dynamic model developed in this research are dis-

cussed.

8.3.1 Addition of Quadratic Dependence on Noise Level to Markov Model

In Chapter 4, a linear dependence on noise level was added to Basner et al.’s Markov

model. For this analysis it was decided to add a quadratic dependence on level in

order to better match Basner et al.’s dose-response awakening model. The equation

for Basner et al.’s (2004) dose-response model is,

%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243. (8.1)

To determine how to change the coefficient values in the Markov model in order to

obtain this same relationship, simulations of the same person nights as in Basner’s

study were completed. Events were evenly spaced throughout the night and the model

coefficients, all denoted by a generic coefficient name c were varied for each simulation

according to the following:

c = NoNoisemodelCoeff+

(NoiseModelCoeff −NoNoiseModelCoeff)mult,

(8.2)

where mult is a multiplier. The coefficients associated with a dependence on time

t were not varied with noise level. The time dependence needed to stay as close

to the original model as possible, as the focus was on comparing predictions for



278

different time scenarios, and the change in coefficients made for different noise levels

are based on assumptions and not actual data. The relationship between the predicted

percent awakened and different values of the multiplier mult are shown in Figure 8.4.

The value of the multiplier was then compared to the LAmax level (determined from

Basner’s dose-response relationship) that was associated with the same percent awake,

this is shown in Figure 8.4.
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Figure 8.4. (a) Percent awakened predicted when using Basner’s
Markov model for different values of the multiplier. (b) The rela-
tionship between LAmax and the multiplier, based on Basner’s field
dose-response relationship.

The data, shown in Figure 8.4 (b), was fit with a quadratic function, and the

obtained equation was:

mult = (−8.1508e−5)L2
Amax + (2.5274e−2)LAmax − 0.4321. (8.3)

To verify that this change in the Markov Model coefficient values resulted in the

desired percent awakened dose-response curve, a simulation was performed using the

coefficients with the added noise level dependence. Simulations of 50 person nights

with 32 evenly spaced noise events for each LAmax noise level from 35 to 90 dB(A) in

increments of 5 dB(A) were completed. The percent awakened was calculated for each

noise level based on the simulated dataset. This simulation process was than repeated



279

100 times and the mean was calculated and variation of the results examined. The

results from this verification are shown in Figure 8.5.
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Figure 8.5. The obtained relationship between LAmax and the per-
cent awakened using the modified version of Basner’s Markov model.
Basner et al.’s (2004) dose-response curve is shown in blue,the mean
of the simulated results in (green/light gray), and the results of 100
simulations in black.

The equation for the probability of sleep stage transitions with the added quadratic

dependence on noise level has the form:

p(si|sj) = eX∑5
i=0 e

X
, (8.4)

where

X = A(si) + AN1(si)LAmax + AN2(si)L
2
Amax +Bt+ C(si, sj)

+CN1(si, sj)LAmax + CN2(si, sj)L
2
Amax.

(8.5)
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8.3.2 Time-Dependent Model Comparisons

Sleep disturbance, using different models, was predicted for 6 nighttime operation

scenarios. The distributions of aircraft events are shown in Figure 8.6. These time

scenarios were chosen in order to determine the largest difference in sleep disturbance

predictions that might be expected with various scenarios.
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Figure 8.6. The occurrence of events for six nighttime scenarios that
were examined. Each bar represents the number of events during an
hour of the night. There are eight bars per scenario representing each
hour from 11 pm to 7 am. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.

The average number of awakenings for the six scenarios was calculated using the

ANSI standard model with time dependence. The results are shown in Figure 8.7.

The ANSI standard has a time dependence which results in events at the beginning



281

of the night having the lowest probability of causing an awakening and events at the

end of the night having the highest probability of causing an awakening. Scenarios

1, 2, 3 in which most of the events are in the middle of the night all caused similar

number of awakenings.
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Figure 8.7. Average number of awakenings for the 6 time scenar-
ios predicted using the ANSI standard model with time dependence.
Black to dark gray 1.5, dark gray to light gray 1.0 and light gray
to white 0.5 awakenings. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.

Using Basner’s Markov model with the added quadratic dependence on noise level

described earlier in this chapter, the average number of awakenings in 50 simulations

at each grid point was calculated for the six time scenarios. The results are shown in
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Figure 8.8. The awakenings that are calculated are EEG, not behavioral awakenings,

they must occur within 90 seconds or three epoch of the start of the aircraft event

and the minimum duration of an awakening is 30 seconds. The results are opposite

to those of the ANSI standard model, more awakenings were predicted when most

events were at the beginning of the night. This difference in predictions is partly due

to the time dependent coefficients of the Markov model. While the baseline no-noise

model predicts an increase in awakenings, the time dependence coefficients of the first

and second noise models are negative. This decrease in awakening response to events

with time is supported by other models (Brink, Lercher, Eisenmann, and Schierz,

2008). In addition, more spontaneous awakenings tend to occur at the end of the

night and therefore more noise-induced and spontaneous awakenings may be jointly

occurring. In Figure 8.9, the results for the beginning of the night and end of the

night scenarios for both Basner’s Markov model and the ANSI Standard model with

time dependence are shown. The differences in percent awakened do appear small

for the two time scenarios. However, when the number of people living within each

contour are calculated the difference is more substantial, these results are given in

Table 8.3.

Table 8.3. Number of people within awakening contours for Airport
A, with 150 events during the night.

Average
Number of Basner Beginning Basner End ANSI Beginning ANSI End
Awakenings of the Night of the Night of the Night of the Night
Per Night
0.5 Awakenings 40,276 35,514 14,302 39,531
1.0 Awakenings 27,281 11,772 2,790 7,657
1.5 Awakenings 17,288 6,513 10 4,829
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Figure 8.8. Average number of awakenings for the 6 time scenarios
predicted using Basner’s Markov model with added quadratic depen-
dence on noise level. Black to dark gray 1.5, dark gray to light gray
1.0, and light gray to white 0.5 awakenings. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.9. Average number of awakenings for the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and end of the night (blue contours) for
(a) the ANSI standard model with time dependence and (b) Basner’s
Markov model with added quadratic dependence on noise level.
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As the the use of Lnight, outside is advocated by WHO, contours for the scenario in

which most events occurred at the beginning of the night calculated using Basner’s

Markov model and the Lnight,outside contours is shown in Figure 8.10. In addition to

the WHO guidelines, recommendations have also been made based on the acceptable

number of awakenings per night such that 0.5 (Schrenkenberg, Meis, Kahl, Peschel,

and Eikmann, 2010) or 1.0 (Basner, Samel, and Isermann, 2006) additional awakening

on average should be prevented in order to protect communities from the adverse

effects of nighttime noise. Both limits, based on number of average awakenings, were

found to be more protective than the WHO Guideline of Lnight,outside=55 dB(A).
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Figure 8.10. Predictions of the average number of awakenings using
Basner’s Markov model with added quadratic dependence on noise
level for the scenario in which most events are at the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and the Lnight,outside contours (red).

The change in duration of sleep stages predicted using the modified version of

Basner’s Markov model was also examined. The Sleep Quality Index (SQI) (Basner,
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2006) was calculated based on the duration of time spent in the different sleep stages.

The SQI is defined as,

SQI = 0.657 S2 + 0.840 REM + 0.879 S3 + S4, (8.6)

where S2, S3, S4, andREM are the duration of these stages in minutes. The equation

for SQI linearly weights the duration spent in different stages of sleep. The highest

weighting is for the duration spent in Stage 4 sleep and lowest is for Stage 2 sleep.

Time spent in Stage 1 and Wake are not included in the equation as they are not

restorative. A lower value of the SQI corresponds with worse sleep as REM , S3, and

S4 in the equation would have lower durations. The SQI values for the 6 nighttime

operation scenarios are shown in Figure 8.11. The scenario in which most events

were at the beginning of the night resulted in the lowest SQI values due to a greater

reduction in Stage 3 and 4 sleep. The reduction in Stage 3 and 4 sleep and the

increase in Stage Wake for the 6 time scenarios are also shown in Figures 8.12 and

8.13, respectively.

Due to increased computational complexity of the developed nonlinear model, full

contours for the six scenarios were not able to be generated with the model in time

for inclusion in this thesis. However, simulations for the six different scenarios for

a few grid points was completed. For each of these grid points, 50 simulations were

completed for each noise scenario. For each simulation a different set of random

parameters were selected as described in Chapter 7. For two grid points, the average

number of additional awakenings calculated by taking the difference between the

number of awakenings occurring when noise events are present and the number that

would occur at the same time spontaneously without noise present, are shown in

Figure 8.14.
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Figure 8.11. SQI predictions for the 6 nighttime flight operation
scenarios. (a) Peak in operations in two hours in the middle of the
night, (b) an even distribution, (c) most events in the middle of the
night, (d) a U-shaped distribution, (e) most events at the beginning
of the night, and (f) most events occurring at the end of the night.
Red contours are the 40 to 55 dB(A) Lnight,outside contours.
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Figure 8.12. Reduction in time spent (minutes) in slow wave sleep
for the 6 nighttime flight operation scenarios. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.13. Increase in time spent (minutes) in Wake for the 6 night-
time flight operation scenarios. (a) Peak in operations in two hours in
the middle of the night, (b) an even distribution, (c) most events in
the middle of the night, (d) a U-shaped distribution, (e) most events
at the beginning of the night, and (f) most events occurring at the
end of the night.
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As with modified version of Basner’s Markov model a greater number of additional

awakenings occurred when most of the events were at the beginning of the night

than when most events were at the end of the night. The change in sleep stage

durations, compared to nights without aircraft events, for the two grid points is shown

in Figure 8.15. The change in sleep stage durations did not vary greatly between the

six scenarios. The largest difference occurred between the scenario when most of the

events were at the end of the night and the scenario in which most events were at

the beginning of the night. When most events were at the beginning of the night,

there was a greater reduction in slow wave sleep. However, unlike with the modified

version of Basner’s Markov model predictions, there was not a greater increase in

Stage Wake. A possible reason for this result is that the events at the end of the

night, for the nonlinear dynamic model, might have caused a greater reduction in

slow wave activity than when the events were at the beginning of the night, which

might have increased the duration spent awake due to both spontaneous and noise

excitations.

8.4 Conclusions

Sleep disturbance in communities was predicted for realistic airport operations sce-

narios. Models based on behavioral awakenings were found to predict a low number

of awakenings compared to those based on polysomnography data and may, partic-

ularly, under-predict the impact of nighttime noise on communities for scenarios in

which there are only a few events on a runway or flight-path. For different distribu-

tions of aircraft events during the night, the ANSI standard model predicted opposite

results, in terms of the average number of awakenings, when compared to predictions

from Basner’s Markov model with added quadratic dependence on noise level and

the nonlinear model developed in this research. A possible explanation for this result
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Figure 8.14. Average number of awakenings for 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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Figure 8.15. Change in sleep stage durations for the 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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is that the ANSI standard model does not take into account the difference between

normal and noise disturbed sleep. Also, while the differences in disturbance between

more events at the the beginning and more events at the end of the night scenarios

appeared small for predictions calculated using both the ANSI standard model and

the modified version of Basner’s Markov model when translated into the number of

people impacted differences were quite large for the two scenarios. Therefore, the

number of people awakened by noise as well as contour size should be considered

when evaluating sleep disturbance in communities.

While similar trends were found in the number of additional awakenings and the

reduction in slow wave sleep calculated using the nonlinear dynamic model and the

modified version of Basner’s Markov model, there were differences in the predicted

total duration of being awake due to noise events. For the Markov Model a noise

event impacts the model predictions for 3 epochs, while for the nonlinear model the

noise events can impact the predictions of sleep for a longer duration. This difference

and its impact on predictions needs to be examined further. In addition, methods

for increasing the computation speed of the nonlinear dynamic model need to be

examined so that, in the future, it can be used to predict sleep disturbance contours.
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9. SUMMARY, OUTCOMES AND RECOMMENDATIONS FOR FUTURE

WORK

Nighttime aircraft noise can disturb sleep in communities, causing a decrease in rapid

eye movement and slow wave sleep and an increase in the number of awakenings and

time spent awake. These changes in sleep may lead to both next day and long term

health effects. There have been several models developed to predict noise induced

sleep disturbance. Most of the models, however, are limited because they only predict

the number of awakenings and not a change in sleep structure which may be important

when relating noise-induced sleep disturbance to potential health effects. A Markov

model which can be used to predict changes in sleep structure has been developed

by Basner (2006). However, the model does not have a noise level dependence and

it has many coefficients which makes it difficult to validate due to a large amount of

data being needed to produce estimates of the model parameters.

Nonlinear dynamic models have been developed to predict normal, non-noise in-

duced sleep patterns. This type of model was examined to determine if it could be

used to predict noise induced sleep disturbance. The nonlinear models have limita-

tions: they cannot predict awakenings during REM sleep or brief awakenings during

both NREM and REM sleep as observed in data from sleep studies. Approaches to

modifying a nonlinear dynamic model in order to be able to predict this type of be-

havior was examined. This resulted in the development of a model that could predict

slow wave, and slow and fast REM activity.
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9.1 Outcomes of This Research

To determine how to introduce faster dynamics into the Massaquoi and McCar-

ley model, first a sleep stage classification algorithm was developed. This algo-

rithm includes methods for removing artifacts and for identifying specific features

of polysomnography data including rapid eye movement and sleep spindles. Based on

the extracted features, a sleep stage classification algorithm in which sleep stages are

classified for each 1 second in time was developed. The standard method for scoring

sleep is to assign a sleep stage to each 30 second epoch. The algorithm that was

developed provides a more continuous evaluation of sleep stages than this standard

method. While in this research 30 second epochs were used at 1 second intervals

(sliding through the data), the algorithm is flexible so that shorter or longer epochs

could be used and the amount of overlap of segments changed.

To predict brief awakenings during REM sleep using the Massaquoi and McCar-

ley model (1992), a fast REM activity model was added. The occurrence of rapid

eye movements, identified using the sleep stage classification algorithm, was used to

classify when an individual was awake, in Tonic REM or in Phasic REM sleep. Based

on this classification, the fast REM activity was modeled by using a Duffing equation

with a 5th order stiffness term, undergoing periodic excitations in a region where

chaotic responses are occurring. The Duffing system has 3 stable and 2 unstable

equilibrium positions. When responses were in the regions of the stable equilibria

sleep was classified as being in Stage Wake, Phasic REM, or Tonic REM. The unsta-

ble equilibrium position between Wake and Tonic stable equilbria is a function of the

impulsive excitation in the sleep model.

To introduce aircraft noise into the model, extra impulsive excitations were added.

The probability of having a non-zero excitation response to a noise event increased

from its no-noise/external stimulus level with the maximum A-weighted Sound Pres-
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sure Level (LAmax) of the noise event. The complete nonlinear model has 5 compo-

nents: fast and slow REM sleep, slow wave activity and spontaneous and aircraft-noise

induced excitation models. The parameters of this model were estimated by using

the 1999 UK sleep study data (Flindell et al., 2000). This model can predict similar

durations of sleep stages for baseline non-noise nights as other existing sleep stage

models.

To compare predictions of noise induced sleep disturbance for different models,

two approaches for adding a noise level dependence to Basner’s Markov model were

examined. The coefficients of the three noise models were made a function of the

maximum A-weighted indoor noise level during a noise event. Both a linear and

quadratic dependence on noise level were examined. By using the modified version

of Basner’s Markov Model, with a quadratic dependence on noise level, and the

nonlinear model developed in this research, changes in sleep structure were predicted

for different airport noise scenarios. Both models predicted an increase in awakenings

with noise level, and a decrease in time spent in slow wave sleep. However, the

magnitude of these changes varied between the two models. A further refinement of

the model parameters used in the nonlinear model, and further examination of the

coefficients of the Markov model is still needed.

It should be noted that Basner’s model was tuned using the data the he had

available, the data from the DLR laboratory study. The model developed in this

research was tuned to the 1999 UK study, a relatively small dataset. Therefore some

differences may be due to the unique conditions in the two studies. There is clearly

a need with both models to have data from more studies to make the models more

generally applicable. Having emphasized the differences between the Markov and

nonlinear model predictions in terms of absolute levels it should be noted that while

tuned with different study data, the trends predicted agree very well with each other,
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perhaps evidence that they are predicting more generally observable trends in sleep

behavior.

In summary, the nonlinear dynamic model developed in this research with further

refinement can be a useful tool for predicting sleep disturbance in communities around

airports. One of the advantages of this type of model is that model coefficients can be

related to specific physiological processes and unlike Markov models which require a

large amount of data to estimate the large number of model parameters, the parame-

ters of the nonlinear model can be estimated using data for each subject night. This

perhaps will allow sleep disturbance to be able to be predicted for different subgroups

of the populations such as children, elderly, and individuals with preexisting sleep

problems, by estimating and using a different set of model parameters for each group.

9.2 Recommendations for Future Work

There are many areas in which research on the development of sleep disturbance

models should be conducted. Suggested areas of future research are provided below.

1. Further validation of the nonlinear model. The nonlinear dynamic sleep model

was developed based on one dataset the 1999 UK sleep study. This model should

be further validated by estimating parameters using additional sleep datasets. In

addition, further work should be done on validating and defining the thresholds used

to score sleep stages.

2. Incorporate additional noise characteristics into the model. Only the maximum

indoor noise level was considered in the model. However, researchers examining

the effects of noise on sleep have found that the rise time of the event as well as

spectral characteristics of the sound affect whether an individual will be awakened.

The incorporation of these characteristics into the model through modification of the

excitation term should be explored.
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3. Examine use of the model for predicting sleep in different subgroups of the pop-

ulation. An advantage of the nonlinear dynamic model is that the parameters can

be changed on a more intuitive basis than those of Markov sleep models. For exam-

ple, as individuals age the depth of sleep lightens therefore the decay parameters for

slow wave activity can be altered to reflect these changes. In addition, individuals

with sleep apnea have more awakenings during the night which could potentially be

modeled by increasing the rate of the excitation term. An examination of how to

change the model parameters in order to predict sleep in different populations should

be examined.

4. Improve predictions of indoor noise levels. For the airport noise simulations that

were conducted, outdoor noise levels, LAmax and SELA, were predicted and an out-

door to indoor noise attenuation of 25 dB(A) was assumed. However, one-third octave

band levels can be predicted using noise prediction software, though it is computa-

tionally intensive. By using sound transmission software and housing construction

data, house transfer filters could be developed and perhaps a better prediction of in-

door noise levels could be obtained. Effects of house orientation and window opening

would be interesting issues to explore in communities around airports and this would

be possible with improved sound transmission models.

5. Perform simulations of surveys around airports. There are very few large aircraft

noise and sleep field studies and so there is a limited number of datasets that can be

used to further validate the developed models. As part of designing a future survey,

simulations of the outcomes of different survey designs together with predictions of

sleep disturbance from existing models for current airport operations should be com-

pleted. This will enable researchers/survey designers to determine if the resulting

datasets would provide robust estimates of the parameters of existing sleep models.
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Appendix A. Noise Metrics

The following are noise metrics that were used in this report.

Cumulative Metrics:

1. Day Night Average Sound Pressure Level (DNL or Ldn):

DNL = 10log10

[
1

24

(∫ 22:00

7:00

pA
2

po2
dt+ 10

∫ 7:00

22:00

pA
2

po2
dt

)]
, (A.1)

pA is the A-weighted sound pressure level.

2. Lnight:

Lnight = 10log10

[
1

8

(∫ 7:00

23:00

pA
2

po2
dt

)]
. (A.2)

Single Event Metrics:

1. LAmax: Maximum A-weighted noise level.

2. SELA: Sound Exposure Level:

SELA = 10log10

(∫ t2

t1

pA
2

po2
dt

)
, (A.3)

where t1 and t2 are defined in Figure A.1.
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Figure A.1. A-weighted noise level (dB(A)) of aircraft noise event.
The maximum noise level (LAmax) and the portion of the sound used
to calculate the Sound Exposure Level (SELA) (red arrow) are indi-
cated.
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Appendix B. Laboratory and Field Studies

This appendix contains tables which list the survey data available for laboratory and

field studies on the effects of aircraft noise on sleep.

Table B.1. Laboratory studies-sleep measurements.

Study # of am/pm Behav. Acti- Motility- Polysom-
People Surveys Awake metry Other nography

Basner et al. 128 X X X
(2004)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X
(1994)
Carter et al. 9 X
(2002)
Dinisi et al. 20 X X
(1990)
Flindell et al. 9 X X X
(2000)
Levere et al. 6 X
(1972) (EEG)
Levere & Davis 12 X X
(1977) (EEG, EOG)
Lukas & Kryter 6 X X
(1970) (EEG, EOG)
Lukas et al. 12 X X X
(1971)
Lukas & Dobbs 8 X X X
(1972)
Marks et al. 24 X X
(2008)
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Table B.2. Laboratory studies-additional measurements.

Study # of ECG Blood Hormone Sleepiness Perfor-
People Pressure Levels, (Objective) mance

etc
Basner et al. 128 X X PST X
(2004) (24)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X X
(1994)
Carter et al. 9 X X
(2002)
Dinisi et al. 20 X
(1990)
Flindell et al. 9 X MSLT X
(2000)
Levere et al. 6 X
(1972)
Levere & Davis 12
(1977)
Lukas & Kryter 6
(1970)
Lukas et al. 12
(1971)
Lukas & Dobbs 8
(1972)
Marks et al. 24 X X
(2008)
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Table B.3. Field studies-sleep measurements.

Study Location # of Social am/pm Behav. Acti-
People Survey Survey Awake metry

Basner Cologne- 64 X X
et al. Bonn
(2004)
Borksy JFK 1500 X
(1976)
Brink Zurich 60 X
et al.
(2008)
DORA Heathrow 4153 X
(1980) Gatwick
Fidell & LAX 1417 X
Jones
(1975)
Fidell Castle Air 85 X X
et al. Force Base
(1995) LAX
Fidell Stapleton 77 X X X
et al. Denver
(2000)
Fidell DeKalb- 22 X X X
et al. Peachtree
(2000)
Flindell Manchester 18 X X
et al.
(2000)
Haral- Athens 140 X
abidis Arlanda
et al. Heathrow
(2008) Malpensa
Ollerhead Heathrow 400- X X
et al. Gatwick Act.
(1992) Stansted 46-
Hume Manchester Poly.
et al. 1636-
(2003) Social

Survey
Passchier- Schiphol 418 X X X
Vermeer
et al.
(2002)
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Table B.4. Field studies-additional sleep measurements.

Study Motility- Polysom- ECG Blood Hormone Perfor-
Other nography Pressure Levels, mance

etc
Basner X X X X
et al.
(2004)
Borksy
(1976)
Brink X
et al.
(2008)
DORA
(1980)
Fidell &
Jones
(1975)
Fidell
et al.
(1995)
Fidell
et al.
(2000)
Fidell
et al.
(2000)
Flindell X X X
et al.
(2000)
Haral- X
abidis
et al.
(2008)
Ollerhead X
et al.
(1992)
Hume
et al.
(2003)
Passchier- X
Vermeer
et al.
(2002)
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Table B.5. Field studies-noise measurements.

Surveys Metrics- Measurement Measurement Noise
# of of of Metrics

Locations Outdoor Noise Indoor Noise
Basner et al. 64 X X A-weighted
(2004) time histories
Borksy 1500
(1976)
Brink et al. 60 X
(2008)
DORA 29 X LAeq, LAmax, SELA,
(1980) “number above” and

“level exceeded”
Fidell & 3 X Ldn

Jones (1975)
Fidell et al. 45 X X A-weighted time
(1995) histories, LAmax,

SELA
Fidell et al. 38 X X A-weighted time
(2000) histories, LAmax,

SELA
Fidell et al. 12 X X A-weighted time
(2000) histories, LAmax,

SELA
Flindell et al. 18 X X 1-sec A-weighted
(2000) time histories

Haralabidis 140 X A-weighted
et al. (2008) time histories
Ollerhead 8 X LAmax, SELA,
et al. (1992) Hourly LAeq

Hume
et al. (2003)
Passchier- 418 X X 1 sec A-weighted
Vermeer time histories
et al. (2002)
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Table B.6. Field studies-additional noise measurements.

Surveys Noise Recordings Flight Operations
(e.g. .wav) Data

Basner et al. X
(2004)
Borksy Distance from
(1976) airport
Brink et al. Played recordings
(2008) in each subject’s

home
DORA Flight paths,
(1980) Location of

surveyed areas
Fidell &
Jones (1975)
Fidell et al.
(1995)
Fidell et al.
(2000)
Fidell et al.
(2000)
Flindell et al. 10 sec .wav List of aircraft by
(2000) recordings for time of arrival

4 locations and departure
Haralabidis X
et al. (2008)
Ollerhead Maps indicating
et al. (1992) flight paths and
Hume study locations
et al. (2003)
Passchier- Obtained data from
Vermeer flight track monitoring
et al. (2002) system indicating

aircraft noise events
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Appendix C. Coefficients of Basner’s Markov Model

Table C.1. Coefficients for Basner’s Four Markov Models (2006).

Coefficient/sj si Baseline Noise 1 Noise 2 Noise 3
Intercept 0 1.2144 2.3013 0.7674 0.9691

1 -0.4702 -0.4125 -0.4415 -0.3739
3 -3.6542 -4.0295 -3.8388 -3.8809
4 -6.2984 -12.6277 -14.1409 -5.0150
5 -1.3717 -1.0818 -1.6914 -2.2264

S1 0 -2.7472 -1.8124 -2.9919 -2.8770
1 0.2838 0.4352 0.0584 -0.3877
3 -2.5433 -0.4452 -9.0011 -1.9712
4 -6.9807 -1.1678 -1.6087 -8.7818
5 -1.3017 -1.5643 -0.0583 -1.2233

S2 0 -4.8576 -3.5524 -3.8725 -4.6710
1 -4.6860 -3.3554 -4.2785 -4.7750
3 0.8986 1.6156 0.8650 1.2007
4 0.2586 4.8135 6.9155 -3.3496
5 -3.0316 -3.3679 -2.1935 -1.9309

S3 0 -3.4514 -2.4651 -2.9214 -3.2425
1 -6.7253 -3.6566 -4.7870 -4.9466
3 5.7615 5.9772 4.9008 5.8730
4 6.5807 12.6037 12.5687 4.9879
5 -3.8353 -4.9858 -5.2357 -2.6269

S4 0 -0.7784 -0.4093 -1.0691 -0.5785
1 -3.5858 -2.5576 -3.5520 -9.9189
3 6.5302 6.5707 5.6143 6.9644
4 11.5460 17.2381 17.5938 10.6345
5 -3.0085 -10.3476 -10.8294 -8.2248

REM 0 -1.0655 -0.9722 -0.8380 -1.0694
1 -1.2599 -0.3825 -1.2592 -1.5366
3 -2.0445 -9.1235 -8.4853 -8.2782
4 -6.1652 8.0627 -1.0821 -6.7936
5 4.5398 3.9654 4.6170 4.9946

Transition 0 0.000452 -0.00025 -0.00004 0.000401
1 -0.00026 -0.00030 -0.0013 0.000277
3 -0.00147 -0.00135 -0.00125 -0.00190
4 -0.00273 -0.00187 -0.00150 -0.00285
5 0.000869 0.000337 0.000822 0.000896
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Appendix D. Model Parameters Estimated for Each Subject

The model coefficient values listed in the following tables were calculated for 76

subject nights from the 1999 UK sleep study (Flindell et al., 2000). The methods

used to calculate these coefficients are discussed in Chapter 7. For the slow REM

sleep model, the coefficients were not calculated if the REM period defined in the

original dataset was less than 5 minutes in duration or if the NREM period before or

after a REM period was less than 15 minutes. Also the coefficients of the slow REM

model were not calculated if the duration of the prior NREM period or the duration

of the REM period was considered an outlier, which was defined as:

Lower Outliers < 25th percentile− 1.5(75th percentile− 25th percentile), (D.1)

Upper Outliers > 75th percentile+ 1.5(75th percentile− 25th percentile), (D.2)

here the 75th and 25th percentiles were calculated based on all NREM or REM

periods during the night for all 76 subject nights. The subject nights for which the

coefficients were not calculated are indicated by gray/blank entries in the following

tables.
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Table D.1. Estimated parameters for Process S and SWA models for
field subjects 1 through 12 in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

1 2 3.3365 0.0391 0.2384 0.1064 4.1062 1.5094
1 4 4.1180 0.0497 0.1725 0.2324 1.4241 1.0915
2 1 3.3673 0.0248 0.1094 0.4977 3.2499 0.8288
2 3 3.7074 0.0304 0.1411 0.3090 1.1422 1.1137
2 4 3.5105 0.0307 0.1501 0.3532 3.0706 0.9375
3 3 3.8628 0.0306 0.2220 0.2636 1.0852 0.9697
3 4 2.8551 0.0265 0.1641 0.8013 1.9962 0.5251
6 1 4.3358 0.0442 0.1103 0.2309 1.7047 1.0080
6 2 4.0398 0.0441 0.1010 0.2930 2.1427 1.1029
6 3 5.4750 0.0544 0.1075 0.1779 2.5459 1.1783
8 4 2.9164 0.0240 0.2467 0.3148 1.1791 0.9923
9 1 4.2406 0.0350 0.1879 0.2398 1.0777 0.9125
9 3 5.8348 0.0461 0.1513 0.2348 1.4101 0.6386
9 4 4.9060 0.0410 0.1532 0.3571 1.7851 0.6713
10 0 3.0004 0.0155 0.1751 0.5186 2.3834 0.7325
10 1 3.3971 0.0251 0.1691 0.3169 4.6552 1.0097
10 3 3.0035 0.0175 0.1817 0.4090 2.8392 0.8222
12 0 2.6382 0.0084 0.2029 0.6562 1.7541 0.6065
12 1 3.5689 0.0268 0.2300 0.2968 1.9174 0.6616
12 2 3.6195 0.0290 0.2220 0.3064 2.4094 0.6035
12 3 3.2195 0.0272 0.2102 0.3388 0.8993 0.8086
12 4 3.2789 0.0346 0.2216 0.5200 1.6621 0.6518
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Table D.2. Estimated parameters for Process S and SWA Models for
field subjects 13 through 18 in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

13 1 3.6619 0.0391 0.2099 0.3742 2.3962 0.9962
13 2 3.2038 0.0368 0.2127 0.6463 1.4571 1.0797
13 3 3.6877 0.0396 0.1749 0.4544 2.6606 0.9135
13 4 3.6919 0.0384 0.2346 0.3296 1.7203 0.8148
14 0 3.1813 0.0191 0.2252 0.5168 1.3479 0.4149
14 1 3.6535 0.0378 0.2081 0.3027 2.4437 0.4495
14 3 3.4100 0.0349 0.1948 0.4929 3.1263 0.4518
14 4 3.5922 0.0260 0.2182 0.4196 1.3223 0.3784
15 0 4.0728 0.0448 0.1920 0.2650 1.6454 0.8416
15 1 3.4671 0.0380 0.1849 0.4188 0.8472 0.8556
15 2 5.1299 0.0526 0.1491 0.2146 2.2660 1.0116
15 3 3.5554 0.0316 0.1909 0.3501 2.1493 0.8968
15 4 2.8822 0.0237 0.2099 0.3902 2.8141 0.9586
16 2 3.7999 0.0511 0.1885 0.3281 2.4172 0.6750
16 3 2.5900 0.0132 0.2515 0.4534 2.3607 0.7207
16 4 4.1062 0.0329 0.2400 0.4131 1.1499 0.6461
17 2 3.1666 0.0085 0.1984 0.6205 2.5602 0.1973
17 4 3.5993 0.0111 0.1903 0.2904 1.8888 0.7340
18 0 3.9134 0.0293 0.1481 0.5266 0.9661 0.3428
18 1 4.0829 0.0277 0.1769 0.4777 1.5498 0.6446
18 3 3.8975 0.0259 0.1720 0.5255 1.1675 1.3014
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Table D.3. Estimated parameters to define the random noise term
n(t) for field subjects 1 through 12 in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
1 2 -0.0137 0.2052 0.6424 3.1467
1 4 -0.0162 0.2376 0.7350 3.2077
2 1 -0.0249 0.3184 0.5866 3.0170
2 3 -0.0233 0.3076 0.5346 3.0197
2 4 -0.0270 0.3529 0.6954 3.0037
3 3 -0.0155 0.2619 0.6994 3.0650
3 4 -0.0183 0.2516 0.5569 3.1028
6 1 -0.0148 0.2358 0.4925 2.8902
6 2 -0.0163 0.2421 0.3801 2.7713
6 3 -0.0169 0.2414 0.4245 2.7671
8 4 -0.0131 0.2039 0.5482 3.0342
9 1 -0.0159 0.2125 0.4902 2.9049
9 3 -0.0153 0.2424 0.5413 3.0465
9 4 -0.0221 0.2908 0.4896 2.8882
10 0 -0.0166 0.2699 0.4735 3.0702
10 1 -0.0217 0.3305 0.5821 3.0052
10 3 -0.0231 0.2896 0.5359 2.9910
12 0 -0.0115 0.1989 0.4082 2.9315
12 1 -0.0126 0.2057 0.3081 2.8874
12 2 -0.0109 0.1999 0.4820 3.0699
12 3 -0.0127 0.2363 0.4677 2.8805
12 4 -0.0152 0.2335 0.5244 3.0019
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Table D.4. Estimated parameters to define the random noise term
n(t) for field subjects 13 through 18 in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
13 1 -0.0150 0.2333 0.4922 2.7396
13 2 -0.0126 0.2398 0.4638 2.7454
13 3 -0.0147 0.2262 0.4192 2.6815
13 4 -0.0117 0.2101 0.4216 2.7749
14 0 -0.0194 0.2653 0.6029 3.1969
14 1 -0.0188 0.2689 0.5385 3.2537
14 3 -0.0176 0.2690 0.6065 3.2100
14 4 -0.0171 0.2430 0.6088 3.3874
15 0 -0.0176 0.2389 0.5988 3.2506
15 1 -0.0148 0.2298 0.6067 2.9735
15 2 -0.0165 0.2028 0.5076 3.0437
15 3 -0.0144 0.2079 0.5460 2.9984
15 4 -0.0181 0.2209 0.6691 3.2496
16 2 -0.0152 0.2316 0.4356 2.7253
16 3 -0.0094 0.2039 0.3273 2.8323
16 4 -0.0110 0.2145 0.2778 2.7091
17 2 -0.0123 0.1875 0.3502 2.8473
17 4 -0.0113 0.1788 0.2057 2.7489
18 0 -0.0129 0.2000 0.4971 2.8332
18 1 -0.0187 0.2207 0.5803 3.1554
18 3 -0.0132 0.2158 0.5883 3.1180
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Table D.5. Estimated Slow REM parameters for the 1st REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.9449 0.3452 1.8029 2.2423
1 4 0.4772 0.3628 0.4370 1.0013
2 1
2 3
2 4 0.5625 0.3310 0.5577 1.2185
3 3
3 4
6 1 0.6171 0.3082 2.6341 2.1381
6 2 0.7395 0.2693 3.5046 2.1494
6 3 0.5880 0.5230 3.2306 2.8342
8 4 0.6009 0.3204 1.7271 1.9237
9 1 0.5630 0.2888 0.9491 1.4708
9 3 0.4375 0.3988 1.6747 1.8993
9 4 0.4624 0.2723 0.2468 0.7767
10 0 0.5033 0.2472 1.0223 1.4101
10 1 0.7957 0.2963 4.4418 2.4240
10 3
12 0 0.5003 0.2333 1.4639 1.4902
12 1 0.5599 0.3768 0.4808 1.1372
12 2 0.4742 0.3416 0.3624 0.8917
12 3 0.4671 0.3713 4.0835 2.3865
12 4
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Table D.6. Estimated Slow REM parameters for the 1st REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.8421 0.4053 1.3973 2.1578
13 2 0.3383 0.4697 2.9938 2.9428
13 3 0.6519 0.4009 1.3782 1.9353
13 4 0.5565 0.4542 1.5234 2.0760
14 0 0.4277 0.3275 1.0295 1.5120
14 1 0.5209 0.3732 0.8963 1.4355
14 3 0.6248 0.3588 1.7732 2.0457
14 4 0.4921 0.3768 0.9242 1.5152
15 0
15 1 0.4890 0.4508 2.9965 2.4623
15 2 0.4987 0.3260 2.5135 2.0515
15 3 0.4328 0.3804 0.5348 1.0644
15 4
16 2 0.5231 0.5728 4.9164 3.2492
16 3 0.5326 0.5202 1.2638 1.9961
16 4 0.6534 0.4220 2.8619 2.6845
17 2 0.4584 0.3948 2.1441 2.1096
17 4 0.4532 0.2789 0.3634 0.8962
18 0 0.4601 0.3255 1.6773 1.7843
18 1 0.4294 0.2975 0.9734 1.4024
18 3 0.5304 0.4369 1.0966 1.8001
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Table D.7. Estimated Slow REM parameters for the 2nd REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.4639 0.3865 0.5274 1.0631
1 4 0.5053 0.3594 1.9105 1.9666
2 1 0.4896 0.4300 0.8211 1.4968
2 3 0.4815 0.3023 0.5093 1.0836
2 4 0.4277 0.2928 1.0524 1.4569
3 3 0.3494 0.2807 0.6846 1.1034
3 4 0.4522 0.2536 1.0486 1.3399
6 1 0.4283 0.4861 3.2037 3.1510
6 2 0.3507 0.3839 0.9261 1.3689
6 3 0.6365 0.3903 1.0005 1.7083
8 4 0.5400 0.3777 4.9061 2.5620
9 1
9 3 0.4857 0.2791 0.3239 0.9093
9 4 0.3462 0.3166 0.6968 1.1381
10 0 0.3200 0.2705 0.6440 1.0248
10 1 0.3870 0.3070 0.9110 1.3715
10 3 0.4808 0.4389 0.4637 0.9781
12 0 0.3189 0.3230 1.2159 1.4351
12 1
12 2 0.4674 0.3754 0.2581 0.7168
12 3
12 4
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Table D.8. Estimated Slow REM parameters for the 2nd REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5208 0.4153 0.6243 1.2152
13 2
13 3 0.5909 0.3677 2.7721 2.3193
13 4 0.5863 0.3894 0.2723 0.8640
14 0 0.4264 0.3666 0.5073 1.0169
14 1 0.4901 0.4151 0.5836 1.1526
14 3 0.4566 0.4687 0.8856 1.5078
14 4 0.4850 0.4171 0.6355 1.2381
15 0 0.4898 0.5628 2.7293 2.6201
15 1 0.5081 0.2515 0.2453 0.8591
15 2 0.5007 0.4217 0.1873 0.5431
15 3 0.4853 0.3430 0.3609 0.9168
15 4 0.3844 0.3957 0.3694 0.7949
16 2 0.5862 0.2872 0.1222 0.8035
16 3 0.7002 0.3297 0.1092 0.5507
16 4 0.5370 0.4100 0.7989 1.4283
17 2 0.5171 0.3613 1.2800 1.7625
17 4 0.3584 0.3965 0.8833 1.3490
18 0 0.4221 0.4101 0.5928 1.1745
18 1 0.3666 0.2230 0.2092 0.6277
18 3 0.5499 0.3413 0.3794 1.0031
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Table D.9. Estimated Slow REM parameters for the 3rd REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.5024 0.3216 1.1445 1.5797
1 4 0.4838 0.5494 0.6685 1.2813
2 1 0.5188 0.3152 0.2316 0.8083
2 3 0.4390 0.5583 0.4880 0.9656
2 4 0.4011 0.4044 1.7710 1.9035
3 3 0.4550 0.3972 4.6822 2.9365
3 4
6 1 0.7139 0.4861 3.2037 3.1510
6 2 0.4969 0.4907 1.1780 3.1510
6 3 0.5158 0.5850 0.9091 1.6064
8 4 0.4733 0.4081 1.4409 1.8836
9 1
9 3 0.3599 0.2662 0.4348 0.8829
9 4 0.4198 0.3390 0.3032 0.7564
10 0 0.5402 0.5777 0.1713 0.4179
10 1 0.3928 0.4597 0.9503 1.4718
10 3 0.6591 0.4520 0.1129 0.4489
12 0 0.4552 0.3867 0.2471 0.6599
12 1 0.4861 0.4889 1.9929 2.2783
12 2 0.4854 0.3978 0.6604 1.2595
12 3
12 4
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Table D.10. Estimated Slow REM parameters for the 3rd REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5238 0.4283 1.0469 1.7118
13 2 0.6365 0.4470 3.4673 2.7505
13 3 0.4666 0.3557 0.7078 1.2666
13 4 0.5455 0.4493 2.3287 2.3778
14 0 0.5051 0.4106 0.2837 0.7724
14 1 0.5639 0.4553 0.3234 0.8716
14 3 0.6588 0.5353 0.3121 0.9028
14 4
15 0 0.6721 0.4306 0.3627 1.1717
15 1 0.3238 0.2679 0.4875 0.8953
15 2 0.5598 0.4507 0.3937 1.0072
15 3 0.5276 0.6923 0.4838 0.9810
15 4 0.5040 0.4025 0.8526 1.4848
16 2 0.3968 0.3456 1.5555 1.7050
16 3 0.4699 0.4098 2.1466 2.1424
16 4 0.4970 0.2984 0.3987 0.9866
17 2 0.5683 0.5020 0.1770 0.5425
17 4 0.5104 0.4287 0.6854 1.3078
18 0 0.5262 0.4634 0.9469 1.6672
18 1 0.3623 0.3685 0.1945 0.4621
18 3 0.4293 0.3853 0.8116 1.4171
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Table D.11. Estimated Slow REM parameters for the 4th REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.5365 0.5782 0.2852 0.6619
1 4 1.5974 1.3901 0.1178 0.2581
2 1 0.6074 0.7519 0.3061 0.6471
2 3 1.4069 1.3761 0.1261 0.3670
2 4 0.8437 0.7795 0.1388 0.4083
3 3 0.8604 1.1212 0.3128 0.6724
3 4
6 1 0.6818 0.3391 0.1062 0.5235
6 2 0.5887 0.3292 0.4522 1.2172
6 3 0.7326 0.3834 0.8000 1.6670
8 4 0.5739 0.6394 0.6444 1.3707
9 1
9 3 0.3905 0.4391 0.3334 0.7305
9 4 0.5724 1.5681 1.2130 1.7177
10 0
10 1 0.5912 0.4784 0.7260 1.4171
10 3 0.8150 0.8238 0.3115 0.7617
12 0 0.7859 1.0489 0.3869 0.8025
12 1 0.6698 0.3620 0.1179 0.5445
12 2 0.5553 0.6585 2.5723 2.8309
12 3 0.7427 0.5116 0.4340 1.1898
12 4
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Table D.12. Estimated Slow REM parameters for the 4th REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5669 0.4338 1.0256 1.6158
13 2 0.6722 0.6984 0.5466 1.2074
13 3 0.4981 0.5578 3.3427 3.3730
13 4 0.6880 0.4682 0.1152 0.4618
14 0 0.8844 1.0687 0.2996 0.6810
14 1 0.6790 0.5767 0.2644 0.7689
14 3 0.6432 0.3055 0.6329 1.4333
14 4
15 0 0.5792 0.6659 2.1312 2.6890
15 1 0.4194 0.7760 3.5629 2.6521
15 2 0.7735 1.1726 0.6910 1.3673
15 3 0.8922 0.5190 0.6672 1.6873
15 4
16 2 1.1560 1.1883 0.1378 0.1548
16 3 0.5448 0.4312 0.4498 1.0866
16 4
17 2 0.6413 0.5223 1.2624 2.0347
17 4 0.5594 0.3957 0.2866 0.8331
18 0 0.8106 0.6671 0.1257 0.4598
18 1
18 3 0.5416 0.4163 0.2068 0.6370
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Table D.13. Estimated parameters for Process S and SWA Models
for laboratory subjects in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

19 0 4.4617 0.0388 0.1322 0.2723 2.7529 0.7880
19 1 4.1486 0.0416 0.1389 0.5287 2.3165 0.6207
19 2 4.4169 0.0377 0.1574 0.3119 1.8867 0.7717
20 1 3.7485 0.0301 0.1414 0.2021 1.2187 0.7005
20 2 4.4947 0.0510 0.1266 0.3502 1.9782 0.6344
20 3 4.5684 0.0447 0.1118 0.3991 0.9658 1.0292
22 0 3.6723 0.0302 0.1618 0.2413 0.8112 0.8331
22 1 2.7767 0.0224 0.1888 0.5033 0.6205 1.0756
22 2 2.9903 0.0215 0.1799 0.4356 3.9335 0.5538
22 3 3.3267 0.0247 0.1887 0.2465 0.5896 1.4638
22 4 3.2060 0.0299 0.1781 0.3031 1.4033 1.1598
23 0 4.3522 0.0437 0.1360 0.2274 1.5741 0.5255
23 1 3.6144 0.0427 0.1253 0.5919 3.0516 0.5897
23 2 3.5923 0.0458 0.1170 0.4904 3.2262 0.9388
23 3 3.9107 0.0403 0.1123 0.4474 0.7768 0.7866
23 4 4.2102 0.0408 0.0962 0.4243 5.2869 0.1287
24 1 3.7697 0.0262 0.1946 0.3005 1.2354 0.9240
24 2 3.6909 0.0287 0.1616 0.3345 1.2877 0.7526
24 3 3.5164 0.0242 0.1131 0.1927 2.1170 1.0128
24 4 3.3937 0.0310 0.1446 0.3861 2.5985 0.7584
25 0 4.4544 0.0408 0.1317 0.3577 3.0195 0.5270
25 1 5.5164 0.0423 0.1339 0.3528 1.8326 0.3762
25 3 4.1590 0.0326 0.1568 0.3428 1.7633 0.5745
25 4 4.6178 0.0388 0.1379 0.3817 4.4222 0.5808
26 0 4.1647 0.0367 0.2180 0.3898 1.8732 0.8575
26 1 3.5370 0.0251 0.1832 0.5734 2.5480 0.2611
26 2 3.5335 0.0148 0.2155 0.4978 3.5402 0.6858
26 3 3.0433 0.0285 0.2277 0.5752 1.0266 0.5940
26 4 3.3089 0.0247 0.1842 0.8444 3.5710 0.5459
27 0 3.7023 0.0310 0.1469 0.1939 2.1031 1.3816
27 1 4.2429 0.0291 0.1901 0.5101 2.4893 0.3781
27 2 3.6894 0.0174 0.1578 0.7144 3.8975 0.6864
27 3 2.2853 0.0092 0.1519 0.5768 1.3976 1.3098
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Table D.14. Estimated parameters to define the random noise term
n(t) for laboratory subjects in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
19 0 -0.0230 0.2976 0.4820 2.9347
19 1 -0.0238 0.3001 0.4651 3.0426
19 2 -0.0223 0.3166 0.7243 3.4013
20 1 -0.0248 0.3499 0.7557 3.2273
20 2 -0.0208 0.3163 0.6404 2.9809
20 3 -0.0282 0.3209 0.7196 3.2341
22 0 -0.0102 0.1855 0.3313 2.5732
22 1 -0.0122 0.2177 0.4288 2.6868
22 2 -0.0139 0.2222 0.3567 2.7088
22 3 -0.0089 0.2127 0.3329 2.5741
22 4 -0.0126 0.1957 0.3300 2.6127
23 0 -0.0230 0.2794 0.6314 3.2467
23 1 -0.0270 0.3284 0.6696 3.2777
23 2 -0.0264 0.3022 0.7096 3.3291
23 3 -0.0269 0.3437 0.7923 3.4239
23 4 -0.0259 0.3180 0.6423 3.3163
24 1 -0.0215 0.2784 0.5800 3.2364
24 2 -0.0209 0.2496 0.7014 3.3164
24 3 -0.0246 0.2742 0.5689 3.1053
24 4 -0.0183 0.2503 0.6000 3.1454
25 0 -0.0153 0.2173 0.4594 3.1641
25 1 -0.0179 0.2804 0.4747 2.9093
25 3 -0.0153 0.2127 0.5792 3.0931
25 4 -0.0148 0.2390 0.4520 2.9289
26 0 -0.0138 0.2104 0.6281 3.2015
26 1 -0.0168 0.2368 0.6540 3.1220
26 2 -0.0135 0.2158 0.5218 2.8605
26 3 -0.0119 0.1976 0.3841 2.7699
26 4 -0.0180 0.2549 0.5501 2.9491
27 0 -0.0156 0.2358 0.4369 2.8233
27 1 -0.0206 0.2284 0.4893 2.7561
27 2 -0.0200 0.2304 0.4844 2.8232
27 3 -0.0157 0.2285 0.4956 2.8772
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Table D.15. Estimated Slow REM parameters for the 1st REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0
19 1 0.4251 0.2834 4.9021 2.2987
19 2 0.3810 0.3050 1.0263 1.3982
20 1 0.6702 0.3544 0.9204 1.6302
20 2 0.7062 0.5900 0.1642 0.5507
20 3 0.6909 0.4573 0.3386 1.0201
22 0 0.6138 0.3478 1.1979 1.6893
22 1 0.9176 0.2900 4.8776 2.3368
22 2 0.7329 0.3431 4.3607 2.6913
22 3 0.4388 0.2721 0.1291 0.5678
22 4 0.7147 0.2939 0.7556 1.5869
23 0 0.4287 0.4356 2.5031 2.2213
23 1
23 2 0.6862 0.4797 4.3969 3.0872
23 3 0.4092 0.5104 1.0667 1.6152
23 4 0.6191 0.3796 2.6691 2.5219
24 1 0.3248 0.3053 0.6152 1.0414
24 2
24 3 0.3725 0.3171 1.0875 1.4275
24 4 0.3869 0.3413 2.1844 1.8916
25 0 0.5445 0.3723 2.8765 2.3358
25 1 0.4892 0.4575 1.4841 1.9746
25 3 0.4685 0.3327 1.5071 1.8612
25 4 0.6223 0.2788 1.5787 1.7070
26 0 0.3708 0.3830 1.7241 1.7961
26 1 0.4198 0.3258 3.5515 1.9850
26 2
26 3 0.4386 0.3382 1.7017 1.8136
26 4
27 0 0.6900 0.3382 2.0799 2.1056
27 1
27 2 0.5655 0.3170 1.3695 1.7208
27 3 0.7115 0.4085 0.4487 1.3780
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Table D.16. Estimated Slow REM parameters for the 2nd REM pe-
riod for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0 0.4803 0.5197 0.3091 0.6831
19 1 0.3598 0.3574 1.1256 1.4724
19 2 0.3997 0.3644 0.5559 1.0828
20 1 0.4260 0.2717 0.3975 0.9515
20 2 0.7553 0.4345 0.8170 1.7184
20 3 0.5803 0.3985 0.3900 1.0402
22 0 0.4607 0.4267 1.3724 1.8195
22 1 0.3668 0.5099 0.9374 1.4428
22 2 0.5261 0.7963 4.1544 3.5468
22 3 0.3817 0.4728 1.9004 2.0365
22 4 0.4082 0.4221 0.4460 0.9360
23 0 0.6101 0.4355 2.8321 2.7324
23 1 0.3572 0.2965 0.7228 1.1619
23 2 0.6739 0.5253 2.2173 2.7709
23 3 0.6715 0.3244 1.0515 1.6653
23 4 0.5010 0.4570 1.7549 2.1579
24 1 0.4336 0.4467 2.2907 2.2103
24 2 0.5105 0.3927 1.3382 1.8843
24 3 0.4776 0.3814 2.9425 2.2768
24 4 0.4261 0.3919 1.1084 1.5847
25 0 0.4851 0.4419 1.0678 1.7222
25 1 0.5728 0.3633 1.0387 1.5875
25 3 0.4326 0.4155 0.8186 1.4586
25 4 0.3923 0.3724 1.7375 1.8288
26 0 0.4667 0.2680 0.2915 0.8435
26 1 0.4088 0.2678 0.5056 1.0000
26 2 0.3176 0.2458 0.6736 1.0591
26 3 0.4307 0.3001 0.6203 1.1292
26 4 0.2989 0.4336 0.7549 1.1672
27 0 0.4469 0.3773 0.4208 0.9390
27 1 0.4478 0.4120 0.4503 0.9404
27 2
27 3 0.5702 0.5707 3.3406 3.4079
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Table D.17. Estimated Slow REM parameters for the 3rd REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0 0.6687 0.4552 0.3896 1.1010
19 1 0.4728 0.3570 0.3457 0.8511
19 2 0.4754 0.4595 0.6974 1.3590
20 1 0.3470 0.4226 0.9595 1.4112
20 2 0.5526 0.3769 1.1329 1.6898
20 3 0.5821 0.5023 0.2380 0.7116
22 0
22 1 0.6749 0.3394 1.3436 1.8864
22 2 0.8796 0.4257 0.3223 1.3819
22 3 0.6144 0.4661 0.4351 1.0741
22 4 0.5689 0.4450 0.4569 1.1015
23 0 0.5458 0.3444 0.4666 1.1157
23 1 0.4042 0.4423 0.5583 1.0675
23 2 0.6268 0.3094 0.6703 1.4387
23 3 0.4075 0.3986 0.8956 1.4221
23 4 0.5821 0.4232 1.0106 1.6091
24 1 0.5238 0.2789 0.2633 0.8962
24 2 0.5222 0.5068 0.5811 1.2142
24 3 0.5527 0.5264 0.6560 1.2955
24 4 0.5049 0.3868 0.3160 0.8776
25 0 0.5605 0.3765 0.5711 1.2564
25 1 0.4855 0.3871 0.4313 0.9964
25 3 0.5264 0.3732 0.6560 1.2955
25 4 0.4878 0.4818 0.8249 1.5370
26 0
26 1
26 2 0.6989 1.1090 0.2242 0.4263
26 3 0.4499 0.5123 0.3603 0.7970
26 4 0.6328 0.6036 0.4991 1.0923
27 0 0.5763 0.5844 4.0785 3.1609
27 1 0.5280 0.4658 1.5061 2.1693
27 2
27 3 0.7172 0.3840 1.1155 1.8699
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Table D.18. Estimated Slow REM parameters for the 4th REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0
19 1
19 2 0.6152 0.5341 0.6383 1.3189
20 1 0.5484 0.3193 1.1088 1.5594
20 2 0.5387 0.4948 0.3856 0.9102
20 3 0.7437 0.8210 0.6442 1.4124
22 0 0.6091 0.5014 2.0878 2.6806
22 1 0.5382 1.0653 0.7443 1.3323
22 2 0.6858 0.5499 0.1414 0.5037
22 3 0.5855 0.3806 0.1708 0.6939
22 4 0.7367 0.6174 0.1708 0.5800
23 0 0.5867 0.5784 0.2321 0.5851
23 1
23 2 0.3950 0.4652 1.0138 1.5328
23 3 0.6093 0.4891 3.8592 2.9005
23 4 0.5175 0.3944 0.8351 1.4474
24 1 0.4008 0.8642 1.2226 1.6379
24 2 0.6070 0.3593 0.2406 0.9023
24 3 0.6052 0.3211 0.1749 0.8150
24 4 0.5982 0.4042 3.5296 2.6082
25 0 0.4848 0.4690 0.9139 1.6335
25 1 0.4930 0.3682 0.3855 0.9550
25 3 0.5087 0.4269 0.4168 0.9627
25 4 0.6791 0.5020 0.115 0.5144
26 0 0.9384 0.8990 0.4220 1.0837
26 1
26 2
26 3 0.6516 0.4208 0.3062 0.9689
26 4
27 0 0.7471 0.6266 0.9356 1.8275
27 1 0.6651 0.5636 0.3960 1.0266
27 2 0.8620 0.4098 1.3385 2.1424
27 3 0.4858 0.4788 1.3242 1.8655
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Appendix E. Range for Nonlinear Model Parameters Estimated for Each Subject

Table E.1. Range of estimated parameter values for Process S and
SWA Models for all field subject nights in the 1999 UK study.

Range
min to max

So 2.5900 to 5.8348
gc 0.0084 to 0.0544
SWAL 0.1010 to 0.2515
rc 0.1064 to 0.8013
fc 0.8472 to 4.6552
SWAo 0.1973 to 1.5094

Table E.2. Range of estimated parameter values for n(t) for all field
subject nights in the 1999 UK study.

Range
min to max

mean -0.0094 to -0.0270
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7350
kurtosis 2.6815 to 3.3874

Table E.3. Range of estimated parameter values for the Slow REM
model for all field subject nights in the 1999 UK study.

REM a b c d
Period min to max min to max min to max min to max

1 0.3383 to 0.9449 0.2333 to 0.5728 0.2468 to 4.9164 0.7767 to 3.2492
2 0.3189 to 0.7002 0.2230 to 0.5628 0.1092 to 4.9061 0.5431 to 3.1510
3 0.3238 to 0.7139 0.2662 to 0.6923 0.1129 to 4.6822 0.4179 to 3.1510
4 0.3905 to 1.5974 0.3055 to 1.5681 0.1062 to 3.5629 0.1548 to 3.3730
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Table E.4. Range of estimated parameter values for Process S and
SWA Models for all laboratory subject nights in the 1999 UK study.

Range
min to max

So 2.2853 to 5.5164
gc 0.0092 to 0.0510
SWAL 0.0962 to 0.2277
rc 0.1927 to 0.8444
fc 0.5896 to 5.2869
SWAo 0.1287 to 1.4638

Table E.5. Range of estimated parameter values for n(t) for all labo-
ratory subject nights in the 1999 UK study.

Range
min to max

mean -0.0089 to -0.0282
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7923
kurtosis 2.5732 to 3.4239

Table E.6. Range of estimated parameter values for the Slow REM
model for all laboratory subject nights in the 1999 UK study.

REM a b c d
Period min to max min to max min to max min to max

1 0.3248 to 0.9176 0.2721 to 0.5900 0.1291 to 4.9021 0.5507 to 3.0872
2 0.2986 to 0.7553 0.2458 to 0.7963 0.2915 to 4.1544 0.6831 to 3.5468
3 0.3470 to 0.8796 0.2789 to 1.1090 0.2242 to 4.0785 0.4263 to 3.1609
4 0.3950 to 0.9384 0.3193 to 1.0653 0.1115 to 3.8592 0.5037 to 2.9005
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Appendix F. Equations and Coefficients of Nonlinear Dynamic Models

F.1 Massaquoi and McCarley Model

The Massaquoi and McCarley model (1992) has 4 main components. The first part of

the model is the reciprocal interaction REM model. The equation for REM promoting

neuron activity is,

Ẋ = a(X)S1(X)X − b(X)XY, (F.1)

and the equation for REM inhibiting neuron activity is,

Ẏ = −cY + dcircS2(Y )(X + E)Y, (F.2)

where,

dcirc = 0.975(1 + 0.125sin(0.0467 + 2.3)), (F.3)

and E is defined in Equation F.11. The equations for the coefficients of the REM

model are,

a(X) = 2− 1.8

(
1− 1

1 + e−4(X−0.5)

)
, (F.4)

b(X) =
2

1 + e−80(X−0.1)
, (F.5)

S1(X) = 1− 1.4

(
1

1 + e−0.8(X−2.5)

)
+ 0.167, (F.6)

S2(Y ) = 1− 1.5

(
1

1 + e−20(Y−2)

)
. (F.7)

The equations for the Process S and SWA models are:

˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t), (F.8)
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and

Ṡ = −gc SWA+ rs(1− S), (F.9)

where SWAmax is defined as,

SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05), (F.10)

and n(t) is a uniformly distributed random noise signal. The excitation term E in the

above equations is filtered Poisson noise (N) which has an exponentially distributed

arrival time, and uniformly distributed amplitude and duration, the equation for E

is,

Ė = N − kE. (F.11)

Sleep stages during the night are scored according to the following rules:

1. If X >1.4 score as stage REM,

2. If SWA <0.1 and E >0.5 score as Wake,

3. Else score as NREM sleep.

The values of the model parameters are in Table F.1. An example of the output of

the model is shown in Figure F.1.

F.2 The Nonlinear Model Developed as Part of This Research.

The following are the equations for the modified version of the Massaquoi and Mc-

Carley model that was developed as part of this research. The equations used for the

slow wave activity model are,

Ṡ = −gc SWA, (F.12)
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Figure F.1. An example of using Massaquoi and McCarley’s LCRIM/I
model to classify sleep stages, (a) REM-ON (X) (green) and REM-
OFF(X) (blue) activity, (b) Process S (green) and SWA (blue), (c)
Excitatory activity E, and (d) sleep stages. Thresholds used for scor-
ing sleep stages (red-dashed lines).

and

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−

fcw (SWA− SWAL)E,

(F.13)
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Table F.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).

Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10

and

SWA = SWA(1 + n(t)). (F.14)

The equations for the Slow REM model are similar to those of the Massaquoi and Mc-

Carley model but without the saturation functions. The equation for REM promoting

neuron activity is thus,

Ẋ = (aX − bXY )dc, (F.15)

where dc is a sinusoidal term with a period of 24 hours,

dc = 1.55 + 0.8sin(0.0467t+ 4), (F.16)
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where t is measured in units rather than seconds with 1 unit equal to 10.7 minutes.

The equation for the REM inhibiting neuron activity is,

Ẏ = −cY + d(X + eE)Y. (F.17)

The equation for the fast REM model is,

ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt), (F.18)

where w(t) in the equation is typically the excitation term E(t). An example of the

output of the model when noise events are occurring is shown in Figure F.2. The

model parameter values are listed in Table F.2. The following rules were used for

assigning NREM sleep stages:

1. If SWA >2.0 score as Stage 3/4,

2. If SWA <0.3 score as Stage Wake/1 ,

3. If SWA <1 and E >0.5 score as Stage Wake/1,

4. All other times when REM sleep is not occurring are scored as Stage 2 sleep.

The following rules were used to assign REM sleep stages according to the value of x

of the fast REM model:

1. If x >0 score as Phasic REM sleep,

2. If x <-2 and an excitation is occurring score as Wake,

3. All other times are scored as Tonic REM sleep.

REM sleep periods were defined by the level of REM promoting activity X in the

slow REM model. When X is greater than 1, REM sleep periods was considered to

be occurring.
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Figure F.2. An example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM, REM
sleep period indicator, fast REMmodel and the spontaneous and noise
induced excitation terms.
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Table F.2. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution and + parameters varied accord-
ing to a uniform distribution, x parameter varied with an exponential
distribution.

SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean

std. dev 0.67 std. dev 0.1 inter-arr
6.1 min

*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min

*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min

SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0

fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65

fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0

rc 0.4 +Yo min 0.5
max 3.0

n(t) mean 0
std. dev 0.2
skewness 0.53
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Appendix G. Code for Nonlinear Dynamic Model

The following is the Matlab program for the nonlinear dynamic sleep model that was

developed as part of this research. The components of the model are the slow and fast

REM model, slow wave activity model, and spontaneous and aircraft noise induced

excitation terms. Based on these components sleep stages are predicted. In Table

G.1 is a list of subroutines in this program and the functions they call.

Table G.1. Subroutines of the nonlinear dynamic model.

Subroutine Name Is Called By Makes Calls to
Input Parameters Model Main None
Create Aircraft Input Model Main None
Generate Random Input Variables Model Main None
Create Spontaneous Model Main None
Create Aircraft Awakenings Model Main None
E Calc Model Main None
REM Calc Model Main None
Create REM INPUT Model Main None
SWA Calc Model Main None
NREM Sleep Stage Classify Model Main None
Fast REM Main Model Main calc tonic phasic int

Phasic Tonic Calc
Phasic Tonic Calc Fast REM Main None
calc tonic phasic int Fast REM Main None
Calc 30 Sec Stages Model Main None

The following are the inputs to the model:

1. optionN: which is used if a noise scenario is being run,

2. position: the x,y grid position,

3. LAMAX: the maximum noise levels of sound events during the night. This term
is a vector and its length is equal to the length of the number of events during
the night,

4. Numpeople: is the number of people to simulate for each location point,

5. Timing: the time of each noise event during the night in minutes.
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An example of an input to the model is the following if the events were of all the

same noise level during the night,

optionN={’Noise’};%%Run for noise events

position=[0 0];%%X,Y position

LAMAX=40*ones(1,16);%%LAMAX and timing must be equal in length

Numpeople=50;%%Number of people at grid point

Timing=30:24:402;%%Time of events in minutes

Function Model Main: This is the main code for the nonlinear dynamic model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Model_Main

%%%Main code for the nonlinear dynamic sleep model

%%%Note 1 Unit in the model is equal to 10.7 minutes

%%%

%%%Input: LAMAX-noise level for each nighttime event

%%% Timing-timing of aircraft events in minutes

%%% Numpeople-number of people at a location point

%%% optionN: is used if a noise scenario is being run

%%% position: x,y location for grid point

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function Model_Main(LAMAX,Timing,Numpeople,optionN,position)

warning off;

len=48;

Fs=640;

[Data]=Input_Parameters;%%Obtain model parameter values

if strcmp(optionN,’Noise’)

%%Run simulation once for baseline conditions and once for

%%Noise event conditions

Repeat=2;

%%Create aircraft noise input

[Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople);

else

Repeat=1;

end

for ink=1:Numpeople

display(ink)

time=0:1/Fs:len;
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%%Relationship between NREM excitation amplitude

%%and fast REM sleep excitation amplitude

REM=[.5 1.45];

NREM=[.5 5];

pr=polyfit(NREM,REM,1);

%%Spontaneous awakenings

[Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr);

%%Limit amplitude of REM and NREM excitation terms

if max(NtREM)>1.45

I=find(NtREM>1.45);

NtREM(I)=1.45;

end

if max(Nt)>5

I=find(Nt>5);

Nt(I)=5;

end

[Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs);

for ii=1:Repeat

tic

if strcmp(optionN,’Noise’) && ii==2

%%Create excitation term (N(t)) for

%%noise-induced awakenings

[aircraftREM aircraft]=...

Create_Aircraft_Awakenings(Data,Timing,len,Fs,pr,ink,Events);

%%Add spontaneous and noise-induced excitation terms

Nt=Nt+aircraft;

NtREM=NtREM+aircraftREM;

if max(NtREM)>1.45

I=find(NtREM>1.45);

NtREM(I)=1.45;

end

if max(Nt)>5

I=find(Nt>5);

Nt(I)=5;

end

end

%%Low-pass filter N(t) to obtain E(t)

[T,Wake]=E_Calc(Nt,Fs,len);

[T,WakeREM]=E_Calc(NtREM,Fs,len);

%%Calculate REM promoting (X) and

%%REM inhibiting activity (Y)

[T,X]=REM_Calc(Data,Wake,Fs,len);

REM=X(:,1);%%REM-ON activity
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%%Create REM sleep indicator (REMT)

[REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len);

toc

%%Calculate SWA activity

tic

[T,X]=SWA_Calc(Data,REM_NEW,Wake,Fs,len);

SWA=X(:,1).*(1+nt(1:length(X(:,1))))’;

toc

%%Assign 1 second NREM sleep stages based on SWA and E(t)

Est_Stage=zeros(1,960);

tic

[Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW);

%%Calculate Fast REM activity and assign 1 second REM sleep stages

[Est_Stage]=Fast_REM_Main(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM);

%%Calculate 30 second sleep stages

[tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage);

toc

%%Calculate duration of each sleep stage

for jj=1:4

I=find(tempstage(1:960)==jj);

dur_stage(jj,ink,ii)=length(I)/2;

end

%%Calculate percent of events individual awakened

%%to during the night

if strcmp(optionN,’Noise’)

perawake1=0;

for jj=1:length(Timing)

I=find(tempstage(Timing(jj)*2:Timing(jj)*2+3)==1);

if length(I)>0 && tempstage(Timing(jj)*2-1)~=1

perawake1=perawake1+1;

end

end

perawake(ink,ii)=perawake1/length(Timing);

end

Full_Stages(1:length(tempstage30plot),ink,ii)=tempstage30plot’;

end

%%Calculate difference in sleep stage duration

%%and probability of awakening at the time of noise events

%%for (1) baseline no-noise nights and (2)

%%nights with aircraft noise exposure

if strcmp(optionN,’Noise’) && ii==2

change(1:4,ink)=dur_stage(:,ink,2)-dur_stage(:,ink,1);

changeperawake(ink)=(perawake(ink,2)-perawake(ink,1))

end
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end

%%Save data

if strcmp(optionN,’Noise’)

total_awake(1)=...

sum(perawake(1:Numpeople,1)*length(Timing))/(Numpeople*length(Timing));

total_awake(2)=...

sum(perawake(1:Numpeople,2)*length(Timing))/(Numpeople*length(Timing));

totalchangeper=mean(changeperawake)’;

totalchangedur(1:4)= mean(change’);

save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)

save([’Ntotalchangeper_LAmax’ num2str(LAMAX(1)) ....

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangeper’)

save([’Ntotalchangedur_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangedur’)

save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)

save([’Nchange_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’change’)

save([’Nchangeperawake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’changeperawake’)

end

save([’NFull_Stages_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’Full_Stages’)

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Input Parameters: This function contains the values for the parameters of

the model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Input_Parameters

%%%Contains values of most model inputs-these values are based on the 1999

%%%UK data

%%%

%%%Output: Data-contains model parameters used

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data]=Input_Parameters
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%%Noise n(t) model parameters

Data.ntmean=0;

Data.ntstd=0.20;

Data.ntskew=0.5269;

Data.ntkurtosis=3;

%%wt/E model parameters

%%divide by 10.7 to convert parameters from

%%minutes to units

Data.wtintarr=6.1/10.7;

Data.wtstddur=0.20/10.7;

Data.wtmeandur=0.5/10.7;

Data.wtmindur=0.05/10.7;

Data.wtminamp=0.5;

Data.wtmaxamp=5.0;

Data.wtmeanamp=3.0;

Data.wtstdamp=0.65;

%%Slow REM model parameters

Data.amean=0.47;

Data.astd=0.1;

Data.bmean=0.41;

Data.bstd=0.1;

Data.cmean=1.4;

Data.cstd=0.15;

Data.dmean=1.83;

Data.dstd=0.15;

Data.yomin=0.5;

Data.yomax=3;

Data.xomin=0.15;

Data.xomax=0.3;

%%SWA model parameters

Data.SWAL=0.2;

Data.fc=2.0;

Data.rc=0.4;

Data.fcw=2*Data.fc;

Data.Somean=3.75;

Data.Sostd=0.67;

Data.Somin=2.3;

Data.Somax=5.8;

Data.gcmax=0.05;

Data.gcmin=0.008;

Data.gcstd=0.011;

Data.gcmean=0.0320;

Data.SWAomin=0.13;

Data.SWAomax=1.51;

Data.SWAomean=0.78;

Data.SWAostd=0.29;

%%%----------------------------------------------------------------------%%
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%%%----------------------------------------------------------------------%%

Function Generate Random Input Variables: The following program is used to gen-

erate all model parameters for one person night based on uniform and Gaussian

distributions.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Generate_Random_Input_Variables

%%%Code for generating all random inputs to the model

%%%

%%%Input: Data-contains model parameters used

%%% len-length of night that is being simulated

%%% Fs-sampling rate

%%%

%%%Output: Data-contains model parameter values for subject

%%% nt-noise term applied to SWA

%%% initRx-initial xo values for fast REM model

%%% initRy-initial yo values for fast REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs)

%%Minimum and maximum values are used to

%%limit current range of parameters

%%note: acceptable range of parameters will be

%%further explored in the future

%%SWA and Process S model parameters

Data.SWAo=normrnd(Data.SWAomean,Data.SWAostd,1,1);

if Data.SWAo<Data.SWAomin

Data.SWAo=Data.SWAomin;

elseif Data.SWAo>Data.SWAomax

Data.SWAo=Data.SWAomax;

end

Data.So=normrnd(Data.Somean,Data.Sostd,1,1);

if Data.So<Data.Somin

Data.So=Data.Somin;

elseif Data.So>Data.Somax

Data.So=Data.Somax;

end

Data.gc=normrnd(Data.gcmean,Data.gcstd,1,1);

if Data.gc<Data.gcmin

Data.gc=Data.gcmin;

elseif Data.gc>Data.gcmax

Data.gc=Data.gcmax;
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end

%%More restrictive on range for

%%slow REM sleep models as certain

%%combinations of a,b,c,d will result

%%in no REM cycling

%%Slow REM sleep model parameters

Data.a=normrnd(Data.amean,Data.astd,1,1);

if Data.a<Data.amean-Data.astd

Data.a=Data.amean-Data.astd;

elseif Data.a>Data.amean+Data.astd

Data.a=Data.amean+Data.astd;

end

Data.b=normrnd(Data.bmean,Data.bstd,1,1);

if Data.b<Data.bmean-Data.bstd

Data.b=Data.bmean-Data.bstd;

elseif Data.b>Data.bmean+Data.bstd

Data.b=Data.bmean+Data.bstd;

end

Data.c=normrnd(Data.cmean,Data.cstd,1,1);

if Data.c<Data.cmean-Data.cstd

Data.c=Data.cmean-Data.cstd;

elseif Data.c>Data.cmean+Data.cstd

Data.c=Data.cmean+Data.cstd;

end

Data.d=normrnd(Data.dmean,Data.dstd,1,1);

if Data.d<Data.dmean-Data.dstd

Data.d=Data.dmean-Data.dstd;

elseif Data.d>Data.dmean+Data.dstd

Data.d=Data.dmean+Data.dstd;

end

%%Slow and Fast REM sleep model initial conditions

Data.yo=Data.yomin+(Data.yomax-Data.yomin)*rand(1,1);

Data.xo=Data.xomin+(Data.xomax-Data.xomin)*rand(1,1);

initRx=-1+2*rand(1,10);

initRy=-1+2*rand(1,10);

%%Random noise term n(t)

cc=pearsrnd(Data.ntmean,Data.ntstd,Data.ntskew,Data.ntkurtosis, 1,len*Fs);

[b,a]=butter(3,10/(Fs/2));

nt=filter(b,a,cc);

nt=nt*(max(cc)/max(nt));

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Create Aircraft Input: The following program is used to generate a matrix

which contains, for each person and aircraft event, the amplitude of the associated

excitation based on the maximum noise level of the event.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Aircraft_Input

%%%Code for assigning excitation values for aircraft events

%%%for every subject

%%%

%%%Input: Data-contains model parameters used

%%% LAMAX-noise level for each nighttime event

%%% Numpeople-number of people at location point

%%%

%%%Output: Events-amplitudes of excitation N for all subjects for all

%%% aircraft events during the night

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople)

%%linear relationship between noise level and

%%fraction responding

Noise=[35 80];%%Lamax level

per=[.17 .55];%%percent nonzero response(above baseline)

p=polyfit(Noise,per,1);

%%Cycle through for each noise event

for ii=1:length(LAMAX)

%%These are nonzero responses hence value not zero

rel=p(1)*LAMAX(ii)+p(2);

val = normrnd(Data.wtmeanamp,Data.wtstdamp,floor(Numpeople*rel),1);

I=find(val<Data.wtminamp);

%%Limit range of excitations

if length(I)>0

val(I)=val;

end

I=find(val>Data.wtmaxamp);

if length(I)>0

val(I)=Data.wtmaxamp;

end

%%Nonzero and zero aircraft responses

Total=[val(:); zeros(Numpeople,1)];

Total=Total(1:Numpeople);

rr=randperm(Numpeople);

for jj=1:length(rr)
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Events(jj,ii)=Total(rr(jj));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Create Spontaneous: The following program is used to generate N(t) for

spontaneous awakenings for one subject night.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Spontaneous

%%%Code for generating spontaneous excitations N(t)

%%%

%%%Input: Fs-sampling rate

%%% len-length of night that is being simulated

%%% Data-contains model parameters used

%%% pr-relationship between noise amplitudes during slow and

%%% fast models

%%%

%%%Output: Nt-amplitudes of excitation N(t) for slow models

%%% NtREM-amplitudes of excitation N(t) for fast REM model

%%%

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr)

delta=1/Fs;

time=0:delta:len;

Nt=zeros(1,1.1*len*Fs);

NtREM=zeros(1,1.1*len*Fs);

%%Create vectors of amplitudes and durations

Amp=normrnd(Data.wtmeanamp,Data.wtstdamp,1,length(time)*1.1);

I=find(Amp < Data.wtminamp);

Amp(I)=Data.wtminamp;

duration=normrnd(Data.wtmeandur,Data.wtstddur,1,length(time)*1.1);

I=find(duration < Data.wtmindur);

duration(I)=Data.wtmindur;

%%Time between pulses are exponentially distributed

int_arr=exprnd(Data.wtintarr,1,length(time)*1.1);

total_dur=0;

ii=1;

%%Create N(t) for slow models

%%Assuming inter-arrival time is between the start of each pulse

while (total_dur <len)
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beg=round(sum(int_arr(1:ii))/delta);

if beg==0

beg=1;

end

fin=beg+round(duration(ii)/delta);

Nt(beg:fin)=Nt(beg:fin)+Amp(ii).*ones(1,round(duration(ii)/delta)+1);

%%Create N(t) for fast models

Aramp=pr(1)*Amp(ii)+pr(2);

NtREM(beg:fin)=NtREM(beg:fin)+Aramp.*ones(1,round(duration(ii)/delta)+1);

ii=ii+1;

total_dur=sum(int_arr(1:ii))+duration(ii);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Create Aircraft Awakenings: The following program is used to generate

N(t) for aircraft noise events.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Aircraft_Awakenings

%%%Code for creating excitations N(t) associated with the occurrence

%%%of aircraft events

%%%

%%%Input: Data-contains model parameters used

%%% Timing-timing of aircraft events in minutes

%%% len-length of night that is being simulated

%%% Fs-sampling rate

%%% pr-relationship between noise amplitudes during slow and

%%% fast models

%%% ink-subject number

%%% Events-amplitudes of excitation N(t) for all subjects for all

%%% events during the night

%%%

%%%Output: aircraftREM-amplitudes of excitation N(t) for fast REM model for

%%% aircraft events

%%% aircraft-amplitudes of excitation N(t) for slow models

%%% aircraft events

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [aircraftREM aircraft]=Create_Aircraft_Awakenings(Data,Timing,...

len,Fs,pr,ink,Events)

aircraft=zeros(1,1.1*len*Fs);

aircraftREM=zeros(1,1.1*len*Fs);

for ii=1:length(Timing)

if Events(ink,ii)>0

dur=normrnd(Data.wtmeandur,Data.wtstddur,1,1);
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if dur<Data.wtmindur

dur(1)= Data.wtmindur;

end

%%Create N(t) for slow models

beg=round((Timing(ii)/10.7)*Fs);

fin=beg+round(dur*Fs);

aircraft(beg:fin)=aircraft(beg:fin)+Events(ink,ii).*ones(1,round(dur*Fs)+1);

%%Create N(t) for fast models

Aramp=pr(1)*Events(ink,ii)+pr(2);

aircraftREM(beg:fin)=aircraftREM(beg:fin)+Aramp.*ones(1,round(dur*Fs)+1);

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function E Calc: The following program is used to generate E(t) by low pass filtering

N(t), which is the summation of the aircraft noise induced and spontaneous excitation

terms.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function E_Calc

%%%Code for low-pass filtering the excitation term N(t)

%%%

%%%Input: Wake-this is the Poisson Noise (N(t))

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: T-time

%%% X-low pass filtered noise process E(t)

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=E_Calc(Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,Wake,Fs),1/Fs:1/Fs:len,[.001],options);

end

function dxdt=fun(t,x,Wt,Fs)

dxdt=zeros(1,1);

time=(0:1:(length(Wt)-1))/Fs;

w=interp1(time,Wt,t);

dxdt(1)=(64)*w-(64)*x(1);%%Lowpass below 10 seconds

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function REM Calc: The following program is used to calculate the slow REM ac-

tivity, both X REM promoting activity and Y REM inhibiting activity.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function REM_Calc

%%%Code for calculating slow REM activity-based on the Massaquoi and

%%%McCarley model.

%%%

%%%Reference:S. G. Massaquoi and R. W. McCarley. Extension of the limit

%%%cycle reciprocal interaction model of REM cycle control. An integrated

%%%sleep control model, 1:138-143,1992.

%%%

%%%Input: REM_Param-data for REM model

%%% Wake-excitation term E(t)

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: T-time

%%% X-slow REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=REM_Calc(REM_Param,Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,REM_Param,Wake,Fs),1/Fs:1/Fs:len,...

[REM_Param.xo REM_Param.yo],options );

end

function dxdt=fun(t,x,REM_Param,Wake,Fs)

dxdt=zeros(2,1);

time=(0:1:(length(Wake)-1))/Fs;

w=interp1(time,Wake,t);

dc2=(1.55+0.8*sin(.0467*t+4));%%24 hour circadian variation

dc=1;

%%REM-ON (X)

dxdt(1)=REM_Param.a*x(1)*dc2-x(1)*x(2)*REM_Param.b*dc2;

%%REM-OFF (Y)

dxdt(2)=-x(2)*REM_Param.c*dc+dc*(x(1)+(0.25/max(Wake))*w)*x(2)*REM_Param.d;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Create REM INPUT: The following program is used to calculate the start

and end of each REM period based on the level of X, REM-promoting activity, from

the slow REM model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_REM_INPUT

%%%Program for determining the beginning and end of each REM period

%%%based on the level of slow REM activity

%%%%

%%%Input: REM-slow REM model activity

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: st_new-start of each REM period

%%% ff_new-end of each REM period

%%% REM_NEW-REM-indicator, 1 during REM sleep and zero during NREM

%%% sleep

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len)

ii=1;

if max(REM)<1.5

valgreat=.5*(max(REM)-min(REM));

else

valgreat=1;

end

%%Calculate Multipliers

tempShift=REM;

Ind=find(tempShift>=valgreat);

st(ii)=Ind(1);

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift<valgreat);

maxval=max(tempShift(1:Ind(1)));

ff(ii)=Ind(1)+st(ii);

sc(ii)=1.5/maxval;

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift>=valgreat);

while(ff(ii)<len*Fs && length(Ind)>0)

ii=ii+1;

st(ii)=Ind(1)+ff(ii-1);

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift<valgreat);

if length(Ind)>0

maxval=max(tempShift(1:Ind(1)));

ff(ii)=Ind(1)+st(ii);

sc(ii)=1.5/maxval;
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tempShift=tempShift(Ind(1):length(tempShift));

else

ff(ii)=len*Fs ;

maxval=max(tempShift(1:length(tempShift)));

sc(ii)=1.5/maxval;

end

Ind=find(tempShift>=valgreat);

end

%%Cycle through and find start points for the scaled REM signal

REM_NEW=zeros(1,length(REM));

for ii=1:length(st)

if ii==1

temp=REM(1:ff(1)+(st(2)-ff(1))/2)*sc(ii);

Ind=find(temp>=1);

REM_NEW(Ind)=1;

st_new(ii)=Ind(1);

ff_new(ii)=Ind(length(Ind));

elseif ii<length(st)

temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:ff(ii)+(st(ii+1)-ff(ii))/2)*sc(ii);

Ind=find(temp>=1);

REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;

st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

else

temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:length(REM))*sc(ii);

Ind=find(temp>=1);

REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;

st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function SWA Calc: The following program is used to calculate the slow wave activity

(SWA) and Process S.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function SWA_Calc

%%%Program for calculating slow wave activity based on Achermann et al.’s

%%%model

%%%

%%%Reference: P. Achermann, D. J. Dijk, D. P. Brunner and A. A. Borbly. A

%%%model of human sleep homeostasis based on EEG slow-wave activity:

%%%Quantitative comparison of data and simulations. Brain Research

%%%Bulletin. 31: 97-113, 1993.

%%%
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%%%Input: Param-model parameters

%%% REM-indicator of REM periods

%%% Wake-aircraft and spontaneous excitations, E(t)

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%

%%%Output: T-time vector

%%% X-SWA and Process S

%%%

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=SWA_Calc(Param,REM,Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,Param,REM,Wake,Fs),1/Fs:1/Fs:len,...

[Param.SWAo Param.So],options);

end

function dxdt = fun(t,x,Param,REM,Wake,Fs)

dxdt=zeros(2,1);

timew=(0:1:(length(Wake)-1))/Fs;

timeR=(0:1:(length(REM)-1))/Fs;

w=interp1(timew,Wake,t);

R=interp1(timeR,REM,t);

%%dxdt(1) and x(1) is for SWA (slow wave activity)

%%dxdt(2) and x(2) is for process S

dxdt(1)=(Param.rc)*x(1)*x(2)*(1-x(1)/x(2))-(Param.fc)*(x(1)-Param.SWAL)*R...

-(x(1)-Param.SWAL)*(Param.fcw)*w;

dxdt(2)=-Param.gc*x(1);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function NREM Sleep Stage Classify: The following program is used to classify

NREM sleep stages based on the level of SWA and the excitation term E.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function NREM_Sleep_Stage_Classify

%%%Program for calculating NREM sleep stages based on SWA activity

%%%and excitation values

%%%

%%%Input: Est_Stage-empty vector for sleep stage assignment

%%% SWA-Slow wave activity

%%% Wake-excitation term

%%% REM-NEW-indicator of REM periods

%%%

%%%Output: Est_Stage-assigned NREM sleep stages
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW)

for ii=1:length(SWA)

if REM_NEW(ii)==0

if SWA(ii)>=2.0

Est_Stage(ii)=3;%%Stage 3/4

elseif SWA(ii)<1.0 && Wake(ii)>=.5

Est_Stage(ii)=1;%%Stage Wake/S1

elseif SWA(ii)<0.3

Est_Stage(ii)=1;%%Stage Wake/S1

else

Est_Stage(ii)=2;%%Stage 2

end

else

Est_Stage(ii)=5;%%Temporary place holder

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Fast REM Main: The following program is the main program for calculating

fast REM activity.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Fast_REM_Main

%%%Program for calculating fast REM activity

%%%

%%%

%%%Input: Est_Stage-vector containing sleep stages

%%% initRx-initial xo values for fast REM model

%%% initRy-initial yo values for fast REM model

%%% Fs-sampling rate

%%% st_new-start of each REM period

%%% ff_new-end of each REM period

%%% WakeREM-excitation term for fast REM model

%%%

%%%Output: Est_Stage-assigned sleep stages

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage]=Fast_REM_Main...

(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM)

%%Moving unstable equilibrium position

Eq_Wake=2-(WakeREM);

%%Cycle through for each REM period
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for ii=1:length(st_new)

Wake_Seg=Eq_Wake(st_new(ii):ff_new(ii));

%%t of fast REM model is on a different scale

t=0:1/Fs:(ff_new(ii)-st_new(ii))/Fs;

tnew=0:1/(10.7*Fs*5):(ff_new(ii)-st_new(ii))/Fs;

Wake_Seg_sp = spline(t,Wake_Seg,tnew);

lenT=(ff_new(ii)-st_new(ii)+1)/Fs*10.7*5;

initREM(1)=initRx(ii);

initREM(2)=initRy(ii);

delta=.06;

w=0.3*2*pi;

A=0.50;

%%Calculate Duffing oscillator solution

[T,X]=Phasic_Tonic_Calc(delta,w,Wake_Seg_sp,A,Fs,lenT-1,initREM);

%%Initial assignment of REM sleep stages

%%1-Tonic, 0-Phasic, -1-Wake

X=X(:,1);

REM_Stage=0;

I=find(X>=0);

REM_Stage(I)=1;

I=find(X<0 & X>-2);

REM_Stage(I)=0;

I=find(X<=-2);

for jj=1:length(I)

if Wake_Seg_sp(I(jj))<1.9

REM_Stage(I(jj))=-1;

else

REM_Stage(I(jj))=0;

end

end

[st, ff]=calc_tonic_phasic_int(REM_Stage);

REM_Stage_New=REM_Stage;

%%Correction for Tonic REM

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)

if min(X(st(jj):ff(jj)))>=-.25

REM_Stage_New(st(jj):ff(jj))=1;

end

end

end

[st, ff]=calc_tonic_phasic_int(REM_Stage_New);

%%Tonic REM period less than 15 seconds is equal to previous stage

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)
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if ff(jj)-st(jj)<.25*5*Fs && st(jj)>1

REM_Stage_New(st(jj):ff(jj))=REM_Stage_New(st(jj)-1);

end

end

end

%%Correct for Phasic period in which max is not near 0.5

TempREM_Phasic=ones(1,length(REM_Stage_New));

I=find(REM_Stage_New==1);

TempREM_Phasic(I)=zeros(1,length(I));

[st, ff]=calc_tonic_phasic_int(TempREM_Phasic);

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)

if max(X(st(jj):ff(jj)))<.25

REM_Stage_New(st(jj):ff(jj))=0;

end

end

end

%%Correct if awakening started during noise event-find its end

tempEvents=ones(1,length(REM_Stage_New));

I=find(Wake_Seg_sp<1.9);

tempEvents(I)=zeros(1,length(I));

[stN, ffN]=calc_tonic_phasic_int(tempEvents);

if ffN(1)~=0 && ffN(length(ffN))<length(X)

for jj=1:length(ffN)

if X(ffN(jj))<-2 && X(ffN(jj)+1)<-2

I=find(X(ffN(jj):length(X))>-2);

if length(I)~=0

REM_Stage_New(ffN(jj):ffN(jj)-1+I(1))=-1;

end

end

end

end

%%Determine sleep stage- five points for every one point in slow models.

stageREM=[-1 0 1];

REM_StageFinal=0;

for jj=1:length(X)/(5*10.7)

for kk=1:3

I=length(find(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7)==stageREM(kk)));

perseg(kk)=I/length(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7));

end

I=find(perseg==max(perseg));

REM_StageFinal(jj)=stageREM(I(1));

if REM_StageFinal(jj)==-1

Est_Stage(st_new(ii)+jj-1)=1;%%Stage Wake/S1

else

Est_Stage(st_new(ii)+jj-1)=5;%%Stage REM

end

end
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end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Phasic Tonic Calc: The following program is used to calculate the fast REM

activity based on the Duffing model with the 5th order stiffness term.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Phasic_Tonic_Calc

%%%Program for Duffings system with a 5th order stiffness term

%%%

%%%Reference:G. X. Li and F. C. Moon. Criteria for chaos of a three-well

%%%potential oscillator with homoclinic and heteroclinic orbits. Journal

%%%of Sound and Vibration. 136(1): 17-34, 1990.

%%%

%%%Input: delta-damping

%%% w-drive frequency

%%% Wake-spontaneous and aircraft excitations

%%% A-drive amplitude

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%% init-inital conditions

%%%

%%%Output: X-fast REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=Phasic_Tonic_Calc(delta,w,Wake,A,Fs,len,init)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,X) fun(t,X,delta,w,Wake,A,Fs),1/Fs:1/Fs:len,init,options);

end

function dxdt=fun(t,X,delta,w,Wake,A,Fs)

time=(0:1:(length(Wake)-1))/Fs;

m=interp1(time,Wake,t);

dxdt=zeros(2,1);

dxdt(1)=X(2);

dxdt(2)=-1*((X(1)-0.5)*(X(1)-0))*(X(1)+0.5)*(X(1)+m)*(X(1)+2.5)...

-delta*X(2)+A*cos(w*t);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Phasic Tonic Calc: The following program is used to calculate the inter-

arrival times of Phasic or Tonic REM sleep.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Phasic_Tonic_Calc

%%%Program for determing start and end points of certain activity, for

%%%example calculating the inter-arrival time of phasic activity

%%%

%%%Input: REM_Dens-fast REM model sleep stages

%%%

%%%Output: st-start

%%% ff-end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [st, ff]=calc_tonic_phasic_int(REM_Dens)

st=0;

ff=0;

ink(1:2)=1;%%ink(1) start, %%ink(2)=fin

for kk=1:length(REM_Dens)

if REM_Dens(kk)==0 && kk <length(REM_Dens)

if kk==1

st(ink(1))=kk;

ink(1)=ink(1)+1;

elseif REM_Dens(kk-1)~=0

st(ink(1))=kk;

ink(1)=ink(1)+1;

end

if REM_Dens(kk+1)~=0

ff(ink(2))=kk;

ink(2)=ink(2)+1;

end

elseif REM_Dens(kk)==0 && kk ==length(REM_Dens)

if REM_Dens(kk-1)~=0

st(ink(1))=kk;

ff(ink(2))=kk;

ink(1)=ink(1)+1;

ink(2)=ink(2)+1;

else

ff(ink(2))=kk;

ink(2)=ink(2)+1;

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Calc 30 Sec Stages: The following program is used to calculate 30 second

sleep stages.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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%%%Function Calc_30_Sec_Stages

%%%Program for calculating 30 second sleep stages

%%%

%%%Input: Est_Stage-1 second sleep stages

%%%

%%%Output: tempstage-30 second sleep stages

%%% tempstage30plot-30 second sleep stages for plotting

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage)

val=[1 2 3 5];

tempstage=0;

tempstage30plot=0;

for ii=1:length(Est_Stage)/(30)

for kk=1:length(val)

I=find(Est_Stage((ii-1)*30+1:ii*30-1)==val(kk));

per(ii,kk)=length(I)/(30);

end

maxval=max(per(ii,:));

I=find(per(ii,:)==maxval);

tempstage(ii)=I(1);

if tempstage(ii)==4

tempstage30plot(ii)=3;

elseif tempstage(ii)==3

tempstage30plot(ii)=1;

elseif tempstage(ii)==2

tempstage30plot(ii)=2;

elseif tempstage(ii)==1

tempstage30plot(ii)=4;

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Appendix H. Code for Feature Extraction and Sleep Stage Scoring

The following is the Matlab program used for extracting different features of the

polysomnography data and for scoring sleep stages. The first part of the program

extracts characteristics such as the occurrence of movement artifacts, level of EMG

activity, correlation of EOG channels, power in EEG frequency bands, and the fre-

quency with the lowest decay rate identified using Auto-Regressive modeling. An

example of some of the features that were extracted for one subject night is shown in

Figure H.1. Sleep stages are assigned for each second based on the extracted features

using a classification algorithm that was developed and the probability of being in

different sleep stages was calculated for each 30 seconds of scored sleep stages, an

example for one subject night is shown in Figure H.2. An overview of the subroutines

of the program is in Table H.1.

Table H.1. Subroutines of the feature extraction code and sleep stage
scoring algorithm.

Subroutine Name Is Called By Makes Calls to
Movement Artifacts Threshold Main Feature Calc None
Dominant Band AR Main Feature Calc None
Calc Correlation Main Feature Calc None
RLS Calc Main Feature Calc None
Amplitude Time Exceeded Main Feature Calc None
Per Power Main Feature Calc None
Power Welch Main Feature Calc None
Classify Stage None Calc REM Periods
Calc REM Periods Classify Stage None

Function Main Feature Calc: This is the main program for extracting features of

polysomnography data for later use. The data is saved and then imported into the

separate sleep stage classification program.
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Figure H.1. An example of some of the characteristics that are ex-
tracted including; (a) the percent of an epoch occupied by movement
artifacts, (b) the percent of an epoch occupied by Slow Wave Sleep
(SWS), (c) the frequency that has the lowest decay rate identified us-
ing an AR(4) model, (d) correlation between the right and left EOG
channels, and (e) the root-mean-square (RMS) of the EMG activity
for each epoch.
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Figure H.2. Probability of being in Stage Wake/S1, Stage 2, Stage
3/4, and REM sleep calculated using the developed sleep stage scoring
algorithm.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Main_Feature_Calc

%%%Main code for extracting and saving signal characteristics for later

%%%analysis

%%%Input: subject_num-subject number

%%% night_num-night number

%%% Seg_Len-length of moving signal (i.e. usually 15 or 30 seconds)

%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)

%%% Fs-sampling rate

%%% correct_option-’correct’ if EKG and EOG artifact corrections

%%% are going to be applied to the EEG data

%%% EKG_File-indicates whether the EKG file is usuable or not for

%%% correction, equal to 0 if it is fine to use, 1 if it contains

%%% artifacts

%%%

%%%Output: The data is saved as .mat files within this

%%% program

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function Main_Feature_Calc...

(subject_num, night_num,Seg_Len,inc_Len,Fs,correct_option,EKG_File)

%%Read in the Physiological Data from 1999 UK dataset

choice={’C4-A1’,’C3-A2’,’EMG’,’EOG-L’,’EOG-R’,’EKG’,’Stages’};

[Signals, Stages, Missing_Data]=Load_Signals(subject_num,night_num,choice);

%%For EOG and EKG Corrections

lambda = .9999; %%Forgetting Factor

delta = .01; %%Initial Value

M=3;%%Filter Order

%%Indentify movement artifacts

%%ART indicates whether a 1 second epoch was above the threshold (1 there

%%is an artifact and 0 there is not an artifact.)

%%Cycle through twice for both EEG channels

for ii=1:2

[ART_Thres(:,ii),ART_Thres_onesec(:,ii)]...

=Movement_Artifacts_Threshold(Signals(:,ii),Fs,inc_Len);

end

%%Frequency Bands

bandHigh= [ 2 4.5 4.5 8 12 16 25 35 45 15 14 45];

bandlow= [.5 2 .5 4.5 8 12 16 25 35 11 12 .5];

%%Save AR Model for every increment

Band=[.5 45];

Size=1;

for jj=1:2

[Damp_AR(:,jj) Freq_AR(:,jj)]=Dominant_Band_AR...

(Signals(:,jj),Band,floor(length(Signals(:,1))/(Fs)),Size,inc_Len,Fs);
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end

%%Incase I want to run for multiple segment lengths

for ink=1:length(Seg_Len)

%%Preallocate Space

SWS=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

ART=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

Pow=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);

Pow_Welch=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);

EOG_Corr=zeros((length(ART_Thres(:,1)))-Seg_Len,1);

maxEOG=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

EMG_RMS=zeros((length(ART_Thres(:,1)))-Seg_Len,1);

K_Complex=zeros((length(ART_Thres(:,1)))-Seg_Len,30,1);

inc=1;

for kk=1:(length(ART_Thres(:,1)))-Seg_Len

display(kk)

for jj=1:2%%Cycle twice for both EEG channels

Seg=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len(ink)*Fs,jj);

ART(kk,jj)=sum(ART_Thres((kk-1)*1+1:(kk-1)*1+Seg_Len(ink),jj));

EKG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,6);

EOGL=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,4);

EOGR=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,5);

EMG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,3);

if jj==1;%%Don’t need this step for both cycles through

Band=[.5 5];

Thresholds=[25 250];

%%Calculate EOG_Corr

[EOG_Corr(kk) maxEOG(kk,1:2)]=Calc_Correlation...

(EOGL,EOGR,Thresholds,Band,Fs);

%%Calculate EMG RMS

EMG_RMS(kk)=sqrt(mean(abs(EMG).^2));

end

%%If the EEG signal is going to be corrected for EKG and EOG artifacts

if strcmp(correct_option,’correct’)

%%if EKG signal is usuable && low amount of movement artifacts

if EKG_File==0 && ART(kk,jj)<15

%%For EKG Correction

%%Determine if segment contains EKG

[CC]=...

Calc_Correlation(Seg,EKG,[0 1.1*max([max(Seg) max(EKG)])],[.5 40],Fs);

if abs(CC)>=.2 %%If EEG and EKG are Correlated

%%EKG input signal measured in mV, EEG is measured in micro volts

u=EKG*1000;

d=Seg;%%Contaminated/desired EEG signal

%%use RLS to correct EEG signal

%%"Fixed Signal" is the output error of RLS

[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);

end

end
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%%For EOG Correction

%%Determine if segment contains eye mvmts

%%if eye Movement && low amount of EEG artifacts

if EOG_Corr(kk)<=-.2 && ART(kk,jj)<15

Band=[.5 5];

Thresholds=[25 250];

%%Corr between EEG and EOGL

[CCL]=Calc_Correlation(EOGL,Seg,Thresholds,Band,Fs);

%%Corr between EEG and EOGR

[CCR]=Calc_Correlation(EOGR,Seg,Thresholds,Band,Fs);

%%Determine if EEG and EOG signals are correlated

if abs(CCL)>=abs(CCR) && abs(CCL)>=.2%%Use Signal most correlated

u=EOGL;%%input signal

d=Seg;%%Contaminated/desired EEG signal

%%"Fixed Signal" is the output error of RLS

[Seg,w,h]=RLS(lambda,M,u,d,delta);

elseif abs(CCR)>=.2

u=EOGR;%%input signal

d=Seg;%%Contaminated desired EEG signal

[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);

end

end

end

%%Detect SWS

Threshold_SWS=[75 250];

[DataSWS]=Amplitude_Time_Exceeded(Seg,Threshold_SWS,[.5 2],Fs);

SWS(kk,jj)=sum(DataSWS.Time_Above)/DataSWS.Total_Time;

%%Power for segment

[Pow(kk,1:length(bandHigh),jj)]=Per_Power(Seg,bandHigh,bandlow,Fs);

%%Power using Welch Method

Band=[.5 45];

[Pow_Welch(kk,1:length(bandHigh),jj)]=...

Power_Welch(Seg,bandHigh,bandlow,Band,Fs);

end

end

end

%%Save files

save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’ ...

num2str(night_num) ’_Damp_ARburg.mat’],’Damp_AR’)

save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Freq_ARburg.mat’],’Freq_AR’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_SWS.mat’],’SWS’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...
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num2str(night_num) ’_EOG_Corr.mat’],’EOG_Corr’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART.mat’],’ART’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...

num2str(night_num) ’_EMG_RMS.mat’],’EMG_RMS’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Pow.mat’],’Pow’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Pow_Welch.mat’],’Pow_Welch’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_maxEOG.mat’],’maxEOG’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART_Thres.mat’],’ART_Thres’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART_Thres_onesec.mat’],’ART_Thres_onesec’)

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Movement Artifacts Threshold: This program is used to identify when

movement artifacts are occurring based on activity in the gamma frequency band

of the EEG signal.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Movement_Artifacts_Threshold

%%%Code for calculating thresholds which are used to identify movement

%%%artifacts. The method used is based on the work of Brunner et al.

%%%

%%%Reference: D. P. Brunner, R. C. Vasko, C. S. Detka, J. P. Monahan, C. F.

%%%Reynolds III and D. J. Kupfer. Muscle artifacts in the sleep EEG:

%%%Automated detection and effect on all-night EEG power spectra. J. Sleep

%%%Res. 5: 155-164, 1996.

%%%

%%%Input: Signal-typically the EEG channel

%%% Fs-is the sampling frequency

%%% inc_Len-size of increment in time (i.e. usually 1 for 1 second)

%%%

%%%Output: ART-indicator of artifacts, 1 if there is an artifact and 0 if

%%% there is not an artifact

%%% ART_Thres_re-threshold used for defining artifacts

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [ART,ART_Thres_re]=Movement_Artifacts_Threshold(Signal,Fs,inc_Len)

%%Consider only activity from 26 to 32 Hz

[b,a]=butter(4,[26 32]./(Fs/2),’bandpass’);

Filt_Signal=filtfilt(b,a,Signal);
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%%Calculate average power every 4 seconds

meanval=zeros(1,length(Signal)/(4*Fs));

for ii=1:length(Signal)/(4*Fs)

meanval(ii)=mean(abs(Filt_Signal((ii-1)*4*Fs+1:ii*4*Fs)).^2);

end

pow_smooth=medfilt1(meanval,45); %%Brunner smoothed out the spectrum for the

%%threshold using the

%%surrounding three minutes

%%three minutes divided by 4 second epochs

%%is 45 points

ART_Thres_4sec=pow_smooth.*4;%%Brunner found that 4* the smoothed threshold

%%provided the best results

%%Resample threshold

len=length(Signal)/(inc_Len*Fs)-(4/inc_Len);

t=(0:1:length(ART_Thres_4sec)-1)*4;

tnew=(0:1:(len-1))*inc_Len;

ART_Thres_re=spline(t,ART_Thres_4sec,tnew);

%%Cycle through signal and and determine if the mean of the

%%signal is above the smoothed out threshold

for ii=1:length(ART_Thres_re)

meanval(ii)=mean(abs(Filt_Signal((ii-1)*inc_Len*Fs+1:ii*inc_Len*Fs)).^2);

if meanval(ii)> ART_Thres_re(ii)

ART(ii)=1;

else

ART(ii)=0;

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Dominant Band AR: This program is used to determine the frequency with

the lowest decay rate using an AR model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Dominant_Band_AR

%%%Code for calculating the frequencies that have the least damping

%%%identified using an AR model. The approach is based on Olbrich and

%%%Achermann.

%%%

%%%Reference: E. Olbrich and P. Achermann. Analysis of the temporal

%%%organization of sleep spindles in the human sleep EEG using a
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%%%phenomenological modeling approach. Journal of Biological Physiology,

%%%34:341349, 2008.

%%%

%%%Input: Signal-the EEG signal

%%% Band-frequency band limits for filtering

%%% Seg_Len-length of signal being used

%%% Size-length of sub-segment

%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)

%%% Fs-the sampling frequency

%%%

%%%Output: max_freq-frequency associated with the minimum damping

%%% max_damp-minimum damping value.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [max_damp,max_freq]=Dominant_Band_AR(Signal,Band,Seg_Len,Size,inc_Len,Fs)

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

Seg=filtfilt(b,a,Signal);

N=4;%%Order of AR filter

%%preallocate space

max_damp=zeros((Seg_Len/inc_Len)-Size,1);

max_freq=zeros((Seg_Len/inc_Len)-Size,1);

%%Determine frequency and damping

for ii=1:floor(Seg_Len/inc_Len)-Size

[a,e]=arburg(Seg((ii-1)*Fs*inc_Len+1:(ii-1)*Fs*inc_Len+1+Fs*Size),N);

damping=abs(roots(a));

freq=rad2deg(abs(angle(roots(a))))*(Fs/2)/180;

%%find maximum value

maxval=max(damping);

I=0;

I=find(damping==maxval);

if length(I)>1

I2=find(freq(I)>=.5 & freq(I)<45);

if length(I2)>0

freqval=min(freq(I(I2)));

else

freqval=min(freq(I));

end

else

freqval=freq(I(1));

end

if freqval>=Band(1) && freqval<Band(2)

max_damp(ii)=maxval;

max_freq(ii)=freqval;

else

max_damp(ii)=0;

max_freq(ii)=0;

end
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end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function RLS Calc: This program is used to create a Recursive Least Squares Filter

(RLS) for removing eye movement and ECG artifacts from EEG data.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function RLS_Calc

%%%Code for Recursive Least Squares Filter

%%%

%%%Reference: S. Haykin Adaptive Filter Theory. Prentice Hall, Upper Saddle

%%%River, New Jersey, 3rd edition, 1996.

%%%

%%%Input: Lambda=forgetting factor

%%% M = filter order

%%% x=input signal (ECG or EOG)

%%% d=desired signal (contaminated EEG)

%%% delta=initial value

%%%

%%%Output: e = error estimate (corrected signal)

%%% h = filter coefficients

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [e,w,h]=RLS_Calc(lambda,M,x,d,delta)

w=zeros(M,1);

P=eye(M)/delta;

x=x(:);

d=d(:);

len=length(x);

%%error vector

e=d;

for ii=M:len

x_est=x(ii:-1:ii-M+1);

k=P*x_est/(lambda+x_est’*P*x_est);

e(ii)=d(ii)-w’*x_est;

w=w+k*conj(e(ii));

h(:,ii)=w;

P=lambda^(-1)*P-lambda^(-1)*k*x_est’*P;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Calc Correlation: This program is used to calculate the correlation between

two signals.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Calc_Correlation

%%%Code for calculating the correlation between two signals

%%%

%%%Input: Seg1-Signal 1

%%% Seg2-Signal 2

%%% Thresholds-minimum and maximum amplitude of signal

%%% primarily used for EOG to eliminate artifacts

%%% Band-frequency band limits

%%% Fs-the sampling frequency

%%%

%%%Output: CC-correlation of the two channels

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [CC,maxval]=Calc_Correlation(Seg1,Seg2,Thresholds,Band,Fs)

if Band(1)~=0

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

temp1=filtfilt(b,a,Seg1);

temp2=filtfilt(b,a,Seg2);

else

[b,a]=butter(4,Band(2)./(Fs/2),’low’);

temp1=filtfilt(b,a,EOGL);

temp2=filtfilt(b,a,EOGR);

end

maxval(1)=max(abs(temp1));

maxval(2)=max(abs(temp2));

if maxval(1)<Thresholds(2) && maxval(2)<Thresholds(2) && ...

maxval(1)>Thresholds(1) && maxval(2)>Thresholds(1)

C=corrcoef(temp1,temp2);

CC=C(1,2);

else

CC=0;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Amplitude Time Exceeded: This program is used to calculate the percent

of each epoch occupied by slow wave sleep.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Amplitude_Time_Exceeded

%%%Code for calculating peak to peak amplitude critera

%%%

%%%Reference: H. Kuwahara, H. Higashi, Y. Mizuki, S. Matsunari, M. Tanaka,

%%%and K. Inanaga. Automatic real-time analysis of human sleep stages by

%%%an interval histogram method. Electroencephalography and Clinical

%%%Neurophysiology, 70: 220-229,1988.

%%%

%%%Input: Signal-either the EOG, EEG, or EMG signal

%%% Thresholds-vector containing the minimum and maxmium amplitude

%%% Band-frequency band limits

%%% Fs-sampling frequency

%%%

%%%Output: Data.Time_Above-time the signal is within the specified thresholds

%%% Data.Total_Time-total time of segment

%%% Data.Range-maximum value of signal between zero crossings

%%% Data.Duration-duration of the signal between zero crossings

%%% Data.Start_Time-start time of each zero crossing

%%% Data.End_Time-end time of each zero crossing

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data]= Amplitude_Time_Exceeded(Signal,Thresholds,Band,Fs)

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

Seg=filtfilt(b,a,Signal);

greater=[];

greater=find(Seg>=0);%%Find values greater then 0

incpos=1;

crossingpos=[];

incneg=1;

crossingneg=[];

%%Find all zero crossings

for ii=1:length(greater)

if (greater(ii)-1)>0 && (greater(ii)+1)<length(Seg)

if Seg(greater(ii)-1)<0 && Seg(greater(ii)+1)>0 %%make sure it is a crossing

crossingpos(incpos)=greater(ii);

incpos=incpos+1;

end

if Seg(greater(ii)+1)<0 && Seg(greater(ii)-1)>0

crossingneg(incneg)=greater(ii);

incneg=incneg+1;

end

end

end

%%Find the start, end, range, and duration for each crossing

ink=1;

if crossingpos(1)<crossingneg(1)
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lenval= length(crossingpos)-1;

else

lenval= length(crossingneg)-1;

end

for ii=1:lenval

if crossingpos(1)<crossingneg(1)

temp=abs(Seg(crossingpos(ii):crossingneg(ii)));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));

Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

temp=abs(Seg(crossingneg(ii):crossingpos(ii+1)));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii+1))));

Data.Duration(ink)=(crossingpos(ii+1)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii+1)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

else

temp=abs(Seg(crossingneg(ii):crossingpos(ii)));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));

Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

temp=abs(Seg(crossingpos(ii):crossingneg(ii+1)));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii+1))));

Data.Duration(ink)=(crossingneg(ii+1)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii+1)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

end

end

ii=length(crossingpos);

if crossingpos(1)<crossingneg(1) && length(crossingneg)==length(crossingpos)

temp=abs(Seg(crossingpos(ii):crossingneg(ii)));

tempSign=Seg(crossingpos(ii):crossingneg(ii));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));



386

Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

Data.Range_Sign(ink)=tempSign(ind(1));

elseif length(crossingneg)==length(crossingpos)

temp=abs(Seg(crossingneg(ii):crossingpos(ii)));

tempSign=Seg(crossingneg(ii):crossingpos(ii));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));

Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

Data.Range_Sign(ink)=tempSign(ind(1));

end

%%Determine time when peak to peak amplitude is greater than the threshold

Data.Total_Time=sum(Data.Duration);

Data.Time_Above=zeros(1,length(Data.Range));

for ii=1:length(Data.Range)-1

if (Data.Range(ii)+Data.Range(ii+1))>=Thresholds(1) &&...

(Data.Range(ii)+Data.Range(ii+1))<=Thresholds(2)

%%Make sure that half of wave is not contributing to the entire peak to

%%peak amplitude

if Data.Range(ii)>=Thresholds(1)*.25 && Data.Range(ii+1)>=Thresholds(1)*.25

if (Data.Duration(ii)+Data.Duration(ii+1))>=1/Band(2) &&...

(Data.Duration(ii)+Data.Duration(ii+1))<=1/Band(1)

Data.Time_Above(ii)=Data.Duration(ii);

Data.Time_Above(ii+1)=Data.Duration(ii+1);

end

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Per Power: This program is used to calculate the root-mean-square value

for the power in each frequency band.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function: Per_Power

%%%Code for calculating RMS values for each frequency band

%%%

%%%Input: EEG-EEG segment
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%%% BandHigh-upper frequency band limit

%%% BandLow-lower frequency band limit

%%% Fs-sampling frequency

%%%

%%%Output: pow-RMS value for each of the specified frequency bands

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [pow]=Per_Power(EEG,bandHigh,bandlow,Fs)

pow=zeros(1,length(bandlow));

for ii=1:length(bandlow) %%Cycle through and calculate

[b,a]=butter(4,[bandlow(ii) bandHigh(ii)]./(Fs/2),’bandpass’);

temp=filtfilt(b,a,EEG);

pow(ii)=sqrt(mean(abs(temp).^2));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Power Welch: This program is used to calculate power in each frequency

band.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function: Power_Welch

%%%Code for calculating power spectral density

%%%

%%%Reference: F. Ferrillo, S. Donadio, F. De Carli, S. Gabarino, and

%%%L. Nobili. A model-based approach to homeostatic and ultradian

%%%aspects of nocturnal sleep structure in narcolepsy.

%%%Sleep, 30(2):157165, 2007.

%%%

%%%Input: EEG-EEG segment

%%% BandHigh-upper frequency band limits

%%% BandLow-lower frequency band limits

%%% Band-cutoff frequencies for filter

%%% Fs-sampling frequency

%%%

%%%Output: Pow-power for each of the specified frequency bands

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Pow]=Power_Welch(EEG,bandHigh,bandlow,Band,Fs)

%%Method is Similar to Ferrillo et al. Calculate PSD using

%%Welch method.

%%Filter EEG

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

EEG_filt=filtfilt(b,a,EEG);
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%%Calculate power spectra using the Welch method

%%Use 4 second segments, apply hamming window

%%Use 75% overlap

%%Sum power in each frequency band

window=4*Fs;

noverlap=.75*window;

nfft=2^(nextpow2(8*window));

[Sxx,f] = pwelch(EEG_filt,window,noverlap,nfft,Fs,’onesided’);

%%Calculate power in each frequency Band

for ii=1:length(bandHigh)

start=find(f>=bandlow(ii));

fin=find(f<bandHigh(ii));

Pow(ii)=sum(Sxx(start(1):fin(length(fin))));

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Calc REM Periods: This program is used to identify the start and end of

each REM period.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Calc_REM_Periods

%%%Code for calculating potential REM sleep periods as part of

%%%sleep stage classification algorithm

%%%

%%%Input: Stages-sleep stages

%%% inc_len-sliding increment used

%%%

%%%Output: start-start of each potential REM period

%%% fin-end of each potential REM period

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [start,fin]=Calc_REM_Periods(Stages,inc_len)

%%Find start and finish for each REM period

starti=[];

fini=[];

starti=0;

fini=0;

I=find(Stages==5);

starti(1)=I(1);

ink=1;

for kk=2:length(I);

durStage=length(find(Stages(I(kk-1):I(kk))<5));

%%definition need greater then 15 minutes

if durStage>15*floor(60/inc_len)%
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fini(ink)=I(kk-1);

ink=ink+1;

starti(ink)=I(kk);

end

end

%%Can happen if REM sleep period is at end of night

if length(starti)>length(fini)

fini(length(starti))=I(length(I));

end

%%Eliminate very brief REM sleep periods

start=[];

fin=[];

ink=1;

for kk=1:length(starti)

lenREM=length(find(Stages(starti(kk):fini(kk))==5));

if lenREM>=1*floor(60/inc_len) && fini(kk)-starti(kk)>=2.0*floor(60/inc_len)

start(ink)=starti(kk);

fin(ink)=fini(kk);

ink=ink+1;

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Classify Stage: This program is used to automatically classify sleep stages.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Classify_Stage

%%%Code for automatically classifying sleep stages

%%%

%%%Input: ART-artifact signal

%%% SWS-percent of epoch occupied by SWS

%%% EOG_Corr-correlation between left and right EOG channels

%%% EMG-RMS-root mean square of EMG activity

%%% Freq-AR-dominant frequency in the EEG signal

%%% Alpha-power in the alpha frequency band

%%% Delta-power in the delta frequency band

%%% Sigma-power in the sigma frequency band

%%% Theta-power in the theta frequency band

%%% Seg-Size-size of segment that sleep stages are being scored

%%% for

%%% inc_len-sliding increment used

%%%

%%%Output: Est_Stage-sleep stages for each time increment

%%% Per_Stage-probility of sleep stage

%%% Hyp-hypnogram for plotting

%%% Count_AR-percent of epoch dominated by each frequency
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage,Per_Stage,Hyp,Count_AR]=Classify_Stage...

(ART,SWS,EOG_Corr,EMG_RMS,Freq_AR,Alpha,Delta,Sigma,Theta,Seg_Size,inc_len)

I=find(EMG_RMS>0);

a=sort(EMG_RMS(I));

per_85=a(round(.85*length(a)));%%Most EMG_RMS is below 85 percentile

Est_Stage=85.*ones(1,length(SWS));

ink=1;

Est_Stage(1)=2;

jj=1;

Count_AR=0;

for ii=2:length(Alpha)

bandHigh= [ 4.5 8 12 16 25 35 ];

bandlow= [ .5 4.5 8 12 16 25 ];

for jj=1:length(bandlow)

tempFreq_Ar=Freq_AR(ii:ii+floor(Seg_Size/inc_len)-1);

I=find(tempFreq_Ar>=bandlow(jj) & tempFreq_Ar< bandHigh(jj));

if length(I)~=0

Count_AR(ii,jj)=length(I)/Seg_Size;

else

Count_AR(ii,jj)=0;

end

end

Count_AR(ii,:)=Count_AR(ii,:)./sum(Count_AR(ii,:));

if ART(ii,1)>=5 || Count_AR(ii,3)>=.5

Est_Stage(ii)=0;

%%If there is not an artifact

else

if EOG_Corr(ii)>-.2 %%no eye movements

%%.15 is from 2 standard deviations for Stage 2 sleep

if (SWS(ii)>=.15 || Delta(ii)>=0.7 )

Est_Stage(ii)=3;

elseif (SWS(ii)>=.05 && SWS(ii)<.15 ) || (Count_AR(ii,4)>=1/Seg_Size )

if Est_Stage(ii-1)==3 && Delta(ii)>=0.65 ...

&& Count_AR(ii,4)<=1/Seg_Size && Sigma(ii)<=1/Seg_Size

Est_Stage(ii)=3;

else

Est_Stage(ii)=2;

end

else

if Alpha(ii)/Theta(ii) >=1.5

Est_Stage(ii)=0;

elseif Est_Stage(ii-1)==5

if EMG_RMS(ii)<=per_85 && SWS(ii)<=1/Seg_Size && Delta(ii)<0.45

Est_Stage(ii)=5;

else
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Est_Stage(ii)=0;

end

else

Est_Stage(ii)=2;

end

end

%%Eye Movement

elseif EOG_Corr(ii)<=-.2

if EMG_RMS(ii)<=per_85 && (Alpha(ii)/Theta(ii))< 1.5 && Delta(ii)<0.45

Est_Stage(ii)=5;

else

Est_Stage(ii)=0;

end

end

end

end

%%Get rid of brief eye movements (single eye movements

%%with no other activity around it)

for ii=floor(61/inc_len):length(Est_Stage)-floor(60/inc_len)

I=find(Est_Stage(ii-floor(60/inc_len):ii+floor(60/inc_len))==5);

if length(I)<floor(3/inc_len) && Est_Stage(ii)==5

Est_Stage(ii)=0;

end

end

%%Correction for rapid eye movements at the beginning of the

%%night

I=find(Est_Stage(1:30*floor(60/inc_len))==5);

for ii=1:length(I)

if Est_Stage(I(ii)-1)==0

Est_Stage(I(ii))=0;

else

Est_Stage(I(ii))=2;

end

end

%%Correct for Stage 2 sleep during REM periods

[start,fin]=Calc_REM_Periods(Est_Stage,inc_len);

ink=1;

for ii=1:length(start)

for jj=start(ii):fin(ii)

if Est_Stage(jj)==2 && SWS(jj)<2/30 && Count_AR(jj,4)<=.05

Est_Stage(jj)=5;

elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Alpha(ii)/Theta(ii) >=1.5

Est_Stage(jj)=0;

elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Count_AR(jj,3)>Count_AR(jj,2)

Est_Stage(jj)=0;

end

end

end
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%%Get rid of eye movements not between end points

for ii=1:length(start)

if ii==1

I=find(Est_Stage(1:start(ii)-1)==5);

Est_Stage(I)=0;

elseif ii<=length(start)

I=find(Est_Stage(fin(ii-1)+1:start(ii)-1)==5);

Est_Stage(fin(ii-1)+I)=zeros(1,length(I));

end

end

if fin(length(fin))+1<length(Est_Stage)

I=find(Est_Stage(fin(length(fin))+1:length(Est_Stage))==5);

Est_Stage(fin(length(fin))+I)=0;

end

val=[0 2 3 5];

%%Calc_30 second sleep stages

for ii=1:length(Est_Stage)/floor(30/inc_len)

for jj=1:length(val)

Per_Stage(ii,jj)=...

length(find(Est_Stage((ii-1)*floor(30/inc_len)+1:ii*floor(30/inc_len))...

==val(jj)))/floor(30/inc_len);

end

maxval=max(Per_Stage(ii,:));

ind=find(Per_Stage(ii,:)==maxval);

if length(ind)>1

if ii~=1

Hyp(ii)=Hyp(ii-1);

else

Hyp(ii)=val(ind(1));

end

elseif length(ind)==1

Hyp(ii)=val(ind(1));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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7. NONLINEAR SLEEP MODEL DEVELOPMENT AND PARAMETER

ESTIMATION

After reviewing the literature on sleep models, the Massaquoi and McCarley nonlinear

dynamic model was found to be the best candidate for altering so it could be used to

predict the effect of aircraft noise on sleep. However, the model has slow dynamics

which makes it difficult to predict brief awakenings including those that occur due

to noise. To overcome this limitation additional components were introduced into

the models. These components include an additional excitation term which has a

dependence on noise level and a model that predicts faster dynamics during a REM

period. The parameter values for the modified model were estimated using the 1999

UK study data. This required developing parameter estimation methods and also

methods to process the polysomnography data to produce signals that are closely

related to the E, n(t), X, Y , SWA and S of the original Massaquoi and McCarley

model. Similarly, parameters in the new fast REM part of the model had to be

estimated from signals derived from the sleep study data. A method to determine

whether a person is in Tonic or Phasic REM sleep, based on the occurrence of Rapid

Eye Movement was also developed. The results of simulations using the model will

also be presented later in this chapter.

7.1 Limitations of Massaquoi and McCarley Model

Before determining how to add a noise level dependence to the Massaquoi and Mc-

Carley model, simulations were conducted using the original model to determine if it

could be used to predict trends in sleep stages similar to those observed with other
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models. The values of the coefficients of the model, used in the simulations, are listed

in Table 7.1 and the equations were provided in Chapter 5 (Equations (5.47), (5.48),

(5.49), (5.55), (5.56), (5.57)) . One hundred simulations were performed using the

model. The variability in the predictions for each simulation was due to the impulsive

excitation term E (filtered square waves) where each impulse has a random arrival

time, height, and duration (Massaquoi and McCarley, 1992). The probability of be-

ing in NREM, REM and Wake stages was calculated and the results were compared

to predictions using Basner’s Baseline Markov model (2006). The results are shown

in Figure 7.1. The Massaquoi and McCarley model predicted a higher probability of

being in NREM sleep than Basner’s model, and lower probability of being awake or in

REM sleep. In order to improve the predictions of the model the value of c (in Equa-

tion (5.48)), which controls the rate of decay of Y (REM-OFF) activity, was increased

by 40%. A better agreement was obtained between the predicted probabilities.

Table 7.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).

Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10
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Figure 7.1. Probability of being in Wake, REM, and NREM sleep
predicted using the original parameters of the Massaquoi and McCar-
ley model (blue), with the parameter c increased by 40% (green) and
with Basner’s Markov model (red).
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Another difference between the predictions of the two models is that the Massaquoi

and McCarley model predictions have oscillations in the probability of being in NREM

and REM sleep which Basner’s Markov model does not. These ultradian oscillations

are partly due to the assumption when performing the simulations that everyone falls

asleep at the same time. In one set of simulations it was assumed that everyone

retired at the same time (11:00 pm), and in another set of simulations the time to fall

asleep was varied randomly for each simulation according to a normal distribution

which had a mean start time of 11:00 pm and a standard deviation of 30 minutes. One

hundred simulations were conducted using Basner’s Markov model (Equation (4.1))

and the Massaquoi and McCarley model (Equations (5.47), (5.48), (5.49), (5.55),

(5.56), (5.57)). The results are shown in Figure 7.2. The ultradian cycles in the

predictions of the Massaquoi and McCarley model were smoothed out when the sleep

onset time was varied and the predictions were more similar to those of Basner’s

Markov model but with a less pronounced increase in REM towards the end of the

night.

While the overall trends in sleep stage predictions between the two models are

in agreement, the Massaquoi and McCarley model is not without limitations. One

limitation of the model is that awakenings or transitions to lighter sleep are not

predicted by the model during a REM sleep period. A transition from REM to Wake

and then back to REM cannot occur. In Figure 7.3, an example of a REM period

and transitions from REM sleep to Stage Wake and Stage 1 during that period for

one night of sleep, from the UK dataset, is shown. The Massaquoi and McCarley

model in its current form cannot predict awakenings during REM sleep because the

level of X (REM-ON) activity does not oscillate during a REM period. The level of

Y (REM-OFF) neuron activity is low when X (REM-ON) activity is high and will

not cause a large change in the level of X when an excitation occurs. An alternative
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Figure 7.2. Probability of being in Wake (light gray), REM (dark
gray), and NREM sleep (black) predicted using, (a) and (b) the Mas-
saquoi and McCarley model and (c) and (d) Basner’s Markov model.
(a) and (c) All individuals retired at 11:00 pm and (b) and (d) Gaus-
sian variation in sleep onset was assumed. Results based on 100 sim-
ulations.
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sleep stage scoring rule could be used in which an awakening is considered to occur

if the excitation term is greater than a certain value, instead of always scoring the

stage as REM when X is greater than 1.4. This type of approach was taken by

Comte, Schatzman, Ravassard, Luppi, and Salin (2006) when scoring sleep stages

using their model. However, an inadequacy of this approach is that an awakening

will not play a more dynamic role in the sleep process and whether an individual

awakens during REM sleep has been found to depend on ongoing brain activity and

whether an individual is in Phasic or Tonic REM sleep (Ermis, Krakow, and Voss,

2010).

0 50 100 150 200 250 300 350 400 450
Stage 4

Stage 3

Stage 2

Stage 1

REM

Wake

Time (min)

Last REM
   Cycle

Figure 7.3. Example of a REM sleep period and the change in sleep
stages within that period.

The second limitation of the Massaquoi and McCarley model is that it has slow

dynamics. While the model can predict the slow ultradian 90-100 minute oscillation

between NREM and REM sleep, it cannot be used to adequately predict brief awak-
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enings. To emphasize the slow dynamics, the equations of the REM sleep portion of

the model can be rewritten where the equation for REM promoting (X) activity is,

Ẋ + ωc1X = 0, (7.1)

ωc1 = b(X)Y − a(X)S1(X). (7.2)

The equation for REM inhibiting (Y ) activity can also be rewritten as,

Ẏ + ωc2Y = 0, (7.3)

ωc2 = c− dcircS2(Y )(X + E). (7.4)

Both equations have the form of a low pass filter with time varying cutoff frequencies.

In Figure 7.4 the variations in the two frequencies are shown. The majority of the

behavior of the model is on the order of hours not seconds. Dynamics on a timescale

of several seconds are needed to predict awakenings during REM periods.

In order to further examine the use of the Massaquoi and McCarley model for

predicting brief awakenings, simulations were conducted in which excitation events

(N(t)) were of equal spacing, amplitude, and duration. The duration of the impulses

was one minute, which is approximately the duration of an aircraft event, the ampli-

tude of the impulses was varied in increments of 1, from 1 to 10. For these simulations

the following equation was used for E,

Ė + kE = kN, (7.5)

where k was equal to 10, which is the value in the original Massaquoi and McCarley

model. The duration spent in NREM, REM, and Wake states were calculated for each
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simulation. In Figure 7.5 the results of two simulations, with low (Emax=2.4) and

high excitation levels (Emax=6.0) for 16 events are shown. The number of REM sleep

periods and the level of slow wave activity were found to decrease as the amplitude

of the events were increased. However, due to the sleep stage scoring thresholds of

the original model, the number of predicted awakenings did not increase when the

amplitude of the impulses was increased. In Figure 7.6 the duration of REM, NREM,

and Wake stages for various amplitudes of the excitation parameter (N(t)) are shown.

Simulations were also conducted for 64 events of varying amplitudes. The results

are shown for low amplitudes (Emax=1.8) and high amplitudes (Emax=3.6) in Figure

7.7 and the duration of REM, NREM and Wake stages for various amplitudes of the

excitation parameter are shown in Figure 7.8. As the amplitude of the noise events

was increased, the NREM and REM sleep cycles during the night disappeared and

there was still not a large increase in the number of predicted awakenings.

The addition of an excitation term to the equation for X (REM-ON) activity was

examined to determine if more variations in the level of activity and an increase in

the prediction of awakenings could be obtained without destroying the slow ultradian

cycling. One approach was to use the following equation,

Ẋ = a(X)S1(X)X − b(X)XY − EX. (7.6)

The term EX was added rather than just E alone in order to prevent the level of X

from becoming negative. The results for a simulation using this approach is shown

in Figure 7.9. The addition of the E term caused a decay in REM-ON (X) activity

which caused the ultradian cyclic behavior to end. Therefore, another approach in

which a saturation function (f(X)) was added was also examined, the equation for

which is,

Ẋ = a(X)S1(X)X − b(X)XY − f(X)EX. (7.7)
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Figure 7.5. Massaquoi and McCarley model predictions for 16 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=2.4, Nmax=4) and (b) high amplitude (Emax=6.0, Nmax=10)
impulses.
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Figure 7.6. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 16 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 30 minutes.
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Figure 7.7. Massaquoi and McCarley model predictions for 64 events
of 1 minute duration occurring during the night. (a) Low amplitude
(Emax=1.8, Nmax=3) and (b) high amplitude (Emax=3.6, Nmax=7)
impulses.
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Figure 7.8. The duration of REM, NREM and Wake stages predicted
using the Massaquoi and McCarley model for nights with 64 events
of different amplitudes of N(t). The duration of the impulses in N(t)
was 1 minute and spacing between impulses was 7.5 minutes.
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In Figure 7.10 the saturation function is shown. The form of the saturation function

was chosen so the excitation term only affected X when the level of X was high. The

results for a simulation conducted with the added saturation function are shown in

Figure 7.11, where the labels A and B, in the Figure, indicate the decay in the X

activity due to the addition of the excitation term to the REM-ON (X) equation.

While awakenings were predicted during the REM periods this behavior is still not fast

enough for predicting awakenings during sleep, which can be as brief as 15 seconds.

Also not all simulations using this approach resulted in desirable results, such as the

example shown in Figure 7.12, in which the X and Y activity no longer appears

cyclic.
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Figure 7.9. Prediction of the Massaquoi and McCarley model when an
excitation term (EX) was introduced in the REM-ON (X) equation.
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Figure 7.10. Saturation function f(X) used in Equation (7.7) to turn
on E effects only when X > 1.3.



206

0 100 200 300 400
0

2

4

Time (min)

R
EM

−O
N

 (X
)

 &
 R

EM
−O

FF
 (Y

)
(a)

0 100 200 300 400
0

2

4

Time (min)

Pr
oc

es
s

S
 &

 S
W

A

(b)

0 100 200 300 400
0

2

4

Time (min)

Ex
ci

ta
to

ry
Te

rm
 (E

)

(c)

0 100 200 300 400
NREM

REM
Wake

Time (min)

(d)

A B

Figure 7.11. Prediction of the Massaquoi and McCarley model when
an excitation term with a saturation function was added to the REM-
ON (X) equation. A and B mark times when there are awakenings
during the REM sleep period. (a) X (green) and Y (blue); (b) Pro-
cess S (green) and SWA (blue); (c) excitatory term (E) (filtered
rectangular pulses with uniformly distributed amplitudes and dura-
tions and exponentially distributed arrival times); and (d) sleep stage
classification.
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Figure 7.12. Prediction of the Massaquoi and McCarley model when
an excitation term with a saturation function was added to the REM-
ON (X) equation. Less desirable changes in sleep were obtained. (a)
X (green) and Y (blue); (b) Process S (green) and SWA (blue);
(c) excitatory term (E) (filtered rectangular pulses with uniformly
distributed amplitudes and durations and exponentially distributed
arrival times); and (d) sleep stage classification.



208

The only approach that did result in fast oscillations in REM-ON (X) activity

was when a band-passed noise or sinusoidal noise term, denoted by (q) in Equation

(7.8) was added to the X equation,

Ẋ = a(X)S1(X)X − b(X)XY + qX. (7.8)

An example of the results obtained using this approach is shown in Figure 7.13. The

example results shown in Figure 7.13 (a) is for when q is equal to a sinusoidal term

with an amplitude of 40 and 4 oscillations per minute. For results shown in Figure

7.13 (b) q is uniformly distributed band passed noise with frequencies of oscillation

between 1 and 4 per minute and has an amplitudes between -50 and 50. While fast

oscillations were predicted, the impulsive, random occurrence of awakenings during

REM periods was not.

7.2 Altering Ultradian Oscillator-Slow REM Model

Based on the limitations of the Massaquoi and McCarley model, it was determined

that slow and fast activity during REM sleep needed to be modeled separately. There-

fore, instead of trying to manipulate the REM-ON and REM-OFF equations to obtain

oscillations in activity that could lead to awakenings using scoring rules, the REM-ON

and REM-OFF equations would be used for just controlling the ultradian cycling.

Having a slow term whose only role is to control the ultradian oscillations in the

model is not a new concept, Achermann, Beersma, and Borbély (1990) used a Van der

pol oscillator with the two-process model to control the ultradian oscillations between

NREM and REM sleep, which was defined by the equation,

Ẍ = a(b−X2)Ẋ − wX. (7.9)
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Figure 7.13. REM-ON activity (X) with (a) added sinusoidal noise
with frequency of 4 oscillations per minute and amplitude of 40. (b)
Added uniformly distributed (between -50 and 50) band-passed noise
between frequencies of 1 and 4 oscillations per minute.
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Wever (1980) used two coupled nonlinear oscillators one for circadian and one for

ultradian oscillations. The form of his equations are,

ÿ + ε1(y
2 − y−2 − a1)ẏ + ω1

2(y + g1y
2) = ω1

2(c1(ẍ+ ẋ+ x)), (7.10)

and

ẍ+ ε2(x
2 − x−2 − a2)ẋ+ ω2

2(x+ g2x
2) = ω2

2(c2(ÿ + ẏ + y)). (7.11)

The excitation term E in the REM-OFF equation of the Massaquoi and McCarley

REM model though will remain in the slow REM model. If the maximum amplitude

of the excitation is limited the loss of NREM-REM cycling will not occur as in the

the simulations in the previous sections. The reason for keeping the E term in a slow

REM model is that several researchers have found that the duration of sleep cycles

is affected by awakenings. Foret, Touron, Clodoré, and Bouard (1990) examined the

effect of forced awakenings on the duration of NREM sleep during one sleep cycle.

They interrupted sleep one time a night, for 3 nights. The time of the interruption

varied per test night and occurred at either 1:30, 3:30, or 5:30 am. The duration

of the interruption was 10 minutes. To calculate the effect of the interruption on

the NREM-REM timing they calculated what they called the inter-REM interval

which was the time between the start of one REM period until the start of the next

period, however the 10 minute interruption time was not included when calculating

the inter-REM interval duration. They found that compared to a baseline night, the

interruption caused a decrease in cycle duration if it occurred in the first half of the

cycle but it caused an increase in cycle duration if the interruption occurred in the

second half of the cycle.

Massaquoi and McCarley (1990) compared predictions using their model to the

data from the study conducted by Foret, Touron, Clodoré, and Bouard (1990). They
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applied excitations at various locations during a sleep cycle. Each pulse in the E term

in the model had a duration of one unit or 10.7 minutes. They examined the effect of

different amplitudes of excitation on the duration of a sleep cycle. They found that

the strength of the excitation does have an effect on the change in cycle length. A

strong excitation will result in a linear relationship between the time an excitation

occurs and the change in cycle duration. However, they found that moderate or weak

pulses have more of a curvilinear relationship.

7.3 Fast REM Model

The development of a fast REM sleep model is based on the notion that during REM

sleep the probability of awakening to a noise event is dependent on ongoing brain

activity and, in particular, whether an individual is in Tonic or Phasic REM sleep.

The Tonic and Phasic activity in the UK dataset was examined and used to develop

the model.

7.3.1 REM Density Calculation

While it might not be well understood yet what exactly is causing the variation in

stimulus response during REM sleep, what is clear is that response to auditory stimuli

cannot be assumed to be constant during this stage. Results from Wehrle et al. (2007)

indicate that a noise stimulus will be processed differently depending on whether an

individual is in Tonic or Phasic REM sleep, and this in turn affects whether they

awaken.

In order to evaluate the timing and duration of Phasic and Tonic REM sleep in

the data from the 1999 UK study, the density of rapid eye movements was calculated.

To calculate the density of rapid eye movements first the left and right EOG channels
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were bandpass filtered between 0.5 and 5 Hz by using a 4th order Butterworth filter.

The beginning and end of each REM period was identified. Within the defined REM

period the two EOG channels were segmented into 30 second segments. The corre-

lation between the two channels was calculated and then the process was repeated

moving in 1 second increments through time. If the correlation of the two channels

was below -0.2, rapid eye movements were considered to occur. A second method was

also used to identify rapid eye movement which was similar to an approach used by

Agarwal, Takeuchi, Laroche, and Gotman (2005). The inverse or negative of the left

EOG channel was multiplied by the Right EOG channel and then amplitudes greater

than 625 μV 2 were identified. A 2 second segment of both the right and left EOG

channel was obtained around each peak. The correlation between the 2 seconds of the

left and the 2 seconds of the right EOG channels was calculated. If the correlation

was below -0.2 and the peaks of the two channels were within 100 ms of one another,

then rapid eye movement was considered to occur. Then, for each 30 second segment,

the proportion of the segment that was occupied by rapid eye movement was calcu-

lated in order to obtain a measure of REM density. The measure of REM density

was again calculated for 30 second segments, moving 1 second in time. The results

for one REM period are shown in Figure 7.14. The REM Indicator is an indicator

of Phasic and Tonic REM activity, it is equal to 1 when the REM density is greater

than zero and Phasic REM sleep is occurring, and is equal to zero when Tonic REM

sleep is occurring. Tonic REM periods of less than 15 seconds duration were set equal

to Phasic REM sleep though, this approach has been used by others (Ermis, Krakow,

and Voss, 2010) to define Tonic and Phasic REM sleep.
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Figure 7.14. An example of rapid eye movement activity. (a) 30
second correlation between right and left EOG signals and the -0.2
threshold used (red dashed line), (b) REM density measurement-
proportion of the 30 second epoch occupied by rapid eye movement
activity, and (c) an indicator of Phasic and Tonic REM sleep.
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7.3.2 Form of Fast REM Model

A few researchers have tried to identify/model the process that causes the occurrence

of rapid eye movements. Trammell and Ktonas (2003) stated that the occurrence of

rapid eye movements may not be due to a random process. One method they used to

determine if the process that caused rapid eye movement bursts was deterministic or

stochastic was the correlation dimension. They calculated the correlation dimension

using the inter-REM periods or the time between rapid eye movements and found

values near 2. This indicated to Trammell and Ktonas (2003) that a low order non-

linear process may explain the intervals between rapid eye movements. Boukadoum

and Ktonas (1988) analyzed the probability density function of inter-REM intervals

between rapid eye movements. They categorized inter-REM periods according to two

criteria: (1) the time between rapid eye movements within a burst, (a burst is defined

if the inter-REM period is less than 2 seconds), and (2) inter-REM period between

isolated bursts of rapid eye movement. From the estimated probability density func-

tion they concluded that two separate processes may be involved in the occurrence of

rapid eye movements, one process controlling the brief bursts of activity and another

controlling the longer intervals between rapid eye movements. They stated that the

inter-REM intervals cannot be predicted by using an exponential distribution.

After examining the occurrence of Phasic and Tonic REM sleep in the UK data,

it seemed that the oscillation between the two states, along with the change to awake

states during REM sleep could be modeled using a Duffing equation with the harmonic

excitation in a region in which chaotic response behavior is possible. The form of the

Duffing equation with up to a 5th order stiffness term was examined (Li and Moon,

1990). This equation has the form,

ẍ+ δẋ+ β5x
5 + β4x

4 + β3x
3 + β2x

2 + β1x+ βo = Acos(ωt); (7.12)
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which can also be written as,

ẍ+ δẋ+ β(x− α1)(x− α2)(x− α3)(x− α4)(x− α5) = Acos(ωt); (7.13)

If the unforced case is considered the corresponding set of first order differential

equations are,

ẋ = y, (7.14)

ẏ = −δy − β5x
5 − β4x

4 − β3x
3 − β2x

2 − β1x− βo. (7.15)

There are 5 equilibrium points and they occur when,

y = 0, (7.16)

β5x
5 + β4x

4 + β3x
3 + β2x

2 + β1x+ βo = 0. (7.17)

The Duffing equation (usually with only a 3rd order polynomial rather than the

5th order shown here) has been used to model the behavior of an elastic beam which

is clamped vertically above magnets of fixed position. The entire system consisting of

the beam and the magnets are shaken horizontally. When the system is shaken with

a low amplitude the beam will oscillate about one of the magnets which are stable

equilibrium points. If the system is shaken with a large enough sinusoidal force, in

certain frequency and amplitude regions the beam will jump chaotically from magnet

to magnet (Moon and Holmes, 1979). This is illustrated in Figure 7.15 for a third

order nonlinearity and in Figure 7.16 for a fifth order nonlinearity.

For the Duffing equation with a 5th order stiffness term, three of the equilibrium

points are stable, the other two equilibrium points are saddle points and are unstable.

For the fast REM model, two of the stable points were considered to be Tonic and

Phasic REM sleep. The third stable point represents Stage 1/Wake. As research
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Figure 7.15. A Duffing oscillator with two stable points at 0.5 and
-0.5 and one unstable point at 0, δ = 0.06 and ω = 2π(0.1). (a) Beam
analogy, (b) potential function, (c) oscillations about one stable equi-
librium (A=0.01), (d) chaotic jumps between equilibrium (A=0.4),
and (e) periodic oscillations about both stable equilibria (A=0.6).
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minute, −2 + γw(t)=-0.6 when events were occurring.
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on auditory awakening thresholds have indicated that an individual is more likely to

awaken during Tonic than Phasic REM sleep, the awakening stable point was posi-

tioned closer to the stable point representing Tonic REM sleep. Also as awakenings

are less likely to occur than Phasic or Tonic REM sleep during a REM sleep period,

the distance between the Tonic and Wake stable point was greater than the distance

between the Tonic and Phasic stable point. The positions of the equilibrium points

for the baseline no-noise conditions are listed in Table 7.2. The phase plane and

position of the equilibrium points for the fast REM model is shown in Figure 7.17,

where, δ = 0.06.

Table 7.2. Positions of the equilibrium points for the baseline fast
REM sleep model.

Equilibrium Point Position
Phasic REM sleep 0.5
Tonic REM sleep -0.5
Wake -2.5
Unstable Point Between Tonic and Phasic 0
Unstable Point Between Wake and Tonic -2

To simulate awakenings due to noise events the position of the saddle point be-

tween the Wake stable point and Tonic stable point was allowed to vary and it moved

closer to the Tonic stable point when an excitation term occurred. The equation for

the model is,

ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt). (7.18)

where, (−2 + γw(t)), is the unstable saddle point which moves when an excitation

occurs. Here w(t) is an excitation, a different naming convention then the slow model
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Figure 7.17. Phase plane for Duffing equation. Unstable equilibrium
points (red/light gray), stable equilibrium points (black) (δ = 0.06,
ω = 2π(0.3), A=0.5), y = ẋ.
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in which the excitations are labeled as (E) is used as the two may or may not have

the same form.

The term γw(t) is always positive so this impulsive excitation, which models brain

activity pushes the unstable equilibrium position at x = −2.0 toward the “Tonic”

equilibrium position at x = −0.5 making it easier for the beam to move to the Wake

equilibrium position at x = −2.5. In Figure 7.16 (b) w(t) = 0 and the unstable

equilibrium point is at -2.0 and in Figure 7.16 (c) there were 8 evenly spaced events

of 1 minute with (−2+γw(t))=-0.6 when events were occurring and equal to -2 when

events were not occurring (w(t) = 0). By moving the unstable equilibrium point the

likelihood of transitioning to an awake state increases as the noise level increases.

In Figure 7.18 the potential function of the Duffing equation is shown for different

positions of the unstable point between Wake (m3) and Tonic REM (m2); in Figure

7.18 (a) the potential function when the unstable point is at -2.0 is shown, if the beam

is close to m1 (Phasic REM) and m2 (Tonic REM) it would be difficult to jump out

of the well at lower amplitudes of excitation to reach m3 (Wake). In Figure 7.18 (b)

the unstable point is at -1.5 and you can see that escape from the m1-m2 region to m3

would be easier and in Figure 7.18 (c) when the unstable point is at -1.0 it would be

very easy to escape from the m1-m2 region to m3 and it would be difficult to escape

the m3 region to return to the m1-m2 region.

An example of the output of the model with awakenings is shown in Figure 7.19.

Here the unstable equilibrium point is defined as −2 + γN(t) and N(t) is a series

of impulses of duration 1 minute and are spaced 5 minutes apart. To classify sleep

states, a set of thresholds were defined. If the value of x is greater than 0 then Phasic

REM sleep occurs and if the value of x is less than zero then Tonic REM sleep is

occurring. However, there are exceptions used in order to eliminate very brief sleep

stage changes. If the peak value, when the signal is above zero, is never greater than
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Figure 7.18. The potential function for the 5th order stiffness Duffing
equation for different positions of the unstable equilibrium point be-
tween Wake and Tonic REM sleep, (a) -2.0, (b) -1.5, and (c) -1.0. m1,
m2, m3 represent the magnet locations in the beam system analogy
corresponding to “Phasic REM”,“Tonic REM” and “Wake” respec-
tively.
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0.25, i.e. it never approaches the Phasic stable equilibrium point, which is at 0.5, then

the activity above zero was set equal to the previous classified state, a similar approach

was taken when activity is below zero but the minimum never approaches the Tonic

stable equilibrium or Wake stable equilibrium point. Wake states are classified if the

level of x is below -2.0 during an excitation. An example of scoring REM sleep stages

using these rules is shown in Figure 7.19.
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Figure 7.19. (a) Solution of the Duffing equation, oscillations are
about 3 stable equilibria, (red-dashed line) thresholds used to assign
sleep stages. (b) Unstable equilibrium position (−2 + γN) and (c)
classified sleep stages. The driving frequency ω = 2π(0.3), δ = 0.06
and the amplitude (A) was 0.5.

In order to determine the remaining parameters of the Duffing equation, simula-

tions were completed in which the frequency (ω) and the amplitude of the driving



223

force (A) were varied in order to match the percentage of time spent in Tonic and

Phasic sleep and the inter-arrival time between Phasic activity as calculated based

on the 1999 UK data. For these simulations the location of the stable and unstable

points and the damping (δ) which was set equal to 0.06, remained constant. The

damping was set at a low enough value so that chaotic behavior could be obtained,

and it was not varied for the simulations as changing the amplitude and the damp-

ing would have similar effects. The initial conditions were randomized for each trial

between -0.5 and 0.5, and the drive frequency and amplitude were systematically var-

ied. One hundred simulations were conducted for each combination of parameters.

A reasonable agreement was found when the drive frequency was set equal to 0.3 Hz

and the amplitude of excitation was set equal to 0.5, the results are shown in Figure

7.20. The time t, also had to be scaled after each solution was obtained to match

values, t for the solutions was set equal to (1/5)t to obtain agreement between the

simulated and actual values.

Simulations using the fast REM model for different numbers, level, and duration

of excitations (w(t) = N(t)) were completed. For each combination of parameters,

25 simulations were completed, the initial conditions were varied for each simulation.

The average proportion of a REM period classified as Wake based on the simulation

results is shown in Figure 7.21 and the average proportion of a REM period classified

as Tonic and Phasic REM sleep is shown in Figure 7.22. The proportion of the REM

period classified as Wake increased with both excitation level and duration of the

event, while the proportion spent in Tonic and Phasic REM sleep both decreased.

The proportion of the REM period classified as Wake also increased with the number

of events. The probability of awakening to a noise event is shown in Figure 7.21,

and it increases with the duration of an event and the excitation level. From the

simulations it was found that an impulse that moved the unstable equilibrium point
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Figure 7.20. Statistics of Tonic and Phasic REM sleep for simula-
tions (red) and survey data (blue). (a) Inter-arrival time of Phasic
activity, (b) proportion of REM period (without awakenings) occu-
pied by Tonic REM sleep and (c) proportion of REM period (without
awakenings) occupied by Phasic REM sleep.
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to -1.6 will start to cause transitions to Stage Wake. The baseline position of the

unstable equilibrium between Wake and Tonic was set at -2 because at this location

the probability of moving to the Wake state without an excitation term is essentially

zero.
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Figure 7.21. Proportion of the REM period defined as awake for (a) 2,
(c) 4, and (e) 8 events as a function of level. Probability of awakening
to, (b) 2, (d) 4, and (f) 8 noise events as a function of level.
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Figure 7.22. Proportion of the REM period defined as Phasic REM
sleep for (a) 2, (c) 4, and (e) 8 events as a function of level. Proportion
of the REM period defined as Tonic REM sleep for (b) 2, (d) 4, and
(f) 8 events as a function of level.
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Based on simulations and the classification of Tonic and Phasic REM sleep in

the UK dataset, the Duffing equation appears to predict the behavior of fast REM

activity. The use of a Duffing type equation for modeling brain activity does have

support in the sleep literature. There have been many models developed for neuron

bursting activity. Phasic REM sleep can be thought of bursting activity. One of the

most commonly used models is the Hodgkin-Huxley model. This is a model of the

behavior of 3 channels through a neuron membrane: sodium, potassium and a leakage

channel (Gerstner and Kistler (1996); Izhikevich (2004)). Either a constant current

or a short current pulse is applied as input to the model and the output is the voltage

potential which may contain a spike.

A simplification of the Hodgkin-Huxley equations was made, that model is called

the Fitz-Hugh Nagumo model and consists of the following two equations (Gerstner

and Kistler, 1996),

ẋ = x− 1

3
x3 − y, (7.19)

ẏ = a+ bx− cy. (7.20)

The two equations can be combined to create a second order differential equation by

solving Equation (7.19) for y,

y = x− 1

3
x3 − ẋ, (7.21)

taking the derivative,

ẏ = ẋ− ẋx2 − ẍ, (7.22)
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and substituting them into Equation (7.20). The equation that is obtained is:

ẍ+ (1− c)

(
1

1− c
x2 − 1

)
ẋ+ (b− c)x+ c

1

3
x3 + a = 0, (7.23)

which with an applied sinusoidal force can be written as,

ẍ+ p(kx2 − 1)ẋ+ ω2
ox+ βx3 = ao + Acos(ωt). (7.24)

This equation has the same form as the Duffing Van der Pol equation. If k is zero then

the equation has the form of a Duffing oscillator. Curtco, Sakata, Marguet, Itskov,

and Harris (2009) modeled neuron activity in the auditory cortex when urethane-

anesthetized rats were exposed to auditory stimuli using the Fitz-Hugh Nagumo

equations, though the form of the Fitz-Hugh Nagumo model they used was slightly

different, in that the model had an x2 term in addition to the x and x3 in Equation

(7.19).

In addition to neuron bursting models, Zeeman (1976) discussed how there are

different scales at which to model brain activity. He described small-scale theory as

consisting of models of individual neurons, synapses, and nerve impulses. Large-scale

models are models of the end result like thinking and responding. He stated that

what is needed is a model of medium-scale behavior. The medium-scale model he

believes could be something like the Duffing oscillator because it has the oscillatory

behavior found in neurons and he stated that it would be expected that some neuron

activity would be stable and some would not.

The Duffing equation has also been used to model epileptic seizures as well as

visual evoked responses. Stevenson, Mesbah, Boylan, Colditz, and Boashash (2010)

wanted to create a model of newborns EEG activity including seizure activity. The

model developed consisted of a Duffing oscillator driven by Gaussian noise for the
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background EEG and a Duffing oscillator driven by impulsive noise to simulate the

seizure activity. The two signals output from the models were added in order to

obtain a simulated newborn’s EEG signal. Srebro (1995) used a Duffing equation

to model visual evoked potentials observed in EEG data. The visual stimulus that

was used consisted of a checkerboard pattern that was shown at intervals. Srebro

(1995) was mostly interested in modeling the response of the system to impulsive

perturbations and matching the increase and subsequent decay of the response to the

individual evoked potentials that were observed in experiments. They found that the

result with the Duffing oscillator was a better match to the evoked potentials then

what would be predicted by using a linear stiffness.

7.4 Model Parameter Estimation

Now that a fast REM sleep model has been developed and the fast dynamic behavior

limitations of the Massaquoi and McCarley model have been overcome, the parame-

ters of the different components of the sleep model needed to be estimated using the

1999 UK data. The methods used and the values of the estimated parameters for the

different components of the model are described.

7.4.1 The Homeostatic Process S Model

The term S in the Massaquoi and McCarley model represents the need for sleep

and decreases through the night. While there have been several variations in the

equation for this term, in its most basic form S is an exponentially decaying function

(Achermann and Borbély, 1990) of the form:

S = Soe
−gc t, (7.25)
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where the parameter gc controls the decay rate. While there is no direct measure-

ment of Process S, it can be estimated from the decay of slow wave activity (SWA).

Process S is an upper bound on the level of slow wave activity. To estimate the initial

value of S and the decay rate, first SWA during the night was calculated. Slow wave

activity was calculated in a manner similar to that used by Ferrillo, Donadio, De Carli,

Garbarino, and Nobili (2007). The EEG signals, from the 1999 UK study were seg-

mented into 30 second segments of sleep. This segmentation was repeated moving

through the signal in 1 second increments. Using the segment average (pWelch in

Matlab) the power spectral density was calculated. The 30 second segment was fur-

ther segmented into 4 second segments with 75% overlap. The total power between

0.5 and 4.5 Hz was calculated from the estimated power spectral density. To smooth

the result further, a moving average filter was used in which the averaging was per-

formed over three minute segments (Achermann, Dijk, Brunner, and Borbély, 1993).

The smoothed SWA estimate was then normalized by the mean of the SWA activity

for the entire night. This normalization was also done by Achermann, Dijk, Brunner,

and Borbély (1993).

Once the SWA estimate was smoothed and normalized then the 95th percentile of

SWA during each NREM period was calculated. Before performing this calculation,

though, first the boundaries of each REM period during the night had to be calculated.

To calculate these limits the original scored sleep stages from the 1999 UK study

for each subject were used. First, all stages scored as REM sleep during the night

were identified. Then, if there were less than 15 minutes duration of NREM sleep

or Wake between scored REM stages, the REM and intervening NREM stages were

considered to be in the same REM period. REM periods that were less than 5 minutes

in duration were ignored because REM periods should be greater than 5 minutes in
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duration (Achermann, Dijk, Brunner, and Borbély, 1993). An example of the scored

sleep stages during the night and the defined REM periods are shown in Figure 7.23.

0 100 200 300 400
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REM
Wake

Time (min)

Figure 7.23. An example of Sleep Stages (blue) and identified REM
periods (red dashed line).

The 95th percentile of SWA levels for each intervening NREM period was then cal-

culated and the time of these points was determined. The 95th percentile rather than

the maximum level was used to reduce the likelihood that the point was associated

with an artifact. An exponential function was then fitted to the set of points. An

example of the estimated slow wave activity and the values used to to estimate the

exponential function are shown in Figure 7.24. The mean and standard deviation

for both the decay parameter gc and the amplitude at the start of the night (So)

estimated from the data are listed in Table 7.3.

The data from the 1999 UK study that was used to estimate the model parameters

comes from measurements of subjects between the ages of 30 and 40. Dijk, Beersma,

and van den Hoofdakker (1989) calculated the decay rate of Process S for two different

age groups, 20-28 and 42-56. They found a decay rate of -0.225 units/hour for the

younger group and -0.155 units/hour for the middle age group. The results listed in

Table 7.3 need to be scaled by 60 minutes/10.7 minutes, due to differences in time

scaling, however when rescaled the resulting decay rate based on the data from the

UK study is -0.1794 units/hour which is in-between the results found for the two age



232

0 50 100 150 200 250 300 350
S4
S3
S2
S1

REM
Wake

Time (min)

(a)

0 50 100 150 200 250 300 350
0

2

4

SW
A

Time (min)

(b)

Figure 7.24. (a) Sleep Stages. The start of each REM period is
indicated by a red dot and the end of each REM period is marked by
a black dot. (b) Estimated SWA (blue), 95th percentile of SWA for
each NREM period (red dot) and the estimated Homeostatic Process
S (black-dashed line).
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groups by Dijk, Beersma, and van den Hoofdakker (1989). This gives an indication

of how the coefficients of Process S need to be varied in order to account for different

age groups.

7.4.2 Slow Wave Activity

The model for slow wave activity that is being used is not the model in Massaquoi and

McCarley (1992). The model in Achermann, Dijk, Brunner, and Borbély (1993) is

being used. The primary reason for this is that this model of SWA has separate terms

for controlling (1) the fall of SWA due to the onset of REM sleep and awakenings

and (2) the rise of the slow wave activity. The equations for the slow wave model are,

Ṡ = −gc SWA (7.26)

and

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−

fcw (SWA− SWAL)E.

(7.27)

The parameters in the slow wave activity equation were estimated using the 1999

UK data. The initial value of slow wave activity (SWAo), was determined by first

identifying the onset of sleep, which is the first occurrence of Stage 2, and then

calculating the mean of the slow wave activity for the first minute of sleep. The

method Achermann, Dijk, Brunner, and Borbély (1993) used to estimate SWAL was

used. They set the parameter SWAL, which is the lower bound for the level of slow

wave activity, equal to a value that is five percent lower than the lowest value of slow

wave activity observed during periods of REM sleep. The mean values and standard
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deviation for these two coefficients, estimated using the 1999 UK data, are listed in

Table 7.3.

To calculate the rise parameter (rc), the first 30 minutes of the slow wave activity

was extracted. The maximum value for the segment of SWA was calculated and

only the portion of the segment between the first point and the maximum value was

used to calculate rc. An example of SWA for one subject and the portion used to

calculate rc is shown in Figure 7.25 (a).
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Figure 7.25. SWA activity (blue), REM periods (black) and (a) por-
tion of segment used to calculate rc (red) and (b) portion of segment
used to calculate fc (red).

To calculate rc, a continuous time system identification approach/least squares

approach was used (Doughty, Davies, and Bajaj, 2002). When SWA is increasing

in level the second term in Equation (7.27), REMT , is equal to zero. Therefore the

equation is,

˙SWA = rc SWA (S − SWA) . (7.28)
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The value of ˙SWA was calculated by taking the derivative of the segment of SWA.

Taking the derivative of a signal can increase high frequency components therefore the

derivative was also low pass filtered. The value of S used was based on the estimated

value of S.

To calculate the fall parameter (fc), 15 minutes of the slow wave activity before

each REM period plus the slow wave activity within the first quarter of each REM

period was extracted. The maximum value of SWA for the segment was calculated

and only the portion of the segment between the maximum value and the last data

point was used to calculate fc. An example of SWA and the portion used to calculate

fc are shown in Figure 7.25 (b).

The value of fc can be calculated in a similar manner as rc in which the equation,

˙SWA− rc SWA (S − SWA) = −fc (SWA− SWAL), (7.29)

is solved for fc. The model parameters rc and fc were calculated in order to obtain an

estimate of the rise and fall of slow wave activity and to verify that the values in the

literature are also applicable to the UK data. However, real slow wave activity is more

variable than the slow wave activity simulated by using the model due to awakenings

and other ongoing activity, therefore, for all subject nights of data a reasonable single

rise and fall constant could not be calculated. As the mean values for rc and fc for

all subject nights was similar to the mean values reported in the literature, the mean

values were used in the combined model, but it should be noted that they actually

vary by subject and also probably by situation and are perhaps better characterized

by a distribution.

To estimate the characteristics that define the noise (n(t)) in the model Acher-

mann, Dijk, Brunner, and Borbély (1993) calculated the difference between a smooth

version of the slow wave activity and that of an unsmoothed version of the slow
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wave activity. The SWA activity within each 3 minute block of time was averaged

to obtain the smoothed SWAS. The noise time histories can be estimated for each

subject-night by using,

n =
SWA− SWAS

SWAS

, (7.30)

where SWA is the unsmoothed version of slow wave activity and SWAS is the

smoothed version of the slow wave activity. An example of the original SWA, the

smoothed SWA and the noise term n, that was calculated for one subject night using

the UK dataset is shown in Figure 7.26. A distribution of the amplitude of the noise

is shown in Figure 7.27. A Gaussian function was fit to this distribution data and is

shown for comparison. There appeared to be a skewness in the distribution of n(t).

A possible reason for this skew, maybe, is that while most large artifacts in the data

were removed perhaps smaller movement artifacts were not. To examine if this is the

reason for the positive skew, the mean, standard deviation, skewness, and kurtosis

for n(t) were calculated when only portions of the data were considered. The noise

(n(t)) data for each subject night was sorted and the lower and upper 0.5% of the

data was eliminated. The statistics of n were then calculated through time using a

sliding 30 minute segment. This procedure was repeated eliminating larger protions

of the lowest and highest values in the dataset up to an elimination of 5% (the upper

and lower 2.5%) of the data. The results for one subject night are shown in Figure

7.28. When portions of the data were removed, as expected, kurtosis is reduced but

a skew in the data is still prevelant. This is also clearly seen in the data, Figure 7.26

(a). The results for all subjects indicate a skewness in the data, the results of which

are shown in Figure 7.29. Therefore in the model to simulate n a skewed Gaussian

distribution was used based on the parameters in Table 7.3.
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Figure 7.26. (a) Estimated noise term ˜n(t), (b) the original SWA
(blue), and smoothed SWA (red).

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

n

p(
n)

Figure 7.27. Probability density function of n(t) (black) and Gaussian
distribution resulting from a fit to the data (red).



238

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

M
ea

n

(a)

0 50 100 150 200 250 300 350 400
0

0.5

St
d.

 D
ev

.

(b)

0 50 100 150 200 250 300 350 400
0

2

4

Sk
ew

ne
ss

(c)

0 50 100 150 200 250 300 350 400
0

5

10

K
ur

to
si

s

Time (min)

(d)

Figure 7.28. Statistics of n(t) with tails of the distribution removed.
Gray to black results from eliminating 1% to 5% of the tails of the
distribution of n(t) before calculating the statistics for each 30 minute
segment.
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noise term n(t). The results are shown as a boxplot: red line median,
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are outliers.
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The last parameter of the SWA model is the fall in slow wave activity due to

noise events (fcw). Achermann, Dijk, Brunner, and Borbély (1993) considered the

rate of fall in slow wave activity when awakenings occur to be four times faster than

the rate when a REM period occurs. However, they assumed that the wake term was

never larger than 1 in their model. A value for E other than 1 was used, and this

will be discussed in the following section. The value for fcw that was chosen was 2

times the value of fc.

Table 7.3. Coefficients of the SWA model estimated from data taken
from 76 subject nights of the 1999 UK study. Mean and standard
deviation of these estimates, based on the data, and original values
from Achermann, Dijk, Brunner, and Borbély (1993).

Coefficient Mean (std. dev) Original Values
gc 0.03 (0.01) 0.0893
fc 2.1 (1.0) 2.5252
rc 0.4 (0.1) 0.5368
So 3.7 (0.7) 3.138
SWAo 0.8 (0.3) 0.468
SWAL 0.17 (0.04) 0.1
nt−mean -0.017 (0.005) 0
nt− std 0.25 (0.04) 0.182
nt− skew 0.5 (0.1) 0
nt− kurtosis 3.0 (0.2) 3

7.4.3 The Wake Term

The characteristics of the excitation term E, that can lead to spontaneous non-noise

induced awakenings, was calculated by using the data from no noise laboratory nights

in the UK study. It was decided to use the power in the gamma band of the EEG

signal (activity between 25 and 35 Hz) to represent this term. The calculation of

activity in the different frequency bands of the EEG signal were described in Section
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6.4. It is noted that this band contains both movement activity and EEG activity,

however, as movements are an indicator of awakenings this was considered acceptable

activity to include in the Wake term. The time between the occurrence of these pulses

or the inter-arrival time was calculated. An example of the gamma activity and the

definition of duration, amplitude and inter-arrival time are shown in Figure 7.30 and

the distributions of these parameters are shown in Figure 7.31. The distribution for

the inter-arrival time appears to be exponential. The mean value for the inter-arrival

time was 6.1 minutes. The value used by Massaquoi and McCarley (1992) in their

model was 11.8 minutes, therefore, the inter-arrival time found in the UK dataset was

half the value of the original model.
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Figure 7.30. An example of gamma activity, arrows indicate inter-
arrival time, duration and amplitude of the excitations.

The values for the duration of N(t) ranged from 3 seconds to 1.2 minutes, with

a mean of 0.5 minutes and a standard deviation of 0.2 minutes. The minimum and

maximum values for the duration ofN(t) used in the original Massaquoi and McCarley

model were 2.7 minutes and 5.4 minutes. This range is obviously too high and does not

allow brief awakenings to be predicted. The amplitude of N(t) is difficult to determine

based on the gamma activity. There is not a direct relationship between the level

of the impulses in the model and the level of gamma activity. However, the current
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Figure 7.31. (a) Distribution of inter-arrival times between estimated
N(t), (b) distribution of the duration of N(t), and (c) distribution of
the amplitude of N(t) in the UK dataset.
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approach used to estimate the amplitude was to take the log based 10 of the power

in the gamma band. The minimum value obtained was 2.0, the maximum value was

5.4, the mean was 3.1, and the standard deviation of the data was 0.65. A summary

of the parameters for the spontaneous wake model are in Table 7.4. To model N(t)

for spontaneous awakenings, the duration and amplitude was defined by Gaussian

distributions based on the statistics that were calculated and the inter-arrival time

was defined by an exponential distribution.

Table 7.4. Estimated values for the statistics of the impulsive excita-
tion (N(t)) that leads to the spontaneous wake model based on the
UK dataset and original values from Massaquoi and McCarley (1992).

Coefficient Estimated Value Original Values
mean inter-arrival time 6.1 minutes 11.8 minutes
minimum duration 3 seconds 2.7 minutes
maximum duration 1.2 minutes 5.4 minutes
mean duration 0.5 minutes 4.0 minutes

7.4.4 Slow REM Sleep

The Massaquoi and McCarley model (1992) contains two equations for defining REM

sleep, one representing REM-ON or REM promoting neuron activity (X) and one

representing REM-OFF or REM inhibiting neuron activity (Y ) (see Equations (5.47)

and (5.48)). The difficulty in estimating the parameters of the REM model is that the

UK dataset can be used to estimate the timing of REM sleep but not REM neuron

activity.

Ferrillo, Donadio, De Carli, Garbarino, and Nobili (2007) tried to estimate the

parameters of the REM sleep model based on data. They calculated the parameters

for the Lotka-Volterra REM model by using a stochastic search of parameters and
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minimizing the difference between slow wave activity from their dataset and the slow

wave activity that was predicted. One problem with their parameter estimation

method is that they calculated only one set of parameters for the model, i.e. they

assumed that the duration of successive REM periods are the same.

From the UK dataset, the mean duration of REM and NREM sleep were calculated

for the first 4 REM periods based on 76 subject nights of data. The results are shown

in Figure 7.32. The mean duration of REM sleep does increase during the night while

the duration of NREM sleep decreases. Therefore, the assumptions made by Ferrillo,

Donadio, De Carli, Garbarino, and Nobili (2007) in estimating the parameters of their

model may be incorrect.
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Figure 7.32. (a) REM sleep duration and (b) NREM sleep duration.
Mean values and ± one standard deviation of the estimated mean,
estimated from the 1999 UK study.

A different approach than that of Ferrillo et al. (2007) was used to estimate the

REM model parameters. The parameters were estimated separately for each REM

period. Signals for REM-ON and REM-OFF activity were created based on the

timing of REM sleep in the UK data. The equations for the simplified REM model

were used and these are:

Ẋ = aX − bXY, (7.31)
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Ẏ = −cY + dXY. (7.32)

If an assumption is made that c and d are equal and a and b are equal, which is a

necessary step in order to create REM-ON and REM-OFF signals, then the equations

are,

Ẋ + aX(Y − 1) = 0, (7.33)

and

Ẏ + cY (1−X) = 0. (7.34)

When Y is varying slowly compared to X the solution is approximately of the form,

X = e−a(Y−1)t, (7.35)

and when X is varying slowly compared to Y then Y is approximately,

Y = e−c(1−X)t. (7.36)

Therefore, Y grows when X is greater than 1 and decays when X is less than 1, and

X grows when Y is less than 1 and decays when Y is greater than 1. The value

of X was set equal to one at the start of the REM period and at the end of the

REM period. The value of Y was set equal to 1 when X is at a maximum and it

reaches its maximum level at the end of the REM period. Based on these values, an

exponential function was used to create the rise and decay of each signal and where

the exponential functions join the transition was smoothed by rounding out the slope

of the signals. An example of the signals generated with this approach is shown in

Figure 7.33 (a) and the smoothed signals are shown in Figure 7.33 (b).
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Figure 7.33. An example of creating REM-ON (X) and REM-OFF
(Y ) signals based on the timing of REM sleep periods in the 1999 UK
study data and Equations (7.33) and (7.34).

To estimate the parameters of the X and Y model the derivative of both of the

constructed signals were calculated and then the following two linear equations in

parameters (a and b, and c and d):

Ẋ

X
= a− bY, (7.37)

Ẏ

Y
= −c+ dX, (7.38)
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were fitted to the data. An example of the estimated linear relationships for REM-ON

and REM-OFF activity are shown in Figure 7.34.

Using the estimated parameters, the REM-ON and REM-OFF activity was then

calculated by solving Equations (7.31) and (7.32) using ode45 in Matlab. Based on

the obtained solution, the value for the coefficient a was altered in order to align the

calculated REM-ON activity (when X is greater than 1) with the actual start of REM

sleep in the survey data. Similarly the value for c was altered, if needed, in order to

better match the duration of the calculated REM activity and the duration of REM

sleep in the UK data. The coefficients, a and c, were increased or decreased until the

error between the duration and start time of actual and simulated REM sleep, was

less than 2 minutes. However, sometimes a low error value could not be obtained

due to brief or long REM periods. The error for these values for all REM periods

in the UK dataset are shown in Figure 7.35. The duration of NREM sleep is the

duration prior to the start of a REM period, therefore it is related to the start time of

each REM period. An example of the agreement between a created signal for REM-

ON activity and the REM-ON activity, calculated using the estimated parameters, is

shown in Figure 7.36. The interest was in matching the start and end of each REM

signal, when the REM-ON signal is greater than 1.

The estimated coefficients are plotted against the duration of a REM sleep period

in Figure 7.37. The coefficients, c and d, decreased with REM duration. The decrease

in c with REM duration is partly due to the fact that it was systematically altered

so that the duration of the simulated REM sleep period matched the values derived

from the UK dataset. The estimated coefficients are plotted against the duration of

NREM sleep in Figure 7.38. The decrease in a with NREM sleep duration is again

partly due to the fact that it was altered so that there was agreement between the

simulated and actual start time of each REM sleep period.
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Figure 7.34. An example of the fitting of REM sleep model parameters
of (a) the REM-ON model and (b) the REM-OFF model. Blue line
is based on created signals and the red line is the linear model using
the estimated parameters.

The mean and standard deviation of the estimated coefficients for the first four

REM periods were also calculated and are shown in Figure 7.39. The coefficients

a and b show similar increasing trends while coefficients c and d both show similar

decreasing trends during the night. The change in all parameters though during

the night was small. Therefore, for the slow REM model, only a and b were varied

with time. The variations are modeled in a similar manner to that in the original

Massaquoi and McCarley model, i.e., with a sinusoidal term which has a period of 24

hours. The equation for which is,

dc = 1.55 + 0.8sin(0.0467t+ 4). (7.39)
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Figure 7.35. (a) Error between the estimated start time of each REM
sleep period and the value derived from the UK dataset. (b) Error
between the estimated duration of the REM sleep period and the
value derived from the UK study data. The NREM duration is for
the NREM period just before the REM period.

Note again that in the Massaquoi and McCarley model time is measured in units and

1 unit is equal to 10.7 minutes.
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Figure 7.37. Estimated parameters of slow REM model versus the
duration of REM sleep.



252

25 50 75 100 125
0

0.5

1

1.5

NREM Duration (min)

C
oe

ff
.a

(a)

25 50 75 100 125
0

0.5

1

1.5

2

NREM Duration (min)

C
oe

ff
.b

(b)

25 50 75 100 125
0

2

4

6

NREM Duration (min)

C
oe

ff
.c

(c)

25 50 75 100 125
0

1

2

3

4

NREM Duration (min)

C
oe

ff
.d

(d)

Figure 7.38. Estimated parameters of the slow REM model versus
the duration of the NREM sleep period prior to the REM period.
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Figure 7.39. Mean and standard deviation of the estimated REM
model parameters for each REM period.

7.5 Overview of The Model So Far

The complete nonlinear model is the result of all issues addressed and noted in this

chapter and what follows in this and the following sections. So far, to recap, the SWA,

S, the slow REM (X, Y ) model and the fast REM model have been described. These

models contain an impulsive term based on N(t). N(t) is a series of square pulses

whose amplitudes and durations are Gaussian distributed, and the inter-arrival time

has an exponential distribution. The parameters of these models have been estimated

based on the data from the UK study. The following issues, though, still need to be

resolved.
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1. The desire is to have a model that results in the prediction of sleep stages.

To calculate different stages, thresholds based on the level of SWA need to be

assigned.

2. How should a noise event impact the sleep model? One possibility is to increase

the number of excitations N(t) and this will be a function of the LAmax of the

noise event.

These issues will be addressed in the following sections.

7.6 Thresholds for Scoring Sleep Stages

The output of the model being developed includes REM sleep, slow wave activity

and awakenings. However, it is desired to also estimate different NREM stages (i.e.

Stage 2 and Stage 3/4). In order to determine at what level to set the thresholds

for this classification, first the mean, minimum and maximum level of SWA activity

associated with Stage 3/4, Stage 2, and Stage 1/Wake were calculated for the 76

subject nights of the UK study. The results are listed in Table 7.5. Based on these

levels a set of scoring rules were developed and are as follows:

1. Stage 3/4 was scored if SWA was greater than 2.75.

2. Stage Wake/1 was scored if SWA was less then 0.3.

3. Stage Wake/1 was scored if SWA was less than 1 and E was greater than 0.5.

4. At all other times when REM sleep was not occurring, stages were scored as

Stage 2 sleep.

To evaluate the accuracy of these thresholds, simulations of slow wave activity for

each subject night of data from the 1999 UK study, were completed using the model
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parameters estimated in the previous sections, and the timing of REM sleep. The

gamma activity for each subject was used to create the impulsive excitation term E.

The fast REM model was not used for these simulations as the focus was on setting

thresholds for scoring NREM sleep. Based on the thresholds and simulated levels of

SWA, sleep stages were assigned to each 30 second epoch. The agreement between

the actual scored sleep stages in the UK dataset and the simulated sleep stages was

calculated. The agreement was defined as the fraction of all stages that were correctly

identified. The overall agreement statistics are listed in Table 7.6 and the mean and

standard deviation of the fraction of correctly identifying stages for each sleep stage is

listed in Table 7.7. An example of the simulation that yielded the highest agreement

is shown in Figure 7.40, and the simulation that had the lowest agreement is shown

in Figure 7.41.

Table 7.5. Statistics of slow wave activity during different sleep stages
for 76 subject nights in the 1999 UK dataset.

Sleep Stage Mean (std. dev of data) Min. Max.
Stage Wake/1 0.42 (0.14) 0.14 1.24
Stage 2 1.06 (0.21) 0.67 1.53
Stage 3/4 3.41 (0.52) 1.86 5.08

Table 7.6. Overall statistics of the fraction of times there was agree-
ment in sleep stage classification between scoring of the original data
and automated scoring of simulated data for each of 76 subject nights.

mean 0.66
std. dev 0.07
max 0.79
min 0.43
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Figure 7.40. Best agreement between simulated and actual slow wave
activity for one subject night of the 1999 UK dataset, thresholds used
for scoring sleep stages (red-dashed lines).
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Figure 7.41. Worst agreement between simulated and actual slow
wave activity for one subject night of the 1999 UK dataset, thresholds
used for scoring sleep stages (red-dashed lines).
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Table 7.7. Statistics of the fraction of times that there was agreement
in sleep stage classification between scoring of the original data and
automated scoring of simulated data for each of the 76 subject nights,
for each sleep stage.

Sleep Stage Mean (std)
Wake/S1 0.43 (0.17)
Stage 2 0.73 (0.09)
Stage 3/4 0.51 (0.29)

7.7 Adding Noise Dependence to Model

As discussed N(t) is impulsive noise. The inter-arrival time of N(t) is exponentially

distributed and the amplitude and duration are both defined based on Gaussian

distributions. The N(t) term is low-pass filtered to obtain E which is used in the

slow wave model and as mentioned in Section 7.3, is rescaled and also used in the fast

REM model. Some of the examples shown for the fast REM model have used scaled

versions of N(t) (square impulses), not E. A diagram of the use of the impulsive

terms is shown in Figure 7.42. The concept for introducing noise into the model was

to create an excitation term for spontaneous (non-noise related excitations) and one

for aircraft noise related excitations. The two components, both non-noise induced

and noise induced excitations, are summed together and then fed into other parts of

the model.

In order to determine how to add a noise level dependence to the nonlinear dy-

namic model, the amplitude of E from the UK data, was examined when noise events

of different maximum levels occurred. Characteristics of E including the duration

and amplitude of the events were examined, for every aircraft event that occurred

during sleep Stage 2. Due to the limited amount of data, only two noise groups were

examined: events which had a noise level below 50 dB(A) and events that had a max-

imum level greater than 50 dB(A). A small difference in amplitude of E was found,
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Figure 7.42. Diagram of impulsive noise as used in nonlinear dynamic model.

however, the primary difference was in the number of events that elicited additional

impulses. Therefore, when modeling the effect of noise on sleep a linear relationship

between the percentage of the population that will have a response to the noise event

and the Indoor LAmax of an event was created. The equation used is,

fraction responding = 0.0084LAmax − 0.1256. (7.40)

Only LAmax levels above 35 dB(A) cause a change in the fraction responding. Re-

searchers have found from studies on aircraft noise and sleep that aircraft events with

a LAmax level below 35 dB(A) do not increase the probability of awakening (Bas-

ner, Buess, Elmenhorst, Gerlich, Luks, MaaB, Mawet, Müller, Müller, Plath, Quehl,

Samel, Schulze, Vejvoda, and Wenzel, 2004). The percent increase in response with

noise level was added based on existing awakening models (see Chapter 3 for more

information) because the data from the UK study was limited and could not be used

to create a reliable dose response relationship. The duration and height of N(t) is as-

signed randomly based on normal distributions with mean and standard deviation as
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defined in Table 7.8. Perhaps with more data, a variation in amplitude and duration

with noise level will be identified and can be added to the model.

7.8 Combined Model

The components of the nonlinear dynamic model that was developed include a fast

and a slow REM model, a SWA activity model, and impulsive excitations N(t) for

both spontaneous and noise induced awakenings. To simulate the sleep pattern of a

person for a single night the following steps are performed:

1. The spontaneous excitation term N(t) is generated based on an exponential

inter-arrival time and Gaussian duration and amplitude distributions and is

low-pass filtered to obtain E(t).

2. If aircraft noise is present, the additional noise excitation term is generated and

then the spontaneous and noise-induced excitation terms are summed together.

3. Both noise and spontaneous excitation terms are scaled to generate w(t) for the

fast REM model.

4. The excitation term E(t), that includes both spontaneous and noise induced

activity is fed into the slow REM activity model. The output of the slow REM

model is REM-ON and REM-OFF activity which is used to generate a REM

sleep indicator which is equal to 1 when the level of REM-ON X activity is

above a level of 1. This REM indicator defines the REM periods.

5. The REM indicator that is generated is used to signal when to model fast REM

activity. The term w(t) is fed into the fast REM model in order to predict

transitions to Stage Wake during a REM period.
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6. The REM indicator and excitation term (E(t)) are fed into the Slow Wave Ac-

tivity Model. For the SWA model, the rise and fall terms for the slow wave

activity (fc, rc), and the mean, standard deviation, and skewness of the noise

term (n(t)) are not varied for each simulation (one person night). The other pa-

rameters are varied according to Gaussian distributions, the mean and standard

deviations of which are listed in Table 7.8.

7. Based on the SWA, REM-Indicator, excitation terms, and fast REM model,

sleep stages are assigned for each 1 second. In order to compare predicted sleep

stages though to other existing models, the probability of being in each sleep

stage for each 30 second epoch is calculated from the 1-second sliding sleep

stage classification and then a sleep stage is assigned according to the highest

probability.

In Table 7.8 is a list of the model parameters and the values used in the simulations.

An example of the individual output components of the combined model are shown

in Figure 7.43. An example of sleep stages calculated from a simulation with and

without aircraft noise is shown in Figure 7.44. For the simulation with aircraft events,

there were 32 evenly spaced events with an LAmax of 60 dB(A). Note the additional

awakenings that occur during the REM sleep period.

The predictions of the nonlinear model were compared to those of Basner’s Base-

line Markov model (2006). Six hundred simulations, each simulation contains a differ-

ent choice of random variables for parameters that are described by distributions, for

baseline conditions without aircraft noise events were completed using the nonlinear

model. The probability of being in each sleep stage was calculated. For these simu-

lations the threshold used to assign Stage 3/4 was lowered to 2 instead of 2.75. The

reason is that perhaps the properties of N(t) are more time varying, with less excita-

tions occurring during Stage 3/4, this should be explored in the future. The results
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Figure 7.43. Example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM which is
the X or REM-ON activity, REM sleep period indicator, Fast REM
model and the spontaneous and noise induced excitation terms.
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dB(A).
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Table 7.8. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution, + parameters varied according
to a uniform distribution, and x parameter varied according to an
exponential distribution.

SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean

std. dev 0.67 std. dev 0.1 inter-arr
6.1 min

*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min

*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min

SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0

fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65

fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0

rc 0.4 +Yo min 0.5
max 3.0

n(t) mean 0
std. dev 0.2
skewness 0.53

are shown in Figure 7.45. Similar predictions for time spent in Stage Wake/Stage

1 were obtained from both of the models. The Markov model did, however, predict

a higher probability of being in Stage 3/4 at the start of the night and the increase

in the probability of being in REM sleep toward the end of night was greater for

that model. However, the subjects in the UK study did have less Stage 3/4 sleep

than those in Basner’s study which might explain some of the difference in predicted

probabilities. Note that the nonlinear model has been tuned to the UK study data

and the Basner model to data from a laboratory study (Basner et al., 2004).

Simulations with the nonlinear model were also conducted for scenarios with 16

and 32 noise events of different noise levels. For each simulation, the noise events
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were all of the same level. Fifty simulations were conducted for each noise level which

ranged from 40 to 90 dB(A), LAmax. The increase in the predicted probability of being

awakened with noise level is shown in Figure 7.46 and the change in duration spent in

the Slow Wave, REM, and Wake states is shown in Figure 7.47. Fifty simulations for

each condition were also completed using Basner’s Markov model with added noise

level dependence (see Chapter 4). The probability of awakening predicted by the

nonlinear model did increase with noise level. Also an increase in duration spent in

Stage Wake and a reduction in time spent in Stage 3/4 was found, and the changes

were greater for nights when there were 32 events than for nights with only 16 events.

The change in REM sleep was less predicable in that it did not vary with noise level.

The results for the probability of awakening is in agreement with the modified version

of Basner’s Markov model. The nonlinear model does predict a higher duration spent

awake and a greater reduction in slow wave sleep. However, in Basner’s laboratory

study (Basner and Samel, 2005) when subjects were exposed to 32 noise events at

an LAmax of 70 dB a reduction in Slow Wave Sleep of 10.7 minutes was found, the

prediction of the nonlinear model is a reduction of 10 minutes. Also an increase

in duration of time spent awake of 11.4 minutes, for the same number and level of

events, was found in Basner’s Laboratory study while the nonlinear model predicts

12.6 minutes. It is not clear whether the the nonlinear dynamic model needs to

be altered to predict less change in sleep stage duration or if the altered version of

Basner’s Markov model needs to be modified further to predict a larger change in

duration, perhaps both modifications are needed.

7.9 Conclusions

The Massaquoi and McCarley sleep model had two primary limitations: it had slow

dynamics and could not predict brief awakenings during the night and it could not
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Figure 7.45. Probability of being in each sleep stage predicted for a
baseline no noise night using the developed nonlinear model (blue)
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Figure 7.47. Change in duration of Wake/S1, SWS, and REM sleep
for (a,c,e) 16 evenly spaced events and (b,d,f) 32 evenly spaced events.
The nonlinear dynamic model predictions are shown in blue/dark gray
and the predictions from the modified version of Basner’s Markov
model are shown in red/light gray.
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predict awakenings during REM sleep. To overcome these challenges a modified

version of the Massaquoi and McCarley sleep model was developed. With this model

it is possible to predict spontaneous and noise induced awakenings, slow wave activity

and fast and slow REM sleep. The parameters of the developed model were estimated

using the data from the 1999 UK data. The predictions of changes in sleep stage

duration and increase in probability of awakening for events of different noise levels,

using the developed nonlinear model, was found to be similar to other sleep models.
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8. NOISE MODEL COMPARISONS FOR AIRPORT OPERATIONS

Data on flight operations from two US airports, aircraft and flight tracks, were ob-

tained. This was used as input to noise prediction software so that noise levels inside

houses could be estimated for each aircraft event. By using this information, it is

possible to compare sleep disturbance model predictions for different models and for

different flight operation scenarios. Comparisons of both awakening model predictions

and changes in sleep stages predicted using Basner’s Markov model and the nonlinear

dynamic sleep model developed in this research are described in this Chapter.

8.1 Airport Noise Modeling

Flight operations data were obtained for two US airports. The airports will be referred

to as Airport A and Airport B. The data included the arrival and departure flight

paths and the timing of aircraft events, whether they occurred during the day, evening,

or night. The specific time of each flight operation was obtained for one of the

airports. Information on type of aircraft and distance the aircraft was traveling was

also obtained.

A list of aircraft responsible for approximately 90 percent of the operations at

each airport was made, to reduce the amount of computation. This was not felt to

be a significant problem because a few aircraft made up the majority of operations.

By having a smaller number of aircraft it was feasible to calculate the noise for these

aircraft on many different flight paths. For Airport A there were 3 runways, 89 arrival

and 80 departure flight paths. For Airport B there were 4 runways, 44 arrival and 76

departure flight paths. The primary aircraft for Airport A are given in Table 8.1 and
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the primary aircraft for Airport B are listed in Table 8.2. The departure standard,

in both tables, refers to how far an aircraft is traveling. The higher the departure

standard the farther the aircraft is traveling. In general an aircraft that is flying

farther will be heavier at takeoff due to a greater amount of fuel and it will take

longer for the aircraft to reach higher altitudes. Therefore, for the same aircraft, as

the departure standard increases so do the noise levels on the ground.

Table 8.1. Aircraft at Airport A.

INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
7373B2 Boeing 737-300/CFM56-3B-2 1, 2, 3, 4
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 3, 4, 5
767300 Boeing 767-300/PW4060 1, 2, 3, 4
A300-622R Airbus A300-622R/PW4158 1, 2, 3, 4
BEC190 Beech 1900 1
CL601 CL601/CF34-3A 1
CNA560 Cessna 560 Citation V 1
EMB145 Embraer 145 ER/Allison AE3007 1
EMB170 Embraer EMB-170 1
FAL20 FALCON 20/CF700-2D-2 1
MD11GE MD-11/CF6-80C2D1F 1, 2
MD82 MD-82/JT8D-217A 1, 2
SD360 SD360 1

For the consolidated list of aircraft, the LAmax and SELA noise levels for single

event operations on every flight path were calculated by using the Federal Aviation

Administration’s Integrated Noise Model (INM) (FAA, 2007). The grid size used for

the calculations was 0.1 by 0.1 nautical mile. Different flight operation scenarios were

created based on the single event data and then sleep disturbance was predicted using
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Table 8.2. Aircraft at Airport B.

INM Aircraft ID Description Departure Standards
757PW Boeing 757-200/PW2037 1, 2, 3, 4, 5
757RR Boeing 757-200/RB211-535E4 1, 2, 3, 4
767CF6 Boeing 767-200/CF6-80A 1, 2, 3, 4, 5, 6
737300 Boeing 737-300/CFM56-3B-1 1, 2, 3, 4
737400 Boeing 737-400/CFM56-3C-1 1, 2, 3, 4
737500 Boeing 737-500/CFM56-3C-1 1, 2, 3, 4
737700 Boeing 737-700/CFM56-7B24 1, 2, 3, 4
737800 Boeing 737-800/CFM56-7B26 1, 2, 3, 4
747400 Boeing 747-400/PW4056 1, 2, 4, 7
767300 Boeing 767-300/PW4060 1, 2, 3, 4, 5, 6, 7
777200 Boeing 777-200ER/GE90-90B 1, 2, 3, 4, 7
A319-131 Airbus A319-131/V2522-A5 1, 2, 3, 4
A320-232 Airbus A320-232/V2527-A5 1, 2, 3, 4
A321-232 Airbus A321-232/IAE V2530-A5 1, 2, 3, 4
A340-211 Airbus A340-211/CFM 56-5C2 1, 2, 3, 4, 5, 6, 7
CL600 CL600/ALF502L 1
CLREGJ Canadair Regional Jet 1
DHC8 DASH 8-100/PW121 1
EMB14L Embraer 145 LR / Allison AE3007A1 1
EMB120 Embraer 120 ER 1

Pratt and Whitney PW118
MD82 MD-82/JT8D-217A 1, 2, 3, 4
MD83 MD-83/JT8D-219 1, 2, 3, 4
SF340 SF340B/CT7-9B 1

different models including the ANSI sleep model, Basner’s Markov Model, and the

nonlinear dynamic model developed in this research.

8.2 Awakening Model Comparisons

A baseline scenario for Airport A and Airport B was created. The scenario for Airport

A had 150 operations and the scenario for Airport B had 281 operations. These

numbers were the same for all the different scenarios investigated at each airport.
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The aircraft and flight paths used were assigned randomly after calculating usage

statistics for both airports. The percentage of the population awakened at least once

for the airport scenarios was predicted using the ANSI standard method, however

no time dependence was used, and different dose-response relationships were used

(see Chapter 3) in order to compare models in a more comprehensive manner. Also

as the sleep models are based on indoor noise levels and INM only predicts outdoor

levels, for all simulations an outdoor to indoor noise attenuation of 25 dB(A) was

used. In the future, it would be desirable to improve the outdoor-to-indoor prediction

using characteristics of typical houses, window opening habits, house orientation, etc.

This 25 dB(A) level of attenuation is similar to the reduction in noise level found in

numerous studies (WHO, 2009).

The results for the baseline scenario for Airport A is shown in Figure 8.1 (a,b,c)

for predictions calculated using the the ANSI (2008), FICAN (1997), and Basner et

al. (2004) awakenings models. The results in Figure 8.1 (d,e,f) are percent awakened

at least once predictions for a scenario in which 25 of the 150 operations were assigned

to the third cross runway. For comparison, the 40 and 55 dB(A) Lnight,outside contours

are shown. According to the WHO Night Noise Guidelines for Europe (2009) an

Lnight,outside of 40 dB(A) should not be exceeded in order to prevent adverse health

effects caused by noise. However, as this contour encompasses a large area and it

would be difficult to reduce noise levels below this level, reducing nighttime noise

to levels below an Lnight,outside of 55 dB(A) is the target goal. The ANSI standard

model was found to predict the lowest percent awakened at least once. This is due to

the fact that the model is based on behavioral awakening data. This low prediction

(compared to that of other models) is particularly noticeable for the scenario in which

there were 25 events on the cross runway.
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Figure 8.1. Gray-scale shading indicates percent awakened at least
once. Black to dark gray 75%, dark gray to light gray 50%, and
light gray to white 25%. (a,b,c) Scenario 1 and (d,e,f) Scenario 2 for
Airport A. (a,d) ANSI, (b,e) FICAN and (c,f) Basner et al. model.
Red contours are the 40 and 55 dB(A) Lnight,outside contours.
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The number of people predicted to be awakened in communities surrounding Air-

port A and Airport B was also calculated. Population data was obtained from the US

census and the number of people living within each 0.1 by 0.1 nautical mile block was

calculated. The number of people in each block was then multiplied by the percent

awakened at least once predicted using Basner et al.’s dose-response model. In Figure

8.2, the number of people living in each block for both Airport A and Airport B are

shown and in Figure 8.3 the number of people predicted to be awakened at least once

is shown. For comparison the Lnight,outside 40 to 55 dB(A) contours are also plotted.

People living outside the WHO guideline of 55 dB(A) are clearly still awakened, this

is especially noticeable at Airport B which has a larger population of people living

near the airport. Awakenings occurred out to the 40 dB(A) contour.

40

55 40

55

Figure 8.2. Population distribution living around the Airports. (a)
Airport A and (b) Airport B. Red contours are the 40 to 55 dB(A)
Lnight,outside contours.
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Figure 8.3. Number of people awakened at least once around the
Airports, predicted using Basner et al.’s awakening model. (a) Airport
A and (b) Airport B. Red contours are the 40 to 55 dB(A) Lnight,outside

contours.
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8.3 Sleep Disturbance Comparisons for Different Time Scenarios

Sleep disturbance predictions for different distributions of aircraft events during the

night were also examined. Comparisons of sleep disturbance predictions made us-

ing the ANSI standard model with time dependence, a modified version of Basner’s

Markov model and the nonlinear dynamic model developed in this research are dis-

cussed.

8.3.1 Addition of Quadratic Dependence on Noise Level to Markov Model

In Chapter 4, a linear dependence on noise level was added to Basner et al.’s Markov

model. For this analysis it was decided to add a quadratic dependence on level in

order to better match Basner et al.’s dose-response awakening model. The equation

for Basner et al.’s (2004) dose-response model is,

%Awake = (1.894e−3)L2
Amax + (4.008e−2)LAmax − 3.3243. (8.1)

To determine how to change the coefficient values in the Markov model in order to

obtain this same relationship, simulations of the same person nights as in Basner’s

study were completed. Events were evenly spaced throughout the night and the model

coefficients, all denoted by a generic coefficient name c were varied for each simulation

according to the following:

c = NoNoisemodelCoeff+

(NoiseModelCoeff −NoNoiseModelCoeff)mult,

(8.2)

where mult is a multiplier. The coefficients associated with a dependence on time

t were not varied with noise level. The time dependence needed to stay as close

to the original model as possible, as the focus was on comparing predictions for
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different time scenarios, and the change in coefficients made for different noise levels

are based on assumptions and not actual data. The relationship between the predicted

percent awakened and different values of the multiplier mult are shown in Figure 8.4.

The value of the multiplier was then compared to the LAmax level (determined from

Basner’s dose-response relationship) that was associated with the same percent awake,

this is shown in Figure 8.4.
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Figure 8.4. (a) Percent awakened predicted when using Basner’s
Markov model for different values of the multiplier. (b) The rela-
tionship between LAmax and the multiplier, based on Basner’s field
dose-response relationship.

The data, shown in Figure 8.4 (b), was fit with a quadratic function, and the

obtained equation was:

mult = (−8.1508e−5)L2
Amax + (2.5274e−2)LAmax − 0.4321. (8.3)

To verify that this change in the Markov Model coefficient values resulted in the

desired percent awakened dose-response curve, a simulation was performed using the

coefficients with the added noise level dependence. Simulations of 50 person nights

with 32 evenly spaced noise events for each LAmax noise level from 35 to 90 dB(A) in

increments of 5 dB(A) were completed. The percent awakened was calculated for each

noise level based on the simulated dataset. This simulation process was than repeated
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100 times and the mean was calculated and variation of the results examined. The

results from this verification are shown in Figure 8.5.
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Figure 8.5. The obtained relationship between LAmax and the per-
cent awakened using the modified version of Basner’s Markov model.
Basner et al.’s (2004) dose-response curve is shown in blue,the mean
of the simulated results in (green/light gray), and the results of 100
simulations in black.

The equation for the probability of sleep stage transitions with the added quadratic

dependence on noise level has the form:

p(si|sj) = eX∑5
i=0 e

X
, (8.4)

where

X = A(si) + AN1(si)LAmax + AN2(si)L
2
Amax +Bt+ C(si, sj)

+CN1(si, sj)LAmax + CN2(si, sj)L
2
Amax.

(8.5)
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8.3.2 Time-Dependent Model Comparisons

Sleep disturbance, using different models, was predicted for 6 nighttime operation

scenarios. The distributions of aircraft events are shown in Figure 8.6. These time

scenarios were chosen in order to determine the largest difference in sleep disturbance

predictions that might be expected with various scenarios.
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Figure 8.6. The occurrence of events for six nighttime scenarios that
were examined. Each bar represents the number of events during an
hour of the night. There are eight bars per scenario representing each
hour from 11 pm to 7 am. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.

The average number of awakenings for the six scenarios was calculated using the

ANSI standard model with time dependence. The results are shown in Figure 8.7.

The ANSI standard has a time dependence which results in events at the beginning



281

of the night having the lowest probability of causing an awakening and events at the

end of the night having the highest probability of causing an awakening. Scenarios

1, 2, 3 in which most of the events are in the middle of the night all caused similar

number of awakenings.
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Figure 8.7. Average number of awakenings for the 6 time scenar-
ios predicted using the ANSI standard model with time dependence.
Black to dark gray 1.5, dark gray to light gray 1.0 and light gray
to white 0.5 awakenings. (a) Peak in operations in two hours in the
middle of the night, (b) an even distribution, (c) most events in the
middle of the night, (d) a U-shaped distribution, (e) most events at
the beginning of the night, and (f) most events occurring at the end
of the night.

Using Basner’s Markov model with the added quadratic dependence on noise level

described earlier in this chapter, the average number of awakenings in 50 simulations

at each grid point was calculated for the six time scenarios. The results are shown in
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Figure 8.8. The awakenings that are calculated are EEG, not behavioral awakenings,

they must occur within 90 seconds or three epoch of the start of the aircraft event

and the minimum duration of an awakening is 30 seconds. The results are opposite

to those of the ANSI standard model, more awakenings were predicted when most

events were at the beginning of the night. This difference in predictions is partly due

to the time dependent coefficients of the Markov model. While the baseline no-noise

model predicts an increase in awakenings, the time dependence coefficients of the first

and second noise models are negative. This decrease in awakening response to events

with time is supported by other models (Brink, Lercher, Eisenmann, and Schierz,

2008). In addition, more spontaneous awakenings tend to occur at the end of the

night and therefore more noise-induced and spontaneous awakenings may be jointly

occurring. In Figure 8.9, the results for the beginning of the night and end of the

night scenarios for both Basner’s Markov model and the ANSI Standard model with

time dependence are shown. The differences in percent awakened do appear small

for the two time scenarios. However, when the number of people living within each

contour are calculated the difference is more substantial, these results are given in

Table 8.3.

Table 8.3. Number of people within awakening contours for Airport
A, with 150 events during the night.

Average
Number of Basner Beginning Basner End ANSI Beginning ANSI End
Awakenings of the Night of the Night of the Night of the Night
Per Night
0.5 Awakenings 40,276 35,514 14,302 39,531
1.0 Awakenings 27,281 11,772 2,790 7,657
1.5 Awakenings 17,288 6,513 10 4,829
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Figure 8.8. Average number of awakenings for the 6 time scenarios
predicted using Basner’s Markov model with added quadratic depen-
dence on noise level. Black to dark gray 1.5, dark gray to light gray
1.0, and light gray to white 0.5 awakenings. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.9. Average number of awakenings for the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and end of the night (blue contours) for
(a) the ANSI standard model with time dependence and (b) Basner’s
Markov model with added quadratic dependence on noise level.
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As the the use of Lnight, outside is advocated by WHO, contours for the scenario in

which most events occurred at the beginning of the night calculated using Basner’s

Markov model and the Lnight,outside contours is shown in Figure 8.10. In addition to

the WHO guidelines, recommendations have also been made based on the acceptable

number of awakenings per night such that 0.5 (Schrenkenberg, Meis, Kahl, Peschel,

and Eikmann, 2010) or 1.0 (Basner, Samel, and Isermann, 2006) additional awakening

on average should be prevented in order to protect communities from the adverse

effects of nighttime noise. Both limits, based on number of average awakenings, were

found to be more protective than the WHO Guideline of Lnight,outside=55 dB(A).
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Figure 8.10. Predictions of the average number of awakenings using
Basner’s Markov model with added quadratic dependence on noise
level for the scenario in which most events are at the beginning of the
night (black to dark gray 1.5, dark gray to light gray 1.0 and light
gray to white 0.5 awakenings) and the Lnight,outside contours (red).

The change in duration of sleep stages predicted using the modified version of

Basner’s Markov model was also examined. The Sleep Quality Index (SQI) (Basner,
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2006) was calculated based on the duration of time spent in the different sleep stages.

The SQI is defined as,

SQI = 0.657 S2 + 0.840 REM + 0.879 S3 + S4, (8.6)

where S2, S3, S4, andREM are the duration of these stages in minutes. The equation

for SQI linearly weights the duration spent in different stages of sleep. The highest

weighting is for the duration spent in Stage 4 sleep and lowest is for Stage 2 sleep.

Time spent in Stage 1 and Wake are not included in the equation as they are not

restorative. A lower value of the SQI corresponds with worse sleep as REM , S3, and

S4 in the equation would have lower durations. The SQI values for the 6 nighttime

operation scenarios are shown in Figure 8.11. The scenario in which most events

were at the beginning of the night resulted in the lowest SQI values due to a greater

reduction in Stage 3 and 4 sleep. The reduction in Stage 3 and 4 sleep and the

increase in Stage Wake for the 6 time scenarios are also shown in Figures 8.12 and

8.13, respectively.

Due to increased computational complexity of the developed nonlinear model, full

contours for the six scenarios were not able to be generated with the model in time

for inclusion in this thesis. However, simulations for the six different scenarios for

a few grid points was completed. For each of these grid points, 50 simulations were

completed for each noise scenario. For each simulation a different set of random

parameters were selected as described in Chapter 7. For two grid points, the average

number of additional awakenings calculated by taking the difference between the

number of awakenings occurring when noise events are present and the number that

would occur at the same time spontaneously without noise present, are shown in

Figure 8.14.
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Figure 8.11. SQI predictions for the 6 nighttime flight operation
scenarios. (a) Peak in operations in two hours in the middle of the
night, (b) an even distribution, (c) most events in the middle of the
night, (d) a U-shaped distribution, (e) most events at the beginning
of the night, and (f) most events occurring at the end of the night.
Red contours are the 40 to 55 dB(A) Lnight,outside contours.
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Figure 8.12. Reduction in time spent (minutes) in slow wave sleep
for the 6 nighttime flight operation scenarios. (a) Peak in operations
in two hours in the middle of the night, (b) an even distribution, (c)
most events in the middle of the night, (d) a U-shaped distribution,
(e) most events at the beginning of the night, and (f) most events
occurring at the end of the night.
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Figure 8.13. Increase in time spent (minutes) in Wake for the 6 night-
time flight operation scenarios. (a) Peak in operations in two hours in
the middle of the night, (b) an even distribution, (c) most events in
the middle of the night, (d) a U-shaped distribution, (e) most events
at the beginning of the night, and (f) most events occurring at the
end of the night.
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As with modified version of Basner’s Markov model a greater number of additional

awakenings occurred when most of the events were at the beginning of the night

than when most events were at the end of the night. The change in sleep stage

durations, compared to nights without aircraft events, for the two grid points is shown

in Figure 8.15. The change in sleep stage durations did not vary greatly between the

six scenarios. The largest difference occurred between the scenario when most of the

events were at the end of the night and the scenario in which most events were at

the beginning of the night. When most events were at the beginning of the night,

there was a greater reduction in slow wave sleep. However, unlike with the modified

version of Basner’s Markov model predictions, there was not a greater increase in

Stage Wake. A possible reason for this result is that the events at the end of the

night, for the nonlinear dynamic model, might have caused a greater reduction in

slow wave activity than when the events were at the beginning of the night, which

might have increased the duration spent awake due to both spontaneous and noise

excitations.

8.4 Conclusions

Sleep disturbance in communities was predicted for realistic airport operations sce-

narios. Models based on behavioral awakenings were found to predict a low number

of awakenings compared to those based on polysomnography data and may, partic-

ularly, under-predict the impact of nighttime noise on communities for scenarios in

which there are only a few events on a runway or flight-path. For different distribu-

tions of aircraft events during the night, the ANSI standard model predicted opposite

results, in terms of the average number of awakenings, when compared to predictions

from Basner’s Markov model with added quadratic dependence on noise level and

the nonlinear model developed in this research. A possible explanation for this result
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Figure 8.14. Average number of awakenings for 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.



292

1 2 3 4 5 6
5

10

15
C

ha
ng

e 
in

 
W

ak
e 

(m
in

)

(a)

1 2 3 4 5 6
−10

0

10

C
ha

ng
e 

in
 

S2
 (

m
in

)

1 2 3 4 5 6
−15

−10

−5

C
ha

ng
e 

in
 

SW
S 

(m
in

)

1 2 3 4 5 6
−2

0

2

C
ha

ng
e 

in
 

R
E

M
 (

m
in

)

Scenario

1 2 3 4 5 6
−15

−10

−5

C
ha

ng
e 

in
 

SW
S 

 (
m

in
)

1 2 3 4 5 6
−2

0

2

C
ha

ng
e 

in
 

R
E

M
 (

m
in

)

Scenario

1 2 3 4 5 6
−10

0

10

C
ha

ng
e 

in
 

S2
 (

m
in

)

1 2 3 4 5 6
5

10

15

C
ha

ng
e 

in
 

W
ak

e 
(m

in
) (b)

Figure 8.15. Change in sleep stage durations for the 6 flight operation
scenarios predicted using the nonlinear dynamic model for (a) grid
point at (-1 nmi, 5 nmi) and (b) grid point at (1 nmi, -4 nmi). The
scenarios are: (1) Peak in operations in two hours in the middle of the
night, (2) an even distribution, (3) most events in the middle of the
night, (4) a U-shaped distribution, (5) most events at the beginning
of the night, and (6) most events occurring at the end of the night.
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is that the ANSI standard model does not take into account the difference between

normal and noise disturbed sleep. Also, while the differences in disturbance between

more events at the the beginning and more events at the end of the night scenarios

appeared small for predictions calculated using both the ANSI standard model and

the modified version of Basner’s Markov model when translated into the number of

people impacted differences were quite large for the two scenarios. Therefore, the

number of people awakened by noise as well as contour size should be considered

when evaluating sleep disturbance in communities.

While similar trends were found in the number of additional awakenings and the

reduction in slow wave sleep calculated using the nonlinear dynamic model and the

modified version of Basner’s Markov model, there were differences in the predicted

total duration of being awake due to noise events. For the Markov Model a noise

event impacts the model predictions for 3 epochs, while for the nonlinear model the

noise events can impact the predictions of sleep for a longer duration. This difference

and its impact on predictions needs to be examined further. In addition, methods

for increasing the computation speed of the nonlinear dynamic model need to be

examined so that, in the future, it can be used to predict sleep disturbance contours.
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9. SUMMARY, OUTCOMES AND RECOMMENDATIONS FOR FUTURE

WORK

Nighttime aircraft noise can disturb sleep in communities, causing a decrease in rapid

eye movement and slow wave sleep and an increase in the number of awakenings and

time spent awake. These changes in sleep may lead to both next day and long term

health effects. There have been several models developed to predict noise induced

sleep disturbance. Most of the models, however, are limited because they only predict

the number of awakenings and not a change in sleep structure which may be important

when relating noise-induced sleep disturbance to potential health effects. A Markov

model which can be used to predict changes in sleep structure has been developed

by Basner (2006). However, the model does not have a noise level dependence and

it has many coefficients which makes it difficult to validate due to a large amount of

data being needed to produce estimates of the model parameters.

Nonlinear dynamic models have been developed to predict normal, non-noise in-

duced sleep patterns. This type of model was examined to determine if it could be

used to predict noise induced sleep disturbance. The nonlinear models have limita-

tions: they cannot predict awakenings during REM sleep or brief awakenings during

both NREM and REM sleep as observed in data from sleep studies. Approaches to

modifying a nonlinear dynamic model in order to be able to predict this type of be-

havior was examined. This resulted in the development of a model that could predict

slow wave, and slow and fast REM activity.
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9.1 Outcomes of This Research

To determine how to introduce faster dynamics into the Massaquoi and McCar-

ley model, first a sleep stage classification algorithm was developed. This algo-

rithm includes methods for removing artifacts and for identifying specific features

of polysomnography data including rapid eye movement and sleep spindles. Based on

the extracted features, a sleep stage classification algorithm in which sleep stages are

classified for each 1 second in time was developed. The standard method for scoring

sleep is to assign a sleep stage to each 30 second epoch. The algorithm that was

developed provides a more continuous evaluation of sleep stages than this standard

method. While in this research 30 second epochs were used at 1 second intervals

(sliding through the data), the algorithm is flexible so that shorter or longer epochs

could be used and the amount of overlap of segments changed.

To predict brief awakenings during REM sleep using the Massaquoi and McCar-

ley model (1992), a fast REM activity model was added. The occurrence of rapid

eye movements, identified using the sleep stage classification algorithm, was used to

classify when an individual was awake, in Tonic REM or in Phasic REM sleep. Based

on this classification, the fast REM activity was modeled by using a Duffing equation

with a 5th order stiffness term, undergoing periodic excitations in a region where

chaotic responses are occurring. The Duffing system has 3 stable and 2 unstable

equilibrium positions. When responses were in the regions of the stable equilibria

sleep was classified as being in Stage Wake, Phasic REM, or Tonic REM. The unsta-

ble equilibrium position between Wake and Tonic stable equilbria is a function of the

impulsive excitation in the sleep model.

To introduce aircraft noise into the model, extra impulsive excitations were added.

The probability of having a non-zero excitation response to a noise event increased

from its no-noise/external stimulus level with the maximum A-weighted Sound Pres-
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sure Level (LAmax) of the noise event. The complete nonlinear model has 5 compo-

nents: fast and slow REM sleep, slow wave activity and spontaneous and aircraft-noise

induced excitation models. The parameters of this model were estimated by using

the 1999 UK sleep study data (Flindell et al., 2000). This model can predict similar

durations of sleep stages for baseline non-noise nights as other existing sleep stage

models.

To compare predictions of noise induced sleep disturbance for different models,

two approaches for adding a noise level dependence to Basner’s Markov model were

examined. The coefficients of the three noise models were made a function of the

maximum A-weighted indoor noise level during a noise event. Both a linear and

quadratic dependence on noise level were examined. By using the modified version

of Basner’s Markov Model, with a quadratic dependence on noise level, and the

nonlinear model developed in this research, changes in sleep structure were predicted

for different airport noise scenarios. Both models predicted an increase in awakenings

with noise level, and a decrease in time spent in slow wave sleep. However, the

magnitude of these changes varied between the two models. A further refinement of

the model parameters used in the nonlinear model, and further examination of the

coefficients of the Markov model is still needed.

It should be noted that Basner’s model was tuned using the data the he had

available, the data from the DLR laboratory study. The model developed in this

research was tuned to the 1999 UK study, a relatively small dataset. Therefore some

differences may be due to the unique conditions in the two studies. There is clearly

a need with both models to have data from more studies to make the models more

generally applicable. Having emphasized the differences between the Markov and

nonlinear model predictions in terms of absolute levels it should be noted that while

tuned with different study data, the trends predicted agree very well with each other,
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perhaps evidence that they are predicting more generally observable trends in sleep

behavior.

In summary, the nonlinear dynamic model developed in this research with further

refinement can be a useful tool for predicting sleep disturbance in communities around

airports. One of the advantages of this type of model is that model coefficients can be

related to specific physiological processes and unlike Markov models which require a

large amount of data to estimate the large number of model parameters, the parame-

ters of the nonlinear model can be estimated using data for each subject night. This

perhaps will allow sleep disturbance to be able to be predicted for different subgroups

of the populations such as children, elderly, and individuals with preexisting sleep

problems, by estimating and using a different set of model parameters for each group.

9.2 Recommendations for Future Work

There are many areas in which research on the development of sleep disturbance

models should be conducted. Suggested areas of future research are provided below.

1. Further validation of the nonlinear model. The nonlinear dynamic sleep model

was developed based on one dataset the 1999 UK sleep study. This model should

be further validated by estimating parameters using additional sleep datasets. In

addition, further work should be done on validating and defining the thresholds used

to score sleep stages.

2. Incorporate additional noise characteristics into the model. Only the maximum

indoor noise level was considered in the model. However, researchers examining

the effects of noise on sleep have found that the rise time of the event as well as

spectral characteristics of the sound affect whether an individual will be awakened.

The incorporation of these characteristics into the model through modification of the

excitation term should be explored.
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3. Examine use of the model for predicting sleep in different subgroups of the pop-

ulation. An advantage of the nonlinear dynamic model is that the parameters can

be changed on a more intuitive basis than those of Markov sleep models. For exam-

ple, as individuals age the depth of sleep lightens therefore the decay parameters for

slow wave activity can be altered to reflect these changes. In addition, individuals

with sleep apnea have more awakenings during the night which could potentially be

modeled by increasing the rate of the excitation term. An examination of how to

change the model parameters in order to predict sleep in different populations should

be examined.

4. Improve predictions of indoor noise levels. For the airport noise simulations that

were conducted, outdoor noise levels, LAmax and SELA, were predicted and an out-

door to indoor noise attenuation of 25 dB(A) was assumed. However, one-third octave

band levels can be predicted using noise prediction software, though it is computa-

tionally intensive. By using sound transmission software and housing construction

data, house transfer filters could be developed and perhaps a better prediction of in-

door noise levels could be obtained. Effects of house orientation and window opening

would be interesting issues to explore in communities around airports and this would

be possible with improved sound transmission models.

5. Perform simulations of surveys around airports. There are very few large aircraft

noise and sleep field studies and so there is a limited number of datasets that can be

used to further validate the developed models. As part of designing a future survey,

simulations of the outcomes of different survey designs together with predictions of

sleep disturbance from existing models for current airport operations should be com-

pleted. This will enable researchers/survey designers to determine if the resulting

datasets would provide robust estimates of the parameters of existing sleep models.
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Appendix A. Noise Metrics

The following are noise metrics that were used in this report.

Cumulative Metrics:

1. Day Night Average Sound Pressure Level (DNL or Ldn):

DNL = 10log10

[
1

24

(∫ 22:00

7:00

pA
2

po2
dt+ 10

∫ 7:00

22:00

pA
2

po2
dt

)]
, (A.1)

pA is the A-weighted sound pressure level.

2. Lnight:

Lnight = 10log10

[
1

8

(∫ 7:00

23:00

pA
2

po2
dt

)]
. (A.2)

Single Event Metrics:

1. LAmax: Maximum A-weighted noise level.

2. SELA: Sound Exposure Level:

SELA = 10log10

(∫ t2

t1

pA
2

po2
dt

)
, (A.3)

where t1 and t2 are defined in Figure A.1.
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Figure A.1. A-weighted noise level (dB(A)) of aircraft noise event.
The maximum noise level (LAmax) and the portion of the sound used
to calculate the Sound Exposure Level (SELA) (red arrow) are indi-
cated.
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Appendix B. Laboratory and Field Studies

This appendix contains tables which list the survey data available for laboratory and

field studies on the effects of aircraft noise on sleep.

Table B.1. Laboratory studies-sleep measurements.

Study # of am/pm Behav. Acti- Motility- Polysom-
People Surveys Awake metry Other nography

Basner et al. 128 X X X
(2004)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X
(1994)
Carter et al. 9 X
(2002)
Dinisi et al. 20 X X
(1990)
Flindell et al. 9 X X X
(2000)
Levere et al. 6 X
(1972) (EEG)
Levere & Davis 12 X X
(1977) (EEG, EOG)
Lukas & Kryter 6 X X
(1970) (EEG, EOG)
Lukas et al. 12 X X X
(1971)
Lukas & Dobbs 8 X X X
(1972)
Marks et al. 24 X X
(2008)
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Table B.2. Laboratory studies-additional measurements.

Study # of ECG Blood Hormone Sleepiness Perfor-
People Pressure Levels, (Objective) mance

etc
Basner et al. 128 X X PST X
(2004) (24)
Basner et al. 72 X X X
(2008)
Carter et al. 9 X X
(1994)
Carter et al. 9 X X
(2002)
Dinisi et al. 20 X
(1990)
Flindell et al. 9 X MSLT X
(2000)
Levere et al. 6 X
(1972)
Levere & Davis 12
(1977)
Lukas & Kryter 6
(1970)
Lukas et al. 12
(1971)
Lukas & Dobbs 8
(1972)
Marks et al. 24 X X
(2008)
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Table B.3. Field studies-sleep measurements.

Study Location # of Social am/pm Behav. Acti-
People Survey Survey Awake metry

Basner Cologne- 64 X X
et al. Bonn
(2004)
Borksy JFK 1500 X
(1976)
Brink Zurich 60 X
et al.
(2008)
DORA Heathrow 4153 X
(1980) Gatwick
Fidell & LAX 1417 X
Jones
(1975)
Fidell Castle Air 85 X X
et al. Force Base
(1995) LAX
Fidell Stapleton 77 X X X
et al. Denver
(2000)
Fidell DeKalb- 22 X X X
et al. Peachtree
(2000)
Flindell Manchester 18 X X
et al.
(2000)
Haral- Athens 140 X
abidis Arlanda
et al. Heathrow
(2008) Malpensa
Ollerhead Heathrow 400- X X
et al. Gatwick Act.
(1992) Stansted 46-
Hume Manchester Poly.
et al. 1636-
(2003) Social

Survey
Passchier- Schiphol 418 X X X
Vermeer
et al.
(2002)
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Table B.4. Field studies-additional sleep measurements.

Study Motility- Polysom- ECG Blood Hormone Perfor-
Other nography Pressure Levels, mance

etc
Basner X X X X
et al.
(2004)
Borksy
(1976)
Brink X
et al.
(2008)
DORA
(1980)
Fidell &
Jones
(1975)
Fidell
et al.
(1995)
Fidell
et al.
(2000)
Fidell
et al.
(2000)
Flindell X X X
et al.
(2000)
Haral- X
abidis
et al.
(2008)
Ollerhead X
et al.
(1992)
Hume
et al.
(2003)
Passchier- X
Vermeer
et al.
(2002)
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Table B.5. Field studies-noise measurements.

Surveys Metrics- Measurement Measurement Noise
# of of of Metrics

Locations Outdoor Noise Indoor Noise
Basner et al. 64 X X A-weighted
(2004) time histories
Borksy 1500
(1976)
Brink et al. 60 X
(2008)
DORA 29 X LAeq, LAmax, SELA,
(1980) “number above” and

“level exceeded”
Fidell & 3 X Ldn

Jones (1975)
Fidell et al. 45 X X A-weighted time
(1995) histories, LAmax,

SELA
Fidell et al. 38 X X A-weighted time
(2000) histories, LAmax,

SELA
Fidell et al. 12 X X A-weighted time
(2000) histories, LAmax,

SELA
Flindell et al. 18 X X 1-sec A-weighted
(2000) time histories

Haralabidis 140 X A-weighted
et al. (2008) time histories
Ollerhead 8 X LAmax, SELA,
et al. (1992) Hourly LAeq

Hume
et al. (2003)
Passchier- 418 X X 1 sec A-weighted
Vermeer time histories
et al. (2002)
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Table B.6. Field studies-additional noise measurements.

Surveys Noise Recordings Flight Operations
(e.g. .wav) Data

Basner et al. X
(2004)
Borksy Distance from
(1976) airport
Brink et al. Played recordings
(2008) in each subject’s

home
DORA Flight paths,
(1980) Location of

surveyed areas
Fidell &
Jones (1975)
Fidell et al.
(1995)
Fidell et al.
(2000)
Fidell et al.
(2000)
Flindell et al. 10 sec .wav List of aircraft by
(2000) recordings for time of arrival

4 locations and departure
Haralabidis X
et al. (2008)
Ollerhead Maps indicating
et al. (1992) flight paths and
Hume study locations
et al. (2003)
Passchier- Obtained data from
Vermeer flight track monitoring
et al. (2002) system indicating

aircraft noise events
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Appendix C. Coefficients of Basner’s Markov Model

Table C.1. Coefficients for Basner’s Four Markov Models (2006).

Coefficient/sj si Baseline Noise 1 Noise 2 Noise 3
Intercept 0 1.2144 2.3013 0.7674 0.9691

1 -0.4702 -0.4125 -0.4415 -0.3739
3 -3.6542 -4.0295 -3.8388 -3.8809
4 -6.2984 -12.6277 -14.1409 -5.0150
5 -1.3717 -1.0818 -1.6914 -2.2264

S1 0 -2.7472 -1.8124 -2.9919 -2.8770
1 0.2838 0.4352 0.0584 -0.3877
3 -2.5433 -0.4452 -9.0011 -1.9712
4 -6.9807 -1.1678 -1.6087 -8.7818
5 -1.3017 -1.5643 -0.0583 -1.2233

S2 0 -4.8576 -3.5524 -3.8725 -4.6710
1 -4.6860 -3.3554 -4.2785 -4.7750
3 0.8986 1.6156 0.8650 1.2007
4 0.2586 4.8135 6.9155 -3.3496
5 -3.0316 -3.3679 -2.1935 -1.9309

S3 0 -3.4514 -2.4651 -2.9214 -3.2425
1 -6.7253 -3.6566 -4.7870 -4.9466
3 5.7615 5.9772 4.9008 5.8730
4 6.5807 12.6037 12.5687 4.9879
5 -3.8353 -4.9858 -5.2357 -2.6269

S4 0 -0.7784 -0.4093 -1.0691 -0.5785
1 -3.5858 -2.5576 -3.5520 -9.9189
3 6.5302 6.5707 5.6143 6.9644
4 11.5460 17.2381 17.5938 10.6345
5 -3.0085 -10.3476 -10.8294 -8.2248

REM 0 -1.0655 -0.9722 -0.8380 -1.0694
1 -1.2599 -0.3825 -1.2592 -1.5366
3 -2.0445 -9.1235 -8.4853 -8.2782
4 -6.1652 8.0627 -1.0821 -6.7936
5 4.5398 3.9654 4.6170 4.9946

Transition 0 0.000452 -0.00025 -0.00004 0.000401
1 -0.00026 -0.00030 -0.0013 0.000277
3 -0.00147 -0.00135 -0.00125 -0.00190
4 -0.00273 -0.00187 -0.00150 -0.00285
5 0.000869 0.000337 0.000822 0.000896
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Appendix D. Model Parameters Estimated for Each Subject

The model coefficient values listed in the following tables were calculated for 76

subject nights from the 1999 UK sleep study (Flindell et al., 2000). The methods

used to calculate these coefficients are discussed in Chapter 7. For the slow REM

sleep model, the coefficients were not calculated if the REM period defined in the

original dataset was less than 5 minutes in duration or if the NREM period before or

after a REM period was less than 15 minutes. Also the coefficients of the slow REM

model were not calculated if the duration of the prior NREM period or the duration

of the REM period was considered an outlier, which was defined as:

Lower Outliers < 25th percentile− 1.5(75th percentile− 25th percentile), (D.1)

Upper Outliers > 75th percentile+ 1.5(75th percentile− 25th percentile), (D.2)

here the 75th and 25th percentiles were calculated based on all NREM or REM

periods during the night for all 76 subject nights. The subject nights for which the

coefficients were not calculated are indicated by gray/blank entries in the following

tables.
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Table D.1. Estimated parameters for Process S and SWA models for
field subjects 1 through 12 in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

1 2 3.3365 0.0391 0.2384 0.1064 4.1062 1.5094
1 4 4.1180 0.0497 0.1725 0.2324 1.4241 1.0915
2 1 3.3673 0.0248 0.1094 0.4977 3.2499 0.8288
2 3 3.7074 0.0304 0.1411 0.3090 1.1422 1.1137
2 4 3.5105 0.0307 0.1501 0.3532 3.0706 0.9375
3 3 3.8628 0.0306 0.2220 0.2636 1.0852 0.9697
3 4 2.8551 0.0265 0.1641 0.8013 1.9962 0.5251
6 1 4.3358 0.0442 0.1103 0.2309 1.7047 1.0080
6 2 4.0398 0.0441 0.1010 0.2930 2.1427 1.1029
6 3 5.4750 0.0544 0.1075 0.1779 2.5459 1.1783
8 4 2.9164 0.0240 0.2467 0.3148 1.1791 0.9923
9 1 4.2406 0.0350 0.1879 0.2398 1.0777 0.9125
9 3 5.8348 0.0461 0.1513 0.2348 1.4101 0.6386
9 4 4.9060 0.0410 0.1532 0.3571 1.7851 0.6713
10 0 3.0004 0.0155 0.1751 0.5186 2.3834 0.7325
10 1 3.3971 0.0251 0.1691 0.3169 4.6552 1.0097
10 3 3.0035 0.0175 0.1817 0.4090 2.8392 0.8222
12 0 2.6382 0.0084 0.2029 0.6562 1.7541 0.6065
12 1 3.5689 0.0268 0.2300 0.2968 1.9174 0.6616
12 2 3.6195 0.0290 0.2220 0.3064 2.4094 0.6035
12 3 3.2195 0.0272 0.2102 0.3388 0.8993 0.8086
12 4 3.2789 0.0346 0.2216 0.5200 1.6621 0.6518
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Table D.2. Estimated parameters for Process S and SWA Models for
field subjects 13 through 18 in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

13 1 3.6619 0.0391 0.2099 0.3742 2.3962 0.9962
13 2 3.2038 0.0368 0.2127 0.6463 1.4571 1.0797
13 3 3.6877 0.0396 0.1749 0.4544 2.6606 0.9135
13 4 3.6919 0.0384 0.2346 0.3296 1.7203 0.8148
14 0 3.1813 0.0191 0.2252 0.5168 1.3479 0.4149
14 1 3.6535 0.0378 0.2081 0.3027 2.4437 0.4495
14 3 3.4100 0.0349 0.1948 0.4929 3.1263 0.4518
14 4 3.5922 0.0260 0.2182 0.4196 1.3223 0.3784
15 0 4.0728 0.0448 0.1920 0.2650 1.6454 0.8416
15 1 3.4671 0.0380 0.1849 0.4188 0.8472 0.8556
15 2 5.1299 0.0526 0.1491 0.2146 2.2660 1.0116
15 3 3.5554 0.0316 0.1909 0.3501 2.1493 0.8968
15 4 2.8822 0.0237 0.2099 0.3902 2.8141 0.9586
16 2 3.7999 0.0511 0.1885 0.3281 2.4172 0.6750
16 3 2.5900 0.0132 0.2515 0.4534 2.3607 0.7207
16 4 4.1062 0.0329 0.2400 0.4131 1.1499 0.6461
17 2 3.1666 0.0085 0.1984 0.6205 2.5602 0.1973
17 4 3.5993 0.0111 0.1903 0.2904 1.8888 0.7340
18 0 3.9134 0.0293 0.1481 0.5266 0.9661 0.3428
18 1 4.0829 0.0277 0.1769 0.4777 1.5498 0.6446
18 3 3.8975 0.0259 0.1720 0.5255 1.1675 1.3014
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Table D.3. Estimated parameters to define the random noise term
n(t) for field subjects 1 through 12 in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
1 2 -0.0137 0.2052 0.6424 3.1467
1 4 -0.0162 0.2376 0.7350 3.2077
2 1 -0.0249 0.3184 0.5866 3.0170
2 3 -0.0233 0.3076 0.5346 3.0197
2 4 -0.0270 0.3529 0.6954 3.0037
3 3 -0.0155 0.2619 0.6994 3.0650
3 4 -0.0183 0.2516 0.5569 3.1028
6 1 -0.0148 0.2358 0.4925 2.8902
6 2 -0.0163 0.2421 0.3801 2.7713
6 3 -0.0169 0.2414 0.4245 2.7671
8 4 -0.0131 0.2039 0.5482 3.0342
9 1 -0.0159 0.2125 0.4902 2.9049
9 3 -0.0153 0.2424 0.5413 3.0465
9 4 -0.0221 0.2908 0.4896 2.8882
10 0 -0.0166 0.2699 0.4735 3.0702
10 1 -0.0217 0.3305 0.5821 3.0052
10 3 -0.0231 0.2896 0.5359 2.9910
12 0 -0.0115 0.1989 0.4082 2.9315
12 1 -0.0126 0.2057 0.3081 2.8874
12 2 -0.0109 0.1999 0.4820 3.0699
12 3 -0.0127 0.2363 0.4677 2.8805
12 4 -0.0152 0.2335 0.5244 3.0019
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Table D.4. Estimated parameters to define the random noise term
n(t) for field subjects 13 through 18 in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
13 1 -0.0150 0.2333 0.4922 2.7396
13 2 -0.0126 0.2398 0.4638 2.7454
13 3 -0.0147 0.2262 0.4192 2.6815
13 4 -0.0117 0.2101 0.4216 2.7749
14 0 -0.0194 0.2653 0.6029 3.1969
14 1 -0.0188 0.2689 0.5385 3.2537
14 3 -0.0176 0.2690 0.6065 3.2100
14 4 -0.0171 0.2430 0.6088 3.3874
15 0 -0.0176 0.2389 0.5988 3.2506
15 1 -0.0148 0.2298 0.6067 2.9735
15 2 -0.0165 0.2028 0.5076 3.0437
15 3 -0.0144 0.2079 0.5460 2.9984
15 4 -0.0181 0.2209 0.6691 3.2496
16 2 -0.0152 0.2316 0.4356 2.7253
16 3 -0.0094 0.2039 0.3273 2.8323
16 4 -0.0110 0.2145 0.2778 2.7091
17 2 -0.0123 0.1875 0.3502 2.8473
17 4 -0.0113 0.1788 0.2057 2.7489
18 0 -0.0129 0.2000 0.4971 2.8332
18 1 -0.0187 0.2207 0.5803 3.1554
18 3 -0.0132 0.2158 0.5883 3.1180
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Table D.5. Estimated Slow REM parameters for the 1st REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.9449 0.3452 1.8029 2.2423
1 4 0.4772 0.3628 0.4370 1.0013
2 1
2 3
2 4 0.5625 0.3310 0.5577 1.2185
3 3
3 4
6 1 0.6171 0.3082 2.6341 2.1381
6 2 0.7395 0.2693 3.5046 2.1494
6 3 0.5880 0.5230 3.2306 2.8342
8 4 0.6009 0.3204 1.7271 1.9237
9 1 0.5630 0.2888 0.9491 1.4708
9 3 0.4375 0.3988 1.6747 1.8993
9 4 0.4624 0.2723 0.2468 0.7767
10 0 0.5033 0.2472 1.0223 1.4101
10 1 0.7957 0.2963 4.4418 2.4240
10 3
12 0 0.5003 0.2333 1.4639 1.4902
12 1 0.5599 0.3768 0.4808 1.1372
12 2 0.4742 0.3416 0.3624 0.8917
12 3 0.4671 0.3713 4.0835 2.3865
12 4
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Table D.6. Estimated Slow REM parameters for the 1st REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.8421 0.4053 1.3973 2.1578
13 2 0.3383 0.4697 2.9938 2.9428
13 3 0.6519 0.4009 1.3782 1.9353
13 4 0.5565 0.4542 1.5234 2.0760
14 0 0.4277 0.3275 1.0295 1.5120
14 1 0.5209 0.3732 0.8963 1.4355
14 3 0.6248 0.3588 1.7732 2.0457
14 4 0.4921 0.3768 0.9242 1.5152
15 0
15 1 0.4890 0.4508 2.9965 2.4623
15 2 0.4987 0.3260 2.5135 2.0515
15 3 0.4328 0.3804 0.5348 1.0644
15 4
16 2 0.5231 0.5728 4.9164 3.2492
16 3 0.5326 0.5202 1.2638 1.9961
16 4 0.6534 0.4220 2.8619 2.6845
17 2 0.4584 0.3948 2.1441 2.1096
17 4 0.4532 0.2789 0.3634 0.8962
18 0 0.4601 0.3255 1.6773 1.7843
18 1 0.4294 0.2975 0.9734 1.4024
18 3 0.5304 0.4369 1.0966 1.8001
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Table D.7. Estimated Slow REM parameters for the 2nd REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.4639 0.3865 0.5274 1.0631
1 4 0.5053 0.3594 1.9105 1.9666
2 1 0.4896 0.4300 0.8211 1.4968
2 3 0.4815 0.3023 0.5093 1.0836
2 4 0.4277 0.2928 1.0524 1.4569
3 3 0.3494 0.2807 0.6846 1.1034
3 4 0.4522 0.2536 1.0486 1.3399
6 1 0.4283 0.4861 3.2037 3.1510
6 2 0.3507 0.3839 0.9261 1.3689
6 3 0.6365 0.3903 1.0005 1.7083
8 4 0.5400 0.3777 4.9061 2.5620
9 1
9 3 0.4857 0.2791 0.3239 0.9093
9 4 0.3462 0.3166 0.6968 1.1381
10 0 0.3200 0.2705 0.6440 1.0248
10 1 0.3870 0.3070 0.9110 1.3715
10 3 0.4808 0.4389 0.4637 0.9781
12 0 0.3189 0.3230 1.2159 1.4351
12 1
12 2 0.4674 0.3754 0.2581 0.7168
12 3
12 4
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Table D.8. Estimated Slow REM parameters for the 2nd REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5208 0.4153 0.6243 1.2152
13 2
13 3 0.5909 0.3677 2.7721 2.3193
13 4 0.5863 0.3894 0.2723 0.8640
14 0 0.4264 0.3666 0.5073 1.0169
14 1 0.4901 0.4151 0.5836 1.1526
14 3 0.4566 0.4687 0.8856 1.5078
14 4 0.4850 0.4171 0.6355 1.2381
15 0 0.4898 0.5628 2.7293 2.6201
15 1 0.5081 0.2515 0.2453 0.8591
15 2 0.5007 0.4217 0.1873 0.5431
15 3 0.4853 0.3430 0.3609 0.9168
15 4 0.3844 0.3957 0.3694 0.7949
16 2 0.5862 0.2872 0.1222 0.8035
16 3 0.7002 0.3297 0.1092 0.5507
16 4 0.5370 0.4100 0.7989 1.4283
17 2 0.5171 0.3613 1.2800 1.7625
17 4 0.3584 0.3965 0.8833 1.3490
18 0 0.4221 0.4101 0.5928 1.1745
18 1 0.3666 0.2230 0.2092 0.6277
18 3 0.5499 0.3413 0.3794 1.0031
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Table D.9. Estimated Slow REM parameters for the 3rd REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.5024 0.3216 1.1445 1.5797
1 4 0.4838 0.5494 0.6685 1.2813
2 1 0.5188 0.3152 0.2316 0.8083
2 3 0.4390 0.5583 0.4880 0.9656
2 4 0.4011 0.4044 1.7710 1.9035
3 3 0.4550 0.3972 4.6822 2.9365
3 4
6 1 0.7139 0.4861 3.2037 3.1510
6 2 0.4969 0.4907 1.1780 3.1510
6 3 0.5158 0.5850 0.9091 1.6064
8 4 0.4733 0.4081 1.4409 1.8836
9 1
9 3 0.3599 0.2662 0.4348 0.8829
9 4 0.4198 0.3390 0.3032 0.7564
10 0 0.5402 0.5777 0.1713 0.4179
10 1 0.3928 0.4597 0.9503 1.4718
10 3 0.6591 0.4520 0.1129 0.4489
12 0 0.4552 0.3867 0.2471 0.6599
12 1 0.4861 0.4889 1.9929 2.2783
12 2 0.4854 0.3978 0.6604 1.2595
12 3
12 4



333

Table D.10. Estimated Slow REM parameters for the 3rd REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5238 0.4283 1.0469 1.7118
13 2 0.6365 0.4470 3.4673 2.7505
13 3 0.4666 0.3557 0.7078 1.2666
13 4 0.5455 0.4493 2.3287 2.3778
14 0 0.5051 0.4106 0.2837 0.7724
14 1 0.5639 0.4553 0.3234 0.8716
14 3 0.6588 0.5353 0.3121 0.9028
14 4
15 0 0.6721 0.4306 0.3627 1.1717
15 1 0.3238 0.2679 0.4875 0.8953
15 2 0.5598 0.4507 0.3937 1.0072
15 3 0.5276 0.6923 0.4838 0.9810
15 4 0.5040 0.4025 0.8526 1.4848
16 2 0.3968 0.3456 1.5555 1.7050
16 3 0.4699 0.4098 2.1466 2.1424
16 4 0.4970 0.2984 0.3987 0.9866
17 2 0.5683 0.5020 0.1770 0.5425
17 4 0.5104 0.4287 0.6854 1.3078
18 0 0.5262 0.4634 0.9469 1.6672
18 1 0.3623 0.3685 0.1945 0.4621
18 3 0.4293 0.3853 0.8116 1.4171
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Table D.11. Estimated Slow REM parameters for the 4th REM period
for field subjects 1 through 12 in the 1999 UK study.

Subject Night a b c d
1 2 0.5365 0.5782 0.2852 0.6619
1 4 1.5974 1.3901 0.1178 0.2581
2 1 0.6074 0.7519 0.3061 0.6471
2 3 1.4069 1.3761 0.1261 0.3670
2 4 0.8437 0.7795 0.1388 0.4083
3 3 0.8604 1.1212 0.3128 0.6724
3 4
6 1 0.6818 0.3391 0.1062 0.5235
6 2 0.5887 0.3292 0.4522 1.2172
6 3 0.7326 0.3834 0.8000 1.6670
8 4 0.5739 0.6394 0.6444 1.3707
9 1
9 3 0.3905 0.4391 0.3334 0.7305
9 4 0.5724 1.5681 1.2130 1.7177
10 0
10 1 0.5912 0.4784 0.7260 1.4171
10 3 0.8150 0.8238 0.3115 0.7617
12 0 0.7859 1.0489 0.3869 0.8025
12 1 0.6698 0.3620 0.1179 0.5445
12 2 0.5553 0.6585 2.5723 2.8309
12 3 0.7427 0.5116 0.4340 1.1898
12 4
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Table D.12. Estimated Slow REM parameters for the 4th REM period
for field subjects 13 through 18 in the 1999 UK study.

Subject Night a b c d
13 1 0.5669 0.4338 1.0256 1.6158
13 2 0.6722 0.6984 0.5466 1.2074
13 3 0.4981 0.5578 3.3427 3.3730
13 4 0.6880 0.4682 0.1152 0.4618
14 0 0.8844 1.0687 0.2996 0.6810
14 1 0.6790 0.5767 0.2644 0.7689
14 3 0.6432 0.3055 0.6329 1.4333
14 4
15 0 0.5792 0.6659 2.1312 2.6890
15 1 0.4194 0.7760 3.5629 2.6521
15 2 0.7735 1.1726 0.6910 1.3673
15 3 0.8922 0.5190 0.6672 1.6873
15 4
16 2 1.1560 1.1883 0.1378 0.1548
16 3 0.5448 0.4312 0.4498 1.0866
16 4
17 2 0.6413 0.5223 1.2624 2.0347
17 4 0.5594 0.3957 0.2866 0.8331
18 0 0.8106 0.6671 0.1257 0.4598
18 1
18 3 0.5416 0.4163 0.2068 0.6370
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Table D.13. Estimated parameters for Process S and SWA Models
for laboratory subjects in the 1999 UK study.

Subject Night So gc SWAL rc fc SWAo

19 0 4.4617 0.0388 0.1322 0.2723 2.7529 0.7880
19 1 4.1486 0.0416 0.1389 0.5287 2.3165 0.6207
19 2 4.4169 0.0377 0.1574 0.3119 1.8867 0.7717
20 1 3.7485 0.0301 0.1414 0.2021 1.2187 0.7005
20 2 4.4947 0.0510 0.1266 0.3502 1.9782 0.6344
20 3 4.5684 0.0447 0.1118 0.3991 0.9658 1.0292
22 0 3.6723 0.0302 0.1618 0.2413 0.8112 0.8331
22 1 2.7767 0.0224 0.1888 0.5033 0.6205 1.0756
22 2 2.9903 0.0215 0.1799 0.4356 3.9335 0.5538
22 3 3.3267 0.0247 0.1887 0.2465 0.5896 1.4638
22 4 3.2060 0.0299 0.1781 0.3031 1.4033 1.1598
23 0 4.3522 0.0437 0.1360 0.2274 1.5741 0.5255
23 1 3.6144 0.0427 0.1253 0.5919 3.0516 0.5897
23 2 3.5923 0.0458 0.1170 0.4904 3.2262 0.9388
23 3 3.9107 0.0403 0.1123 0.4474 0.7768 0.7866
23 4 4.2102 0.0408 0.0962 0.4243 5.2869 0.1287
24 1 3.7697 0.0262 0.1946 0.3005 1.2354 0.9240
24 2 3.6909 0.0287 0.1616 0.3345 1.2877 0.7526
24 3 3.5164 0.0242 0.1131 0.1927 2.1170 1.0128
24 4 3.3937 0.0310 0.1446 0.3861 2.5985 0.7584
25 0 4.4544 0.0408 0.1317 0.3577 3.0195 0.5270
25 1 5.5164 0.0423 0.1339 0.3528 1.8326 0.3762
25 3 4.1590 0.0326 0.1568 0.3428 1.7633 0.5745
25 4 4.6178 0.0388 0.1379 0.3817 4.4222 0.5808
26 0 4.1647 0.0367 0.2180 0.3898 1.8732 0.8575
26 1 3.5370 0.0251 0.1832 0.5734 2.5480 0.2611
26 2 3.5335 0.0148 0.2155 0.4978 3.5402 0.6858
26 3 3.0433 0.0285 0.2277 0.5752 1.0266 0.5940
26 4 3.3089 0.0247 0.1842 0.8444 3.5710 0.5459
27 0 3.7023 0.0310 0.1469 0.1939 2.1031 1.3816
27 1 4.2429 0.0291 0.1901 0.5101 2.4893 0.3781
27 2 3.6894 0.0174 0.1578 0.7144 3.8975 0.6864
27 3 2.2853 0.0092 0.1519 0.5768 1.3976 1.3098
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Table D.14. Estimated parameters to define the random noise term
n(t) for laboratory subjects in the 1999 UK study.

Subject Night mean std. dev skew kurtosis
19 0 -0.0230 0.2976 0.4820 2.9347
19 1 -0.0238 0.3001 0.4651 3.0426
19 2 -0.0223 0.3166 0.7243 3.4013
20 1 -0.0248 0.3499 0.7557 3.2273
20 2 -0.0208 0.3163 0.6404 2.9809
20 3 -0.0282 0.3209 0.7196 3.2341
22 0 -0.0102 0.1855 0.3313 2.5732
22 1 -0.0122 0.2177 0.4288 2.6868
22 2 -0.0139 0.2222 0.3567 2.7088
22 3 -0.0089 0.2127 0.3329 2.5741
22 4 -0.0126 0.1957 0.3300 2.6127
23 0 -0.0230 0.2794 0.6314 3.2467
23 1 -0.0270 0.3284 0.6696 3.2777
23 2 -0.0264 0.3022 0.7096 3.3291
23 3 -0.0269 0.3437 0.7923 3.4239
23 4 -0.0259 0.3180 0.6423 3.3163
24 1 -0.0215 0.2784 0.5800 3.2364
24 2 -0.0209 0.2496 0.7014 3.3164
24 3 -0.0246 0.2742 0.5689 3.1053
24 4 -0.0183 0.2503 0.6000 3.1454
25 0 -0.0153 0.2173 0.4594 3.1641
25 1 -0.0179 0.2804 0.4747 2.9093
25 3 -0.0153 0.2127 0.5792 3.0931
25 4 -0.0148 0.2390 0.4520 2.9289
26 0 -0.0138 0.2104 0.6281 3.2015
26 1 -0.0168 0.2368 0.6540 3.1220
26 2 -0.0135 0.2158 0.5218 2.8605
26 3 -0.0119 0.1976 0.3841 2.7699
26 4 -0.0180 0.2549 0.5501 2.9491
27 0 -0.0156 0.2358 0.4369 2.8233
27 1 -0.0206 0.2284 0.4893 2.7561
27 2 -0.0200 0.2304 0.4844 2.8232
27 3 -0.0157 0.2285 0.4956 2.8772
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Table D.15. Estimated Slow REM parameters for the 1st REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0
19 1 0.4251 0.2834 4.9021 2.2987
19 2 0.3810 0.3050 1.0263 1.3982
20 1 0.6702 0.3544 0.9204 1.6302
20 2 0.7062 0.5900 0.1642 0.5507
20 3 0.6909 0.4573 0.3386 1.0201
22 0 0.6138 0.3478 1.1979 1.6893
22 1 0.9176 0.2900 4.8776 2.3368
22 2 0.7329 0.3431 4.3607 2.6913
22 3 0.4388 0.2721 0.1291 0.5678
22 4 0.7147 0.2939 0.7556 1.5869
23 0 0.4287 0.4356 2.5031 2.2213
23 1
23 2 0.6862 0.4797 4.3969 3.0872
23 3 0.4092 0.5104 1.0667 1.6152
23 4 0.6191 0.3796 2.6691 2.5219
24 1 0.3248 0.3053 0.6152 1.0414
24 2
24 3 0.3725 0.3171 1.0875 1.4275
24 4 0.3869 0.3413 2.1844 1.8916
25 0 0.5445 0.3723 2.8765 2.3358
25 1 0.4892 0.4575 1.4841 1.9746
25 3 0.4685 0.3327 1.5071 1.8612
25 4 0.6223 0.2788 1.5787 1.7070
26 0 0.3708 0.3830 1.7241 1.7961
26 1 0.4198 0.3258 3.5515 1.9850
26 2
26 3 0.4386 0.3382 1.7017 1.8136
26 4
27 0 0.6900 0.3382 2.0799 2.1056
27 1
27 2 0.5655 0.3170 1.3695 1.7208
27 3 0.7115 0.4085 0.4487 1.3780
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Table D.16. Estimated Slow REM parameters for the 2nd REM pe-
riod for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0 0.4803 0.5197 0.3091 0.6831
19 1 0.3598 0.3574 1.1256 1.4724
19 2 0.3997 0.3644 0.5559 1.0828
20 1 0.4260 0.2717 0.3975 0.9515
20 2 0.7553 0.4345 0.8170 1.7184
20 3 0.5803 0.3985 0.3900 1.0402
22 0 0.4607 0.4267 1.3724 1.8195
22 1 0.3668 0.5099 0.9374 1.4428
22 2 0.5261 0.7963 4.1544 3.5468
22 3 0.3817 0.4728 1.9004 2.0365
22 4 0.4082 0.4221 0.4460 0.9360
23 0 0.6101 0.4355 2.8321 2.7324
23 1 0.3572 0.2965 0.7228 1.1619
23 2 0.6739 0.5253 2.2173 2.7709
23 3 0.6715 0.3244 1.0515 1.6653
23 4 0.5010 0.4570 1.7549 2.1579
24 1 0.4336 0.4467 2.2907 2.2103
24 2 0.5105 0.3927 1.3382 1.8843
24 3 0.4776 0.3814 2.9425 2.2768
24 4 0.4261 0.3919 1.1084 1.5847
25 0 0.4851 0.4419 1.0678 1.7222
25 1 0.5728 0.3633 1.0387 1.5875
25 3 0.4326 0.4155 0.8186 1.4586
25 4 0.3923 0.3724 1.7375 1.8288
26 0 0.4667 0.2680 0.2915 0.8435
26 1 0.4088 0.2678 0.5056 1.0000
26 2 0.3176 0.2458 0.6736 1.0591
26 3 0.4307 0.3001 0.6203 1.1292
26 4 0.2989 0.4336 0.7549 1.1672
27 0 0.4469 0.3773 0.4208 0.9390
27 1 0.4478 0.4120 0.4503 0.9404
27 2
27 3 0.5702 0.5707 3.3406 3.4079
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Table D.17. Estimated Slow REM parameters for the 3rd REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0 0.6687 0.4552 0.3896 1.1010
19 1 0.4728 0.3570 0.3457 0.8511
19 2 0.4754 0.4595 0.6974 1.3590
20 1 0.3470 0.4226 0.9595 1.4112
20 2 0.5526 0.3769 1.1329 1.6898
20 3 0.5821 0.5023 0.2380 0.7116
22 0
22 1 0.6749 0.3394 1.3436 1.8864
22 2 0.8796 0.4257 0.3223 1.3819
22 3 0.6144 0.4661 0.4351 1.0741
22 4 0.5689 0.4450 0.4569 1.1015
23 0 0.5458 0.3444 0.4666 1.1157
23 1 0.4042 0.4423 0.5583 1.0675
23 2 0.6268 0.3094 0.6703 1.4387
23 3 0.4075 0.3986 0.8956 1.4221
23 4 0.5821 0.4232 1.0106 1.6091
24 1 0.5238 0.2789 0.2633 0.8962
24 2 0.5222 0.5068 0.5811 1.2142
24 3 0.5527 0.5264 0.6560 1.2955
24 4 0.5049 0.3868 0.3160 0.8776
25 0 0.5605 0.3765 0.5711 1.2564
25 1 0.4855 0.3871 0.4313 0.9964
25 3 0.5264 0.3732 0.6560 1.2955
25 4 0.4878 0.4818 0.8249 1.5370
26 0
26 1
26 2 0.6989 1.1090 0.2242 0.4263
26 3 0.4499 0.5123 0.3603 0.7970
26 4 0.6328 0.6036 0.4991 1.0923
27 0 0.5763 0.5844 4.0785 3.1609
27 1 0.5280 0.4658 1.5061 2.1693
27 2
27 3 0.7172 0.3840 1.1155 1.8699
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Table D.18. Estimated Slow REM parameters for the 4th REM period
for laboratory subjects in the 1999 UK study.

Subject Night a b c d
19 0
19 1
19 2 0.6152 0.5341 0.6383 1.3189
20 1 0.5484 0.3193 1.1088 1.5594
20 2 0.5387 0.4948 0.3856 0.9102
20 3 0.7437 0.8210 0.6442 1.4124
22 0 0.6091 0.5014 2.0878 2.6806
22 1 0.5382 1.0653 0.7443 1.3323
22 2 0.6858 0.5499 0.1414 0.5037
22 3 0.5855 0.3806 0.1708 0.6939
22 4 0.7367 0.6174 0.1708 0.5800
23 0 0.5867 0.5784 0.2321 0.5851
23 1
23 2 0.3950 0.4652 1.0138 1.5328
23 3 0.6093 0.4891 3.8592 2.9005
23 4 0.5175 0.3944 0.8351 1.4474
24 1 0.4008 0.8642 1.2226 1.6379
24 2 0.6070 0.3593 0.2406 0.9023
24 3 0.6052 0.3211 0.1749 0.8150
24 4 0.5982 0.4042 3.5296 2.6082
25 0 0.4848 0.4690 0.9139 1.6335
25 1 0.4930 0.3682 0.3855 0.9550
25 3 0.5087 0.4269 0.4168 0.9627
25 4 0.6791 0.5020 0.115 0.5144
26 0 0.9384 0.8990 0.4220 1.0837
26 1
26 2
26 3 0.6516 0.4208 0.3062 0.9689
26 4
27 0 0.7471 0.6266 0.9356 1.8275
27 1 0.6651 0.5636 0.3960 1.0266
27 2 0.8620 0.4098 1.3385 2.1424
27 3 0.4858 0.4788 1.3242 1.8655
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Appendix E. Range for Nonlinear Model Parameters Estimated for Each Subject

Table E.1. Range of estimated parameter values for Process S and
SWA Models for all field subject nights in the 1999 UK study.

Range
min to max

So 2.5900 to 5.8348
gc 0.0084 to 0.0544
SWAL 0.1010 to 0.2515
rc 0.1064 to 0.8013
fc 0.8472 to 4.6552
SWAo 0.1973 to 1.5094

Table E.2. Range of estimated parameter values for n(t) for all field
subject nights in the 1999 UK study.

Range
min to max

mean -0.0094 to -0.0270
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7350
kurtosis 2.6815 to 3.3874

Table E.3. Range of estimated parameter values for the Slow REM
model for all field subject nights in the 1999 UK study.

REM a b c d
Period min to max min to max min to max min to max

1 0.3383 to 0.9449 0.2333 to 0.5728 0.2468 to 4.9164 0.7767 to 3.2492
2 0.3189 to 0.7002 0.2230 to 0.5628 0.1092 to 4.9061 0.5431 to 3.1510
3 0.3238 to 0.7139 0.2662 to 0.6923 0.1129 to 4.6822 0.4179 to 3.1510
4 0.3905 to 1.5974 0.3055 to 1.5681 0.1062 to 3.5629 0.1548 to 3.3730
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Table E.4. Range of estimated parameter values for Process S and
SWA Models for all laboratory subject nights in the 1999 UK study.

Range
min to max

So 2.2853 to 5.5164
gc 0.0092 to 0.0510
SWAL 0.0962 to 0.2277
rc 0.1927 to 0.8444
fc 0.5896 to 5.2869
SWAo 0.1287 to 1.4638

Table E.5. Range of estimated parameter values for n(t) for all labo-
ratory subject nights in the 1999 UK study.

Range
min to max

mean -0.0089 to -0.0282
standard deviation 0.1788 to 0.3529
skew 0.2057 to 0.7923
kurtosis 2.5732 to 3.4239

Table E.6. Range of estimated parameter values for the Slow REM
model for all laboratory subject nights in the 1999 UK study.

REM a b c d
Period min to max min to max min to max min to max

1 0.3248 to 0.9176 0.2721 to 0.5900 0.1291 to 4.9021 0.5507 to 3.0872
2 0.2986 to 0.7553 0.2458 to 0.7963 0.2915 to 4.1544 0.6831 to 3.5468
3 0.3470 to 0.8796 0.2789 to 1.1090 0.2242 to 4.0785 0.4263 to 3.1609
4 0.3950 to 0.9384 0.3193 to 1.0653 0.1115 to 3.8592 0.5037 to 2.9005
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Appendix F. Equations and Coefficients of Nonlinear Dynamic Models

F.1 Massaquoi and McCarley Model

The Massaquoi and McCarley model (1992) has 4 main components. The first part of

the model is the reciprocal interaction REM model. The equation for REM promoting

neuron activity is,

Ẋ = a(X)S1(X)X − b(X)XY, (F.1)

and the equation for REM inhibiting neuron activity is,

Ẏ = −cY + dcircS2(Y )(X + E)Y, (F.2)

where,

dcirc = 0.975(1 + 0.125sin(0.0467 + 2.3)), (F.3)

and E is defined in Equation F.11. The equations for the coefficients of the REM

model are,

a(X) = 2− 1.8

(
1− 1

1 + e−4(X−0.5)

)
, (F.4)

b(X) =
2

1 + e−80(X−0.1)
, (F.5)

S1(X) = 1− 1.4

(
1

1 + e−0.8(X−2.5)

)
+ 0.167, (F.6)

S2(Y ) = 1− 1.5

(
1

1 + e−20(Y−2)

)
. (F.7)

The equations for the Process S and SWA models are:

˙SWA = rc SWA(1− SWA/SWAmax) + SWA n(t), (F.8)
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and

Ṡ = −gc SWA+ rs(1− S), (F.9)

where SWAmax is defined as,

SWAmax = max(S(1− 0.95 min(X4 + E/2, 1.0)), 0.05), (F.10)

and n(t) is a uniformly distributed random noise signal. The excitation term E in the

above equations is filtered Poisson noise (N) which has an exponentially distributed

arrival time, and uniformly distributed amplitude and duration, the equation for E

is,

Ė = N − kE. (F.11)

Sleep stages during the night are scored according to the following rules:

1. If X >1.4 score as stage REM,

2. If SWA <0.1 and E >0.5 score as Wake,

3. Else score as NREM sleep.

The values of the model parameters are in Table F.1. An example of the output of

the model is shown in Figure F.1.

F.2 The Nonlinear Model Developed as Part of This Research.

The following are the equations for the modified version of the Massaquoi and Mc-

Carley model that was developed as part of this research. The equations used for the

slow wave activity model are,

Ṡ = −gc SWA, (F.12)
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Figure F.1. An example of using Massaquoi and McCarley’s LCRIM/I
model to classify sleep stages, (a) REM-ON (X) (green) and REM-
OFF(X) (blue) activity, (b) Process S (green) and SWA (blue), (c)
Excitatory activity E, and (d) sleep stages. Thresholds used for scor-
ing sleep stages (red-dashed lines).

and

˙SWA = rc SWA (S − SWA)− fc (SWA− SWAL)REMT−

fcw (SWA− SWAL)E,

(F.13)
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Table F.1. Coefficients of Massaquoi and McCarley’s LCRIM/I Model (1992).

Model Parameters Original Values
c 1
gc 0.05
k 10
rc 3.0
rs 0.005
Eo 0.001
Xo 0.12
Yo 0.35
So 2.0
SWAo 0.1
N Amplitude Uniformly distributed between 1.25 and 25
N Duration Uniformly distributed between 0.25 and 0.5
N Inter-arrival Time Exponentially distributed with mean of 1.1
n(t) Uniformly distributed between -10 and 10

and

SWA = SWA(1 + n(t)). (F.14)

The equations for the Slow REM model are similar to those of the Massaquoi and Mc-

Carley model but without the saturation functions. The equation for REM promoting

neuron activity is thus,

Ẋ = (aX − bXY )dc, (F.15)

where dc is a sinusoidal term with a period of 24 hours,

dc = 1.55 + 0.8sin(0.0467t+ 4), (F.16)
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where t is measured in units rather than seconds with 1 unit equal to 10.7 minutes.

The equation for the REM inhibiting neuron activity is,

Ẏ = −cY + d(X + eE)Y. (F.17)

The equation for the fast REM model is,

ẍ+ δẋ+ (x+ 2.5)(x− (−2 + γw(t)))(x+ 0.5)(x)(x− 0.5) = Acos(ωt), (F.18)

where w(t) in the equation is typically the excitation term E(t). An example of the

output of the model when noise events are occurring is shown in Figure F.2. The

model parameter values are listed in Table F.2. The following rules were used for

assigning NREM sleep stages:

1. If SWA >2.0 score as Stage 3/4,

2. If SWA <0.3 score as Stage Wake/1 ,

3. If SWA <1 and E >0.5 score as Stage Wake/1,

4. All other times when REM sleep is not occurring are scored as Stage 2 sleep.

The following rules were used to assign REM sleep stages according to the value of x

of the fast REM model:

1. If x >0 score as Phasic REM sleep,

2. If x <-2 and an excitation is occurring score as Wake,

3. All other times are scored as Tonic REM sleep.

REM sleep periods were defined by the level of REM promoting activity X in the

slow REM model. When X is greater than 1, REM sleep periods was considered to

be occurring.
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Figure F.2. An example of the parameters for the developed nonlinear
sleep model, which include slow wave activity (SWA), REM, REM
sleep period indicator, fast REMmodel and the spontaneous and noise
induced excitation terms.
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Table F.2. Parameters of the nonlinear model. *Parameters varied
according to a Gaussian distribution and + parameters varied accord-
ing to a uniform distribution, x parameter varied with an exponential
distribution.

SWA Slow REM Fast REM Excitations
*So mean 3.75 *a mean 0.47 ω 2 π (0.3) N xmean

std. dev 0.67 std. dev 0.1 inter-arr
6.1 min

*SWAo mean 0.78 *b mean 0.41 A 0.5 *dur.-mean
std. dev 0.29 std. dev 0.1 0.5 min

*gc mean 0.03 *c mean 1.4 δ 0.06 *dur.-std.
std. dev 0.01 std. dev 0.15 dev 0.2 min

SWAL 0.2 *d mean 1.83 +xo min -1.0 *amp.-
std. dev 0.15 max 1.0 mean 3.0

fc 2.0 e 0.05 +yo min -1.0 *amp.-std.
max 1.0 dev 0.65

fcw 4.0 +Xo min 0.15 amp.-max
max 0.3 5.0

rc 0.4 +Yo min 0.5
max 3.0

n(t) mean 0
std. dev 0.2
skewness 0.53
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Appendix G. Code for Nonlinear Dynamic Model

The following is the Matlab program for the nonlinear dynamic sleep model that was

developed as part of this research. The components of the model are the slow and fast

REM model, slow wave activity model, and spontaneous and aircraft noise induced

excitation terms. Based on these components sleep stages are predicted. In Table

G.1 is a list of subroutines in this program and the functions they call.

Table G.1. Subroutines of the nonlinear dynamic model.

Subroutine Name Is Called By Makes Calls to
Input Parameters Model Main None
Create Aircraft Input Model Main None
Generate Random Input Variables Model Main None
Create Spontaneous Model Main None
Create Aircraft Awakenings Model Main None
E Calc Model Main None
REM Calc Model Main None
Create REM INPUT Model Main None
SWA Calc Model Main None
NREM Sleep Stage Classify Model Main None
Fast REM Main Model Main calc tonic phasic int

Phasic Tonic Calc
Phasic Tonic Calc Fast REM Main None
calc tonic phasic int Fast REM Main None
Calc 30 Sec Stages Model Main None

The following are the inputs to the model:

1. optionN: which is used if a noise scenario is being run,

2. position: the x,y grid position,

3. LAMAX: the maximum noise levels of sound events during the night. This term
is a vector and its length is equal to the length of the number of events during
the night,

4. Numpeople: is the number of people to simulate for each location point,

5. Timing: the time of each noise event during the night in minutes.
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An example of an input to the model is the following if the events were of all the

same noise level during the night,

optionN={’Noise’};%%Run for noise events

position=[0 0];%%X,Y position

LAMAX=40*ones(1,16);%%LAMAX and timing must be equal in length

Numpeople=50;%%Number of people at grid point

Timing=30:24:402;%%Time of events in minutes

Function Model Main: This is the main code for the nonlinear dynamic model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Model_Main

%%%Main code for the nonlinear dynamic sleep model

%%%Note 1 Unit in the model is equal to 10.7 minutes

%%%

%%%Input: LAMAX-noise level for each nighttime event

%%% Timing-timing of aircraft events in minutes

%%% Numpeople-number of people at a location point

%%% optionN: is used if a noise scenario is being run

%%% position: x,y location for grid point

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function Model_Main(LAMAX,Timing,Numpeople,optionN,position)

warning off;

len=48;

Fs=640;

[Data]=Input_Parameters;%%Obtain model parameter values

if strcmp(optionN,’Noise’)

%%Run simulation once for baseline conditions and once for

%%Noise event conditions

Repeat=2;

%%Create aircraft noise input

[Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople);

else

Repeat=1;

end

for ink=1:Numpeople

display(ink)

time=0:1/Fs:len;
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%%Relationship between NREM excitation amplitude

%%and fast REM sleep excitation amplitude

REM=[.5 1.45];

NREM=[.5 5];

pr=polyfit(NREM,REM,1);

%%Spontaneous awakenings

[Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr);

%%Limit amplitude of REM and NREM excitation terms

if max(NtREM)>1.45

I=find(NtREM>1.45);

NtREM(I)=1.45;

end

if max(Nt)>5

I=find(Nt>5);

Nt(I)=5;

end

[Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs);

for ii=1:Repeat

tic

if strcmp(optionN,’Noise’) && ii==2

%%Create excitation term (N(t)) for

%%noise-induced awakenings

[aircraftREM aircraft]=...

Create_Aircraft_Awakenings(Data,Timing,len,Fs,pr,ink,Events);

%%Add spontaneous and noise-induced excitation terms

Nt=Nt+aircraft;

NtREM=NtREM+aircraftREM;

if max(NtREM)>1.45

I=find(NtREM>1.45);

NtREM(I)=1.45;

end

if max(Nt)>5

I=find(Nt>5);

Nt(I)=5;

end

end

%%Low-pass filter N(t) to obtain E(t)

[T,Wake]=E_Calc(Nt,Fs,len);

[T,WakeREM]=E_Calc(NtREM,Fs,len);

%%Calculate REM promoting (X) and

%%REM inhibiting activity (Y)

[T,X]=REM_Calc(Data,Wake,Fs,len);

REM=X(:,1);%%REM-ON activity
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%%Create REM sleep indicator (REMT)

[REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len);

toc

%%Calculate SWA activity

tic

[T,X]=SWA_Calc(Data,REM_NEW,Wake,Fs,len);

SWA=X(:,1).*(1+nt(1:length(X(:,1))))’;

toc

%%Assign 1 second NREM sleep stages based on SWA and E(t)

Est_Stage=zeros(1,960);

tic

[Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW);

%%Calculate Fast REM activity and assign 1 second REM sleep stages

[Est_Stage]=Fast_REM_Main(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM);

%%Calculate 30 second sleep stages

[tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage);

toc

%%Calculate duration of each sleep stage

for jj=1:4

I=find(tempstage(1:960)==jj);

dur_stage(jj,ink,ii)=length(I)/2;

end

%%Calculate percent of events individual awakened

%%to during the night

if strcmp(optionN,’Noise’)

perawake1=0;

for jj=1:length(Timing)

I=find(tempstage(Timing(jj)*2:Timing(jj)*2+3)==1);

if length(I)>0 && tempstage(Timing(jj)*2-1)~=1

perawake1=perawake1+1;

end

end

perawake(ink,ii)=perawake1/length(Timing);

end

Full_Stages(1:length(tempstage30plot),ink,ii)=tempstage30plot’;

end

%%Calculate difference in sleep stage duration

%%and probability of awakening at the time of noise events

%%for (1) baseline no-noise nights and (2)

%%nights with aircraft noise exposure

if strcmp(optionN,’Noise’) && ii==2

change(1:4,ink)=dur_stage(:,ink,2)-dur_stage(:,ink,1);

changeperawake(ink)=(perawake(ink,2)-perawake(ink,1))

end
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end

%%Save data

if strcmp(optionN,’Noise’)

total_awake(1)=...

sum(perawake(1:Numpeople,1)*length(Timing))/(Numpeople*length(Timing));

total_awake(2)=...

sum(perawake(1:Numpeople,2)*length(Timing))/(Numpeople*length(Timing));

totalchangeper=mean(changeperawake)’;

totalchangedur(1:4)= mean(change’);

save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)

save([’Ntotalchangeper_LAmax’ num2str(LAMAX(1)) ....

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangeper’)

save([’Ntotalchangedur_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’totalchangedur’)

save([’Ntotal_awake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’total_awake’)

save([’Nchange_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople) ...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’change’)

save([’Nchangeperawake_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’changeperawake’)

end

save([’NFull_Stages_LAmax’ num2str(LAMAX(1)) ...

’NumEvents’ num2str(length(Timing)) ’Numpeop’ num2str(Numpeople)...

’position’ num2str(position(1)) ’_’ num2str(position(2)) ’.mat’],’Full_Stages’)

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Input Parameters: This function contains the values for the parameters of

the model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Input_Parameters

%%%Contains values of most model inputs-these values are based on the 1999

%%%UK data

%%%

%%%Output: Data-contains model parameters used

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data]=Input_Parameters
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%%Noise n(t) model parameters

Data.ntmean=0;

Data.ntstd=0.20;

Data.ntskew=0.5269;

Data.ntkurtosis=3;

%%wt/E model parameters

%%divide by 10.7 to convert parameters from

%%minutes to units

Data.wtintarr=6.1/10.7;

Data.wtstddur=0.20/10.7;

Data.wtmeandur=0.5/10.7;

Data.wtmindur=0.05/10.7;

Data.wtminamp=0.5;

Data.wtmaxamp=5.0;

Data.wtmeanamp=3.0;

Data.wtstdamp=0.65;

%%Slow REM model parameters

Data.amean=0.47;

Data.astd=0.1;

Data.bmean=0.41;

Data.bstd=0.1;

Data.cmean=1.4;

Data.cstd=0.15;

Data.dmean=1.83;

Data.dstd=0.15;

Data.yomin=0.5;

Data.yomax=3;

Data.xomin=0.15;

Data.xomax=0.3;

%%SWA model parameters

Data.SWAL=0.2;

Data.fc=2.0;

Data.rc=0.4;

Data.fcw=2*Data.fc;

Data.Somean=3.75;

Data.Sostd=0.67;

Data.Somin=2.3;

Data.Somax=5.8;

Data.gcmax=0.05;

Data.gcmin=0.008;

Data.gcstd=0.011;

Data.gcmean=0.0320;

Data.SWAomin=0.13;

Data.SWAomax=1.51;

Data.SWAomean=0.78;

Data.SWAostd=0.29;

%%%----------------------------------------------------------------------%%
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%%%----------------------------------------------------------------------%%

Function Generate Random Input Variables: The following program is used to gen-

erate all model parameters for one person night based on uniform and Gaussian

distributions.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Generate_Random_Input_Variables

%%%Code for generating all random inputs to the model

%%%

%%%Input: Data-contains model parameters used

%%% len-length of night that is being simulated

%%% Fs-sampling rate

%%%

%%%Output: Data-contains model parameter values for subject

%%% nt-noise term applied to SWA

%%% initRx-initial xo values for fast REM model

%%% initRy-initial yo values for fast REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data,nt,initRx,initRy]=Generate_Random_Input_Variables(Data,len,Fs)

%%Minimum and maximum values are used to

%%limit current range of parameters

%%note: acceptable range of parameters will be

%%further explored in the future

%%SWA and Process S model parameters

Data.SWAo=normrnd(Data.SWAomean,Data.SWAostd,1,1);

if Data.SWAo<Data.SWAomin

Data.SWAo=Data.SWAomin;

elseif Data.SWAo>Data.SWAomax

Data.SWAo=Data.SWAomax;

end

Data.So=normrnd(Data.Somean,Data.Sostd,1,1);

if Data.So<Data.Somin

Data.So=Data.Somin;

elseif Data.So>Data.Somax

Data.So=Data.Somax;

end

Data.gc=normrnd(Data.gcmean,Data.gcstd,1,1);

if Data.gc<Data.gcmin

Data.gc=Data.gcmin;

elseif Data.gc>Data.gcmax

Data.gc=Data.gcmax;
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end

%%More restrictive on range for

%%slow REM sleep models as certain

%%combinations of a,b,c,d will result

%%in no REM cycling

%%Slow REM sleep model parameters

Data.a=normrnd(Data.amean,Data.astd,1,1);

if Data.a<Data.amean-Data.astd

Data.a=Data.amean-Data.astd;

elseif Data.a>Data.amean+Data.astd

Data.a=Data.amean+Data.astd;

end

Data.b=normrnd(Data.bmean,Data.bstd,1,1);

if Data.b<Data.bmean-Data.bstd

Data.b=Data.bmean-Data.bstd;

elseif Data.b>Data.bmean+Data.bstd

Data.b=Data.bmean+Data.bstd;

end

Data.c=normrnd(Data.cmean,Data.cstd,1,1);

if Data.c<Data.cmean-Data.cstd

Data.c=Data.cmean-Data.cstd;

elseif Data.c>Data.cmean+Data.cstd

Data.c=Data.cmean+Data.cstd;

end

Data.d=normrnd(Data.dmean,Data.dstd,1,1);

if Data.d<Data.dmean-Data.dstd

Data.d=Data.dmean-Data.dstd;

elseif Data.d>Data.dmean+Data.dstd

Data.d=Data.dmean+Data.dstd;

end

%%Slow and Fast REM sleep model initial conditions

Data.yo=Data.yomin+(Data.yomax-Data.yomin)*rand(1,1);

Data.xo=Data.xomin+(Data.xomax-Data.xomin)*rand(1,1);

initRx=-1+2*rand(1,10);

initRy=-1+2*rand(1,10);

%%Random noise term n(t)

cc=pearsrnd(Data.ntmean,Data.ntstd,Data.ntskew,Data.ntkurtosis, 1,len*Fs);

[b,a]=butter(3,10/(Fs/2));

nt=filter(b,a,cc);

nt=nt*(max(cc)/max(nt));

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Create Aircraft Input: The following program is used to generate a matrix

which contains, for each person and aircraft event, the amplitude of the associated

excitation based on the maximum noise level of the event.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Aircraft_Input

%%%Code for assigning excitation values for aircraft events

%%%for every subject

%%%

%%%Input: Data-contains model parameters used

%%% LAMAX-noise level for each nighttime event

%%% Numpeople-number of people at location point

%%%

%%%Output: Events-amplitudes of excitation N for all subjects for all

%%% aircraft events during the night

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Events]=Create_Aircraft_Input(Data,LAMAX,Numpeople)

%%linear relationship between noise level and

%%fraction responding

Noise=[35 80];%%Lamax level

per=[.17 .55];%%percent nonzero response(above baseline)

p=polyfit(Noise,per,1);

%%Cycle through for each noise event

for ii=1:length(LAMAX)

%%These are nonzero responses hence value not zero

rel=p(1)*LAMAX(ii)+p(2);

val = normrnd(Data.wtmeanamp,Data.wtstdamp,floor(Numpeople*rel),1);

I=find(val<Data.wtminamp);

%%Limit range of excitations

if length(I)>0

val(I)=val;

end

I=find(val>Data.wtmaxamp);

if length(I)>0

val(I)=Data.wtmaxamp;

end

%%Nonzero and zero aircraft responses

Total=[val(:); zeros(Numpeople,1)];

Total=Total(1:Numpeople);

rr=randperm(Numpeople);

for jj=1:length(rr)
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Events(jj,ii)=Total(rr(jj));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Create Spontaneous: The following program is used to generate N(t) for

spontaneous awakenings for one subject night.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Spontaneous

%%%Code for generating spontaneous excitations N(t)

%%%

%%%Input: Fs-sampling rate

%%% len-length of night that is being simulated

%%% Data-contains model parameters used

%%% pr-relationship between noise amplitudes during slow and

%%% fast models

%%%

%%%Output: Nt-amplitudes of excitation N(t) for slow models

%%% NtREM-amplitudes of excitation N(t) for fast REM model

%%%

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Nt,NtREM]=Create_Spontaneous(Fs,len,Data,pr)

delta=1/Fs;

time=0:delta:len;

Nt=zeros(1,1.1*len*Fs);

NtREM=zeros(1,1.1*len*Fs);

%%Create vectors of amplitudes and durations

Amp=normrnd(Data.wtmeanamp,Data.wtstdamp,1,length(time)*1.1);

I=find(Amp < Data.wtminamp);

Amp(I)=Data.wtminamp;

duration=normrnd(Data.wtmeandur,Data.wtstddur,1,length(time)*1.1);

I=find(duration < Data.wtmindur);

duration(I)=Data.wtmindur;

%%Time between pulses are exponentially distributed

int_arr=exprnd(Data.wtintarr,1,length(time)*1.1);

total_dur=0;

ii=1;

%%Create N(t) for slow models

%%Assuming inter-arrival time is between the start of each pulse

while (total_dur <len)
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beg=round(sum(int_arr(1:ii))/delta);

if beg==0

beg=1;

end

fin=beg+round(duration(ii)/delta);

Nt(beg:fin)=Nt(beg:fin)+Amp(ii).*ones(1,round(duration(ii)/delta)+1);

%%Create N(t) for fast models

Aramp=pr(1)*Amp(ii)+pr(2);

NtREM(beg:fin)=NtREM(beg:fin)+Aramp.*ones(1,round(duration(ii)/delta)+1);

ii=ii+1;

total_dur=sum(int_arr(1:ii))+duration(ii);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Create Aircraft Awakenings: The following program is used to generate

N(t) for aircraft noise events.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_Aircraft_Awakenings

%%%Code for creating excitations N(t) associated with the occurrence

%%%of aircraft events

%%%

%%%Input: Data-contains model parameters used

%%% Timing-timing of aircraft events in minutes

%%% len-length of night that is being simulated

%%% Fs-sampling rate

%%% pr-relationship between noise amplitudes during slow and

%%% fast models

%%% ink-subject number

%%% Events-amplitudes of excitation N(t) for all subjects for all

%%% events during the night

%%%

%%%Output: aircraftREM-amplitudes of excitation N(t) for fast REM model for

%%% aircraft events

%%% aircraft-amplitudes of excitation N(t) for slow models

%%% aircraft events

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [aircraftREM aircraft]=Create_Aircraft_Awakenings(Data,Timing,...

len,Fs,pr,ink,Events)

aircraft=zeros(1,1.1*len*Fs);

aircraftREM=zeros(1,1.1*len*Fs);

for ii=1:length(Timing)

if Events(ink,ii)>0

dur=normrnd(Data.wtmeandur,Data.wtstddur,1,1);
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if dur<Data.wtmindur

dur(1)= Data.wtmindur;

end

%%Create N(t) for slow models

beg=round((Timing(ii)/10.7)*Fs);

fin=beg+round(dur*Fs);

aircraft(beg:fin)=aircraft(beg:fin)+Events(ink,ii).*ones(1,round(dur*Fs)+1);

%%Create N(t) for fast models

Aramp=pr(1)*Events(ink,ii)+pr(2);

aircraftREM(beg:fin)=aircraftREM(beg:fin)+Aramp.*ones(1,round(dur*Fs)+1);

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function E Calc: The following program is used to generate E(t) by low pass filtering

N(t), which is the summation of the aircraft noise induced and spontaneous excitation

terms.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function E_Calc

%%%Code for low-pass filtering the excitation term N(t)

%%%

%%%Input: Wake-this is the Poisson Noise (N(t))

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: T-time

%%% X-low pass filtered noise process E(t)

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=E_Calc(Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,Wake,Fs),1/Fs:1/Fs:len,[.001],options);

end

function dxdt=fun(t,x,Wt,Fs)

dxdt=zeros(1,1);

time=(0:1:(length(Wt)-1))/Fs;

w=interp1(time,Wt,t);

dxdt(1)=(64)*w-(64)*x(1);%%Lowpass below 10 seconds

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function REM Calc: The following program is used to calculate the slow REM ac-

tivity, both X REM promoting activity and Y REM inhibiting activity.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function REM_Calc

%%%Code for calculating slow REM activity-based on the Massaquoi and

%%%McCarley model.

%%%

%%%Reference:S. G. Massaquoi and R. W. McCarley. Extension of the limit

%%%cycle reciprocal interaction model of REM cycle control. An integrated

%%%sleep control model, 1:138-143,1992.

%%%

%%%Input: REM_Param-data for REM model

%%% Wake-excitation term E(t)

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: T-time

%%% X-slow REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=REM_Calc(REM_Param,Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,REM_Param,Wake,Fs),1/Fs:1/Fs:len,...

[REM_Param.xo REM_Param.yo],options );

end

function dxdt=fun(t,x,REM_Param,Wake,Fs)

dxdt=zeros(2,1);

time=(0:1:(length(Wake)-1))/Fs;

w=interp1(time,Wake,t);

dc2=(1.55+0.8*sin(.0467*t+4));%%24 hour circadian variation

dc=1;

%%REM-ON (X)

dxdt(1)=REM_Param.a*x(1)*dc2-x(1)*x(2)*REM_Param.b*dc2;

%%REM-OFF (Y)

dxdt(2)=-x(2)*REM_Param.c*dc+dc*(x(1)+(0.25/max(Wake))*w)*x(2)*REM_Param.d;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Create REM INPUT: The following program is used to calculate the start

and end of each REM period based on the level of X, REM-promoting activity, from

the slow REM model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Create_REM_INPUT

%%%Program for determining the beginning and end of each REM period

%%%based on the level of slow REM activity

%%%%

%%%Input: REM-slow REM model activity

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%Output: st_new-start of each REM period

%%% ff_new-end of each REM period

%%% REM_NEW-REM-indicator, 1 during REM sleep and zero during NREM

%%% sleep

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [REM_NEW,st_new,ff_new]=Create_REM_INPUT(REM,Fs,len)

ii=1;

if max(REM)<1.5

valgreat=.5*(max(REM)-min(REM));

else

valgreat=1;

end

%%Calculate Multipliers

tempShift=REM;

Ind=find(tempShift>=valgreat);

st(ii)=Ind(1);

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift<valgreat);

maxval=max(tempShift(1:Ind(1)));

ff(ii)=Ind(1)+st(ii);

sc(ii)=1.5/maxval;

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift>=valgreat);

while(ff(ii)<len*Fs && length(Ind)>0)

ii=ii+1;

st(ii)=Ind(1)+ff(ii-1);

tempShift=tempShift(Ind(1):length(tempShift));

Ind=find(tempShift<valgreat);

if length(Ind)>0

maxval=max(tempShift(1:Ind(1)));

ff(ii)=Ind(1)+st(ii);

sc(ii)=1.5/maxval;
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tempShift=tempShift(Ind(1):length(tempShift));

else

ff(ii)=len*Fs ;

maxval=max(tempShift(1:length(tempShift)));

sc(ii)=1.5/maxval;

end

Ind=find(tempShift>=valgreat);

end

%%Cycle through and find start points for the scaled REM signal

REM_NEW=zeros(1,length(REM));

for ii=1:length(st)

if ii==1

temp=REM(1:ff(1)+(st(2)-ff(1))/2)*sc(ii);

Ind=find(temp>=1);

REM_NEW(Ind)=1;

st_new(ii)=Ind(1);

ff_new(ii)=Ind(length(Ind));

elseif ii<length(st)

temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:ff(ii)+(st(ii+1)-ff(ii))/2)*sc(ii);

Ind=find(temp>=1);

REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;

st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

else

temp=REM(ff(ii-1)+(st(ii)-ff(ii-1))/2:length(REM))*sc(ii);

Ind=find(temp>=1);

REM_NEW(round(Ind+ff(ii-1)+(st(ii)-ff(ii-1))/2-1))=1;

st_new(ii)=round(Ind(1)+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

ff_new(ii)=round(Ind(length(Ind))+ff(ii-1)+(st(ii)-ff(ii-1))/2-1);

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function SWA Calc: The following program is used to calculate the slow wave activity

(SWA) and Process S.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function SWA_Calc

%%%Program for calculating slow wave activity based on Achermann et al.’s

%%%model

%%%

%%%Reference: P. Achermann, D. J. Dijk, D. P. Brunner and A. A. Borbly. A

%%%model of human sleep homeostasis based on EEG slow-wave activity:

%%%Quantitative comparison of data and simulations. Brain Research

%%%Bulletin. 31: 97-113, 1993.

%%%
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%%%Input: Param-model parameters

%%% REM-indicator of REM periods

%%% Wake-aircraft and spontaneous excitations, E(t)

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%%

%%%

%%%Output: T-time vector

%%% X-SWA and Process S

%%%

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=SWA_Calc(Param,REM,Wake,Fs,len)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,x) fun(t,x,Param,REM,Wake,Fs),1/Fs:1/Fs:len,...

[Param.SWAo Param.So],options);

end

function dxdt = fun(t,x,Param,REM,Wake,Fs)

dxdt=zeros(2,1);

timew=(0:1:(length(Wake)-1))/Fs;

timeR=(0:1:(length(REM)-1))/Fs;

w=interp1(timew,Wake,t);

R=interp1(timeR,REM,t);

%%dxdt(1) and x(1) is for SWA (slow wave activity)

%%dxdt(2) and x(2) is for process S

dxdt(1)=(Param.rc)*x(1)*x(2)*(1-x(1)/x(2))-(Param.fc)*(x(1)-Param.SWAL)*R...

-(x(1)-Param.SWAL)*(Param.fcw)*w;

dxdt(2)=-Param.gc*x(1);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function NREM Sleep Stage Classify: The following program is used to classify

NREM sleep stages based on the level of SWA and the excitation term E.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function NREM_Sleep_Stage_Classify

%%%Program for calculating NREM sleep stages based on SWA activity

%%%and excitation values

%%%

%%%Input: Est_Stage-empty vector for sleep stage assignment

%%% SWA-Slow wave activity

%%% Wake-excitation term

%%% REM-NEW-indicator of REM periods

%%%

%%%Output: Est_Stage-assigned NREM sleep stages
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage]=NREM_Sleep_Stage_Classify(Est_Stage,SWA,Wake,REM_NEW)

for ii=1:length(SWA)

if REM_NEW(ii)==0

if SWA(ii)>=2.0

Est_Stage(ii)=3;%%Stage 3/4

elseif SWA(ii)<1.0 && Wake(ii)>=.5

Est_Stage(ii)=1;%%Stage Wake/S1

elseif SWA(ii)<0.3

Est_Stage(ii)=1;%%Stage Wake/S1

else

Est_Stage(ii)=2;%%Stage 2

end

else

Est_Stage(ii)=5;%%Temporary place holder

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Fast REM Main: The following program is the main program for calculating

fast REM activity.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Fast_REM_Main

%%%Program for calculating fast REM activity

%%%

%%%

%%%Input: Est_Stage-vector containing sleep stages

%%% initRx-initial xo values for fast REM model

%%% initRy-initial yo values for fast REM model

%%% Fs-sampling rate

%%% st_new-start of each REM period

%%% ff_new-end of each REM period

%%% WakeREM-excitation term for fast REM model

%%%

%%%Output: Est_Stage-assigned sleep stages

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage]=Fast_REM_Main...

(Est_Stage,initRx,initRy,Fs,st_new,ff_new,WakeREM)

%%Moving unstable equilibrium position

Eq_Wake=2-(WakeREM);

%%Cycle through for each REM period
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for ii=1:length(st_new)

Wake_Seg=Eq_Wake(st_new(ii):ff_new(ii));

%%t of fast REM model is on a different scale

t=0:1/Fs:(ff_new(ii)-st_new(ii))/Fs;

tnew=0:1/(10.7*Fs*5):(ff_new(ii)-st_new(ii))/Fs;

Wake_Seg_sp = spline(t,Wake_Seg,tnew);

lenT=(ff_new(ii)-st_new(ii)+1)/Fs*10.7*5;

initREM(1)=initRx(ii);

initREM(2)=initRy(ii);

delta=.06;

w=0.3*2*pi;

A=0.50;

%%Calculate Duffing oscillator solution

[T,X]=Phasic_Tonic_Calc(delta,w,Wake_Seg_sp,A,Fs,lenT-1,initREM);

%%Initial assignment of REM sleep stages

%%1-Tonic, 0-Phasic, -1-Wake

X=X(:,1);

REM_Stage=0;

I=find(X>=0);

REM_Stage(I)=1;

I=find(X<0 & X>-2);

REM_Stage(I)=0;

I=find(X<=-2);

for jj=1:length(I)

if Wake_Seg_sp(I(jj))<1.9

REM_Stage(I(jj))=-1;

else

REM_Stage(I(jj))=0;

end

end

[st, ff]=calc_tonic_phasic_int(REM_Stage);

REM_Stage_New=REM_Stage;

%%Correction for Tonic REM

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)

if min(X(st(jj):ff(jj)))>=-.25

REM_Stage_New(st(jj):ff(jj))=1;

end

end

end

[st, ff]=calc_tonic_phasic_int(REM_Stage_New);

%%Tonic REM period less than 15 seconds is equal to previous stage

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)
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if ff(jj)-st(jj)<.25*5*Fs && st(jj)>1

REM_Stage_New(st(jj):ff(jj))=REM_Stage_New(st(jj)-1);

end

end

end

%%Correct for Phasic period in which max is not near 0.5

TempREM_Phasic=ones(1,length(REM_Stage_New));

I=find(REM_Stage_New==1);

TempREM_Phasic(I)=zeros(1,length(I));

[st, ff]=calc_tonic_phasic_int(TempREM_Phasic);

if st(1)~=0 && ff(1)~=0

for jj=1:length(ff)

if max(X(st(jj):ff(jj)))<.25

REM_Stage_New(st(jj):ff(jj))=0;

end

end

end

%%Correct if awakening started during noise event-find its end

tempEvents=ones(1,length(REM_Stage_New));

I=find(Wake_Seg_sp<1.9);

tempEvents(I)=zeros(1,length(I));

[stN, ffN]=calc_tonic_phasic_int(tempEvents);

if ffN(1)~=0 && ffN(length(ffN))<length(X)

for jj=1:length(ffN)

if X(ffN(jj))<-2 && X(ffN(jj)+1)<-2

I=find(X(ffN(jj):length(X))>-2);

if length(I)~=0

REM_Stage_New(ffN(jj):ffN(jj)-1+I(1))=-1;

end

end

end

end

%%Determine sleep stage- five points for every one point in slow models.

stageREM=[-1 0 1];

REM_StageFinal=0;

for jj=1:length(X)/(5*10.7)

for kk=1:3

I=length(find(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7)==stageREM(kk)));

perseg(kk)=I/length(REM_Stage_New((jj-1)*5*10.7+1:jj*5*10.7));

end

I=find(perseg==max(perseg));

REM_StageFinal(jj)=stageREM(I(1));

if REM_StageFinal(jj)==-1

Est_Stage(st_new(ii)+jj-1)=1;%%Stage Wake/S1

else

Est_Stage(st_new(ii)+jj-1)=5;%%Stage REM

end

end
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end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Phasic Tonic Calc: The following program is used to calculate the fast REM

activity based on the Duffing model with the 5th order stiffness term.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Phasic_Tonic_Calc

%%%Program for Duffings system with a 5th order stiffness term

%%%

%%%Reference:G. X. Li and F. C. Moon. Criteria for chaos of a three-well

%%%potential oscillator with homoclinic and heteroclinic orbits. Journal

%%%of Sound and Vibration. 136(1): 17-34, 1990.

%%%

%%%Input: delta-damping

%%% w-drive frequency

%%% Wake-spontaneous and aircraft excitations

%%% A-drive amplitude

%%% Fs-sampling rate

%%% len-length of night that is being simulated

%%% init-inital conditions

%%%

%%%Output: X-fast REM model

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [T,X]=Phasic_Tonic_Calc(delta,w,Wake,A,Fs,len,init)

options = odeset(’RelTol’,1e-6);

[T,X]=ode45(@(t,X) fun(t,X,delta,w,Wake,A,Fs),1/Fs:1/Fs:len,init,options);

end

function dxdt=fun(t,X,delta,w,Wake,A,Fs)

time=(0:1:(length(Wake)-1))/Fs;

m=interp1(time,Wake,t);

dxdt=zeros(2,1);

dxdt(1)=X(2);

dxdt(2)=-1*((X(1)-0.5)*(X(1)-0))*(X(1)+0.5)*(X(1)+m)*(X(1)+2.5)...

-delta*X(2)+A*cos(w*t);

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Phasic Tonic Calc: The following program is used to calculate the inter-

arrival times of Phasic or Tonic REM sleep.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Phasic_Tonic_Calc

%%%Program for determing start and end points of certain activity, for

%%%example calculating the inter-arrival time of phasic activity

%%%

%%%Input: REM_Dens-fast REM model sleep stages

%%%

%%%Output: st-start

%%% ff-end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [st, ff]=calc_tonic_phasic_int(REM_Dens)

st=0;

ff=0;

ink(1:2)=1;%%ink(1) start, %%ink(2)=fin

for kk=1:length(REM_Dens)

if REM_Dens(kk)==0 && kk <length(REM_Dens)

if kk==1

st(ink(1))=kk;

ink(1)=ink(1)+1;

elseif REM_Dens(kk-1)~=0

st(ink(1))=kk;

ink(1)=ink(1)+1;

end

if REM_Dens(kk+1)~=0

ff(ink(2))=kk;

ink(2)=ink(2)+1;

end

elseif REM_Dens(kk)==0 && kk ==length(REM_Dens)

if REM_Dens(kk-1)~=0

st(ink(1))=kk;

ff(ink(2))=kk;

ink(1)=ink(1)+1;

ink(2)=ink(2)+1;

else

ff(ink(2))=kk;

ink(2)=ink(2)+1;

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Calc 30 Sec Stages: The following program is used to calculate 30 second

sleep stages.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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%%%Function Calc_30_Sec_Stages

%%%Program for calculating 30 second sleep stages

%%%

%%%Input: Est_Stage-1 second sleep stages

%%%

%%%Output: tempstage-30 second sleep stages

%%% tempstage30plot-30 second sleep stages for plotting

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [tempstage,tempstage30plot]=Calc_30_Sec_Stages(Est_Stage)

val=[1 2 3 5];

tempstage=0;

tempstage30plot=0;

for ii=1:length(Est_Stage)/(30)

for kk=1:length(val)

I=find(Est_Stage((ii-1)*30+1:ii*30-1)==val(kk));

per(ii,kk)=length(I)/(30);

end

maxval=max(per(ii,:));

I=find(per(ii,:)==maxval);

tempstage(ii)=I(1);

if tempstage(ii)==4

tempstage30plot(ii)=3;

elseif tempstage(ii)==3

tempstage30plot(ii)=1;

elseif tempstage(ii)==2

tempstage30plot(ii)=2;

elseif tempstage(ii)==1

tempstage30plot(ii)=4;

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Appendix H. Code for Feature Extraction and Sleep Stage Scoring

The following is the Matlab program used for extracting different features of the

polysomnography data and for scoring sleep stages. The first part of the program

extracts characteristics such as the occurrence of movement artifacts, level of EMG

activity, correlation of EOG channels, power in EEG frequency bands, and the fre-

quency with the lowest decay rate identified using Auto-Regressive modeling. An

example of some of the features that were extracted for one subject night is shown in

Figure H.1. Sleep stages are assigned for each second based on the extracted features

using a classification algorithm that was developed and the probability of being in

different sleep stages was calculated for each 30 seconds of scored sleep stages, an

example for one subject night is shown in Figure H.2. An overview of the subroutines

of the program is in Table H.1.

Table H.1. Subroutines of the feature extraction code and sleep stage
scoring algorithm.

Subroutine Name Is Called By Makes Calls to
Movement Artifacts Threshold Main Feature Calc None
Dominant Band AR Main Feature Calc None
Calc Correlation Main Feature Calc None
RLS Calc Main Feature Calc None
Amplitude Time Exceeded Main Feature Calc None
Per Power Main Feature Calc None
Power Welch Main Feature Calc None
Classify Stage None Calc REM Periods
Calc REM Periods Classify Stage None

Function Main Feature Calc: This is the main program for extracting features of

polysomnography data for later use. The data is saved and then imported into the

separate sleep stage classification program.
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Figure H.1. An example of some of the characteristics that are ex-
tracted including; (a) the percent of an epoch occupied by movement
artifacts, (b) the percent of an epoch occupied by Slow Wave Sleep
(SWS), (c) the frequency that has the lowest decay rate identified us-
ing an AR(4) model, (d) correlation between the right and left EOG
channels, and (e) the root-mean-square (RMS) of the EMG activity
for each epoch.
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Figure H.2. Probability of being in Stage Wake/S1, Stage 2, Stage
3/4, and REM sleep calculated using the developed sleep stage scoring
algorithm.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Main_Feature_Calc

%%%Main code for extracting and saving signal characteristics for later

%%%analysis

%%%Input: subject_num-subject number

%%% night_num-night number

%%% Seg_Len-length of moving signal (i.e. usually 15 or 30 seconds)

%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)

%%% Fs-sampling rate

%%% correct_option-’correct’ if EKG and EOG artifact corrections

%%% are going to be applied to the EEG data

%%% EKG_File-indicates whether the EKG file is usuable or not for

%%% correction, equal to 0 if it is fine to use, 1 if it contains

%%% artifacts

%%%

%%%Output: The data is saved as .mat files within this

%%% program

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function Main_Feature_Calc...

(subject_num, night_num,Seg_Len,inc_Len,Fs,correct_option,EKG_File)

%%Read in the Physiological Data from 1999 UK dataset

choice={’C4-A1’,’C3-A2’,’EMG’,’EOG-L’,’EOG-R’,’EKG’,’Stages’};

[Signals, Stages, Missing_Data]=Load_Signals(subject_num,night_num,choice);

%%For EOG and EKG Corrections

lambda = .9999; %%Forgetting Factor

delta = .01; %%Initial Value

M=3;%%Filter Order

%%Indentify movement artifacts

%%ART indicates whether a 1 second epoch was above the threshold (1 there

%%is an artifact and 0 there is not an artifact.)

%%Cycle through twice for both EEG channels

for ii=1:2

[ART_Thres(:,ii),ART_Thres_onesec(:,ii)]...

=Movement_Artifacts_Threshold(Signals(:,ii),Fs,inc_Len);

end

%%Frequency Bands

bandHigh= [ 2 4.5 4.5 8 12 16 25 35 45 15 14 45];

bandlow= [.5 2 .5 4.5 8 12 16 25 35 11 12 .5];

%%Save AR Model for every increment

Band=[.5 45];

Size=1;

for jj=1:2

[Damp_AR(:,jj) Freq_AR(:,jj)]=Dominant_Band_AR...

(Signals(:,jj),Band,floor(length(Signals(:,1))/(Fs)),Size,inc_Len,Fs);
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end

%%Incase I want to run for multiple segment lengths

for ink=1:length(Seg_Len)

%%Preallocate Space

SWS=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

ART=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

Pow=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);

Pow_Welch=zeros((length(ART_Thres(:,1)))-Seg_Len,length(bandHigh),2);

EOG_Corr=zeros((length(ART_Thres(:,1)))-Seg_Len,1);

maxEOG=zeros((length(ART_Thres(:,1)))-Seg_Len,2);

EMG_RMS=zeros((length(ART_Thres(:,1)))-Seg_Len,1);

K_Complex=zeros((length(ART_Thres(:,1)))-Seg_Len,30,1);

inc=1;

for kk=1:(length(ART_Thres(:,1)))-Seg_Len

display(kk)

for jj=1:2%%Cycle twice for both EEG channels

Seg=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len(ink)*Fs,jj);

ART(kk,jj)=sum(ART_Thres((kk-1)*1+1:(kk-1)*1+Seg_Len(ink),jj));

EKG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,6);

EOGL=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,4);

EOGR=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,5);

EMG=Signals((kk-1)*inc_Len*Fs+1:(kk-1)*inc_Len*Fs+Seg_Len*Fs,3);

if jj==1;%%Don’t need this step for both cycles through

Band=[.5 5];

Thresholds=[25 250];

%%Calculate EOG_Corr

[EOG_Corr(kk) maxEOG(kk,1:2)]=Calc_Correlation...

(EOGL,EOGR,Thresholds,Band,Fs);

%%Calculate EMG RMS

EMG_RMS(kk)=sqrt(mean(abs(EMG).^2));

end

%%If the EEG signal is going to be corrected for EKG and EOG artifacts

if strcmp(correct_option,’correct’)

%%if EKG signal is usuable && low amount of movement artifacts

if EKG_File==0 && ART(kk,jj)<15

%%For EKG Correction

%%Determine if segment contains EKG

[CC]=...

Calc_Correlation(Seg,EKG,[0 1.1*max([max(Seg) max(EKG)])],[.5 40],Fs);

if abs(CC)>=.2 %%If EEG and EKG are Correlated

%%EKG input signal measured in mV, EEG is measured in micro volts

u=EKG*1000;

d=Seg;%%Contaminated/desired EEG signal

%%use RLS to correct EEG signal

%%"Fixed Signal" is the output error of RLS

[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);

end

end
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%%For EOG Correction

%%Determine if segment contains eye mvmts

%%if eye Movement && low amount of EEG artifacts

if EOG_Corr(kk)<=-.2 && ART(kk,jj)<15

Band=[.5 5];

Thresholds=[25 250];

%%Corr between EEG and EOGL

[CCL]=Calc_Correlation(EOGL,Seg,Thresholds,Band,Fs);

%%Corr between EEG and EOGR

[CCR]=Calc_Correlation(EOGR,Seg,Thresholds,Band,Fs);

%%Determine if EEG and EOG signals are correlated

if abs(CCL)>=abs(CCR) && abs(CCL)>=.2%%Use Signal most correlated

u=EOGL;%%input signal

d=Seg;%%Contaminated/desired EEG signal

%%"Fixed Signal" is the output error of RLS

[Seg,w,h]=RLS(lambda,M,u,d,delta);

elseif abs(CCR)>=.2

u=EOGR;%%input signal

d=Seg;%%Contaminated desired EEG signal

[Seg,w,h]=RLS_Calc(lambda,M,u,d,delta);

end

end

end

%%Detect SWS

Threshold_SWS=[75 250];

[DataSWS]=Amplitude_Time_Exceeded(Seg,Threshold_SWS,[.5 2],Fs);

SWS(kk,jj)=sum(DataSWS.Time_Above)/DataSWS.Total_Time;

%%Power for segment

[Pow(kk,1:length(bandHigh),jj)]=Per_Power(Seg,bandHigh,bandlow,Fs);

%%Power using Welch Method

Band=[.5 45];

[Pow_Welch(kk,1:length(bandHigh),jj)]=...

Power_Welch(Seg,bandHigh,bandlow,Band,Fs);

end

end

end

%%Save files

save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’ ...

num2str(night_num) ’_Damp_ARburg.mat’],’Damp_AR’)

save([’Seg_Len_’ num2str(Seg_Len(1)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Freq_ARburg.mat’],’Freq_AR’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_SWS.mat’],’SWS’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...
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num2str(night_num) ’_EOG_Corr.mat’],’EOG_Corr’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART.mat’],’ART’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’ ...

num2str(night_num) ’_EMG_RMS.mat’],’EMG_RMS’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Pow.mat’],’Pow’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_Pow_Welch.mat’],’Pow_Welch’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_maxEOG.mat’],’maxEOG’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART_Thres.mat’],’ART_Thres’)

save([’Seg_Len_’ num2str(Seg_Len(ink)) ’s’ num2str(subject_num) ’_n’...

num2str(night_num) ’_ART_Thres_onesec.mat’],’ART_Thres_onesec’)

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Movement Artifacts Threshold: This program is used to identify when

movement artifacts are occurring based on activity in the gamma frequency band

of the EEG signal.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Movement_Artifacts_Threshold

%%%Code for calculating thresholds which are used to identify movement

%%%artifacts. The method used is based on the work of Brunner et al.

%%%

%%%Reference: D. P. Brunner, R. C. Vasko, C. S. Detka, J. P. Monahan, C. F.

%%%Reynolds III and D. J. Kupfer. Muscle artifacts in the sleep EEG:

%%%Automated detection and effect on all-night EEG power spectra. J. Sleep

%%%Res. 5: 155-164, 1996.

%%%

%%%Input: Signal-typically the EEG channel

%%% Fs-is the sampling frequency

%%% inc_Len-size of increment in time (i.e. usually 1 for 1 second)

%%%

%%%Output: ART-indicator of artifacts, 1 if there is an artifact and 0 if

%%% there is not an artifact

%%% ART_Thres_re-threshold used for defining artifacts

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [ART,ART_Thres_re]=Movement_Artifacts_Threshold(Signal,Fs,inc_Len)

%%Consider only activity from 26 to 32 Hz

[b,a]=butter(4,[26 32]./(Fs/2),’bandpass’);

Filt_Signal=filtfilt(b,a,Signal);
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%%Calculate average power every 4 seconds

meanval=zeros(1,length(Signal)/(4*Fs));

for ii=1:length(Signal)/(4*Fs)

meanval(ii)=mean(abs(Filt_Signal((ii-1)*4*Fs+1:ii*4*Fs)).^2);

end

pow_smooth=medfilt1(meanval,45); %%Brunner smoothed out the spectrum for the

%%threshold using the

%%surrounding three minutes

%%three minutes divided by 4 second epochs

%%is 45 points

ART_Thres_4sec=pow_smooth.*4;%%Brunner found that 4* the smoothed threshold

%%provided the best results

%%Resample threshold

len=length(Signal)/(inc_Len*Fs)-(4/inc_Len);

t=(0:1:length(ART_Thres_4sec)-1)*4;

tnew=(0:1:(len-1))*inc_Len;

ART_Thres_re=spline(t,ART_Thres_4sec,tnew);

%%Cycle through signal and and determine if the mean of the

%%signal is above the smoothed out threshold

for ii=1:length(ART_Thres_re)

meanval(ii)=mean(abs(Filt_Signal((ii-1)*inc_Len*Fs+1:ii*inc_Len*Fs)).^2);

if meanval(ii)> ART_Thres_re(ii)

ART(ii)=1;

else

ART(ii)=0;

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Dominant Band AR: This program is used to determine the frequency with

the lowest decay rate using an AR model.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Dominant_Band_AR

%%%Code for calculating the frequencies that have the least damping

%%%identified using an AR model. The approach is based on Olbrich and

%%%Achermann.

%%%

%%%Reference: E. Olbrich and P. Achermann. Analysis of the temporal

%%%organization of sleep spindles in the human sleep EEG using a
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%%%phenomenological modeling approach. Journal of Biological Physiology,

%%%34:341349, 2008.

%%%

%%%Input: Signal-the EEG signal

%%% Band-frequency band limits for filtering

%%% Seg_Len-length of signal being used

%%% Size-length of sub-segment

%%% inc_Len-length of increment in time (i.e. usually 1 for 1 second)

%%% Fs-the sampling frequency

%%%

%%%Output: max_freq-frequency associated with the minimum damping

%%% max_damp-minimum damping value.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [max_damp,max_freq]=Dominant_Band_AR(Signal,Band,Seg_Len,Size,inc_Len,Fs)

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

Seg=filtfilt(b,a,Signal);

N=4;%%Order of AR filter

%%preallocate space

max_damp=zeros((Seg_Len/inc_Len)-Size,1);

max_freq=zeros((Seg_Len/inc_Len)-Size,1);

%%Determine frequency and damping

for ii=1:floor(Seg_Len/inc_Len)-Size

[a,e]=arburg(Seg((ii-1)*Fs*inc_Len+1:(ii-1)*Fs*inc_Len+1+Fs*Size),N);

damping=abs(roots(a));

freq=rad2deg(abs(angle(roots(a))))*(Fs/2)/180;

%%find maximum value

maxval=max(damping);

I=0;

I=find(damping==maxval);

if length(I)>1

I2=find(freq(I)>=.5 & freq(I)<45);

if length(I2)>0

freqval=min(freq(I(I2)));

else

freqval=min(freq(I));

end

else

freqval=freq(I(1));

end

if freqval>=Band(1) && freqval<Band(2)

max_damp(ii)=maxval;

max_freq(ii)=freqval;

else

max_damp(ii)=0;

max_freq(ii)=0;

end



382

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function RLS Calc: This program is used to create a Recursive Least Squares Filter

(RLS) for removing eye movement and ECG artifacts from EEG data.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function RLS_Calc

%%%Code for Recursive Least Squares Filter

%%%

%%%Reference: S. Haykin Adaptive Filter Theory. Prentice Hall, Upper Saddle

%%%River, New Jersey, 3rd edition, 1996.

%%%

%%%Input: Lambda=forgetting factor

%%% M = filter order

%%% x=input signal (ECG or EOG)

%%% d=desired signal (contaminated EEG)

%%% delta=initial value

%%%

%%%Output: e = error estimate (corrected signal)

%%% h = filter coefficients

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [e,w,h]=RLS_Calc(lambda,M,x,d,delta)

w=zeros(M,1);

P=eye(M)/delta;

x=x(:);

d=d(:);

len=length(x);

%%error vector

e=d;

for ii=M:len

x_est=x(ii:-1:ii-M+1);

k=P*x_est/(lambda+x_est’*P*x_est);

e(ii)=d(ii)-w’*x_est;

w=w+k*conj(e(ii));

h(:,ii)=w;

P=lambda^(-1)*P-lambda^(-1)*k*x_est’*P;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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Function Calc Correlation: This program is used to calculate the correlation between

two signals.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Calc_Correlation

%%%Code for calculating the correlation between two signals

%%%

%%%Input: Seg1-Signal 1

%%% Seg2-Signal 2

%%% Thresholds-minimum and maximum amplitude of signal

%%% primarily used for EOG to eliminate artifacts

%%% Band-frequency band limits

%%% Fs-the sampling frequency

%%%

%%%Output: CC-correlation of the two channels

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [CC,maxval]=Calc_Correlation(Seg1,Seg2,Thresholds,Band,Fs)

if Band(1)~=0

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

temp1=filtfilt(b,a,Seg1);

temp2=filtfilt(b,a,Seg2);

else

[b,a]=butter(4,Band(2)./(Fs/2),’low’);

temp1=filtfilt(b,a,EOGL);

temp2=filtfilt(b,a,EOGR);

end

maxval(1)=max(abs(temp1));

maxval(2)=max(abs(temp2));

if maxval(1)<Thresholds(2) && maxval(2)<Thresholds(2) && ...

maxval(1)>Thresholds(1) && maxval(2)>Thresholds(1)

C=corrcoef(temp1,temp2);

CC=C(1,2);

else

CC=0;

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Amplitude Time Exceeded: This program is used to calculate the percent

of each epoch occupied by slow wave sleep.
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Amplitude_Time_Exceeded

%%%Code for calculating peak to peak amplitude critera

%%%

%%%Reference: H. Kuwahara, H. Higashi, Y. Mizuki, S. Matsunari, M. Tanaka,

%%%and K. Inanaga. Automatic real-time analysis of human sleep stages by

%%%an interval histogram method. Electroencephalography and Clinical

%%%Neurophysiology, 70: 220-229,1988.

%%%

%%%Input: Signal-either the EOG, EEG, or EMG signal

%%% Thresholds-vector containing the minimum and maxmium amplitude

%%% Band-frequency band limits

%%% Fs-sampling frequency

%%%

%%%Output: Data.Time_Above-time the signal is within the specified thresholds

%%% Data.Total_Time-total time of segment

%%% Data.Range-maximum value of signal between zero crossings

%%% Data.Duration-duration of the signal between zero crossings

%%% Data.Start_Time-start time of each zero crossing

%%% Data.End_Time-end time of each zero crossing

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Data]= Amplitude_Time_Exceeded(Signal,Thresholds,Band,Fs)

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

Seg=filtfilt(b,a,Signal);

greater=[];

greater=find(Seg>=0);%%Find values greater then 0

incpos=1;

crossingpos=[];

incneg=1;

crossingneg=[];

%%Find all zero crossings

for ii=1:length(greater)

if (greater(ii)-1)>0 && (greater(ii)+1)<length(Seg)

if Seg(greater(ii)-1)<0 && Seg(greater(ii)+1)>0 %%make sure it is a crossing

crossingpos(incpos)=greater(ii);

incpos=incpos+1;

end

if Seg(greater(ii)+1)<0 && Seg(greater(ii)-1)>0

crossingneg(incneg)=greater(ii);

incneg=incneg+1;

end

end

end

%%Find the start, end, range, and duration for each crossing

ink=1;

if crossingpos(1)<crossingneg(1)
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lenval= length(crossingpos)-1;

else

lenval= length(crossingneg)-1;

end

for ii=1:lenval

if crossingpos(1)<crossingneg(1)

temp=abs(Seg(crossingpos(ii):crossingneg(ii)));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));

Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

temp=abs(Seg(crossingneg(ii):crossingpos(ii+1)));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii+1))));

Data.Duration(ink)=(crossingpos(ii+1)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii+1)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

else

temp=abs(Seg(crossingneg(ii):crossingpos(ii)));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));

Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

temp=abs(Seg(crossingpos(ii):crossingneg(ii+1)));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii+1))));

Data.Duration(ink)=(crossingneg(ii+1)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii+1)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

ink=ink+1;

end

end

ii=length(crossingpos);

if crossingpos(1)<crossingneg(1) && length(crossingneg)==length(crossingpos)

temp=abs(Seg(crossingpos(ii):crossingneg(ii)));

tempSign=Seg(crossingpos(ii):crossingneg(ii));

Data.Range(ink)=max(abs(Seg(crossingpos(ii):crossingneg(ii))));



386

Data.Duration(ink)=(crossingneg(ii)-crossingpos(ii))/Fs;

Data.Start_Time(ink)=crossingpos(ii)/Fs;

Data.End_Time(ink)=crossingneg(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

Data.Range_Sign(ink)=tempSign(ind(1));

elseif length(crossingneg)==length(crossingpos)

temp=abs(Seg(crossingneg(ii):crossingpos(ii)));

tempSign=Seg(crossingneg(ii):crossingpos(ii));

Data.Range(ink)=max(abs(Seg(crossingneg(ii):crossingpos(ii))));

Data.Duration(ink)=(crossingpos(ii)-crossingneg(ii))/Fs;

Data.Start_Time(ink)=crossingneg(ii)/Fs;

Data.End_Time(ink)=crossingpos(ii)/Fs;

ind=[];

ind=find(temp==Data.Range(ink));

Data.Max_Time(ink)=(ind(1)-1)/Fs;

Data.Range_Sign(ink)=tempSign(ind(1));

end

%%Determine time when peak to peak amplitude is greater than the threshold

Data.Total_Time=sum(Data.Duration);

Data.Time_Above=zeros(1,length(Data.Range));

for ii=1:length(Data.Range)-1

if (Data.Range(ii)+Data.Range(ii+1))>=Thresholds(1) &&...

(Data.Range(ii)+Data.Range(ii+1))<=Thresholds(2)

%%Make sure that half of wave is not contributing to the entire peak to

%%peak amplitude

if Data.Range(ii)>=Thresholds(1)*.25 && Data.Range(ii+1)>=Thresholds(1)*.25

if (Data.Duration(ii)+Data.Duration(ii+1))>=1/Band(2) &&...

(Data.Duration(ii)+Data.Duration(ii+1))<=1/Band(1)

Data.Time_Above(ii)=Data.Duration(ii);

Data.Time_Above(ii+1)=Data.Duration(ii+1);

end

end

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Per Power: This program is used to calculate the root-mean-square value

for the power in each frequency band.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function: Per_Power

%%%Code for calculating RMS values for each frequency band

%%%

%%%Input: EEG-EEG segment
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%%% BandHigh-upper frequency band limit

%%% BandLow-lower frequency band limit

%%% Fs-sampling frequency

%%%

%%%Output: pow-RMS value for each of the specified frequency bands

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [pow]=Per_Power(EEG,bandHigh,bandlow,Fs)

pow=zeros(1,length(bandlow));

for ii=1:length(bandlow) %%Cycle through and calculate

[b,a]=butter(4,[bandlow(ii) bandHigh(ii)]./(Fs/2),’bandpass’);

temp=filtfilt(b,a,EEG);

pow(ii)=sqrt(mean(abs(temp).^2));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Power Welch: This program is used to calculate power in each frequency

band.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function: Power_Welch

%%%Code for calculating power spectral density

%%%

%%%Reference: F. Ferrillo, S. Donadio, F. De Carli, S. Gabarino, and

%%%L. Nobili. A model-based approach to homeostatic and ultradian

%%%aspects of nocturnal sleep structure in narcolepsy.

%%%Sleep, 30(2):157165, 2007.

%%%

%%%Input: EEG-EEG segment

%%% BandHigh-upper frequency band limits

%%% BandLow-lower frequency band limits

%%% Band-cutoff frequencies for filter

%%% Fs-sampling frequency

%%%

%%%Output: Pow-power for each of the specified frequency bands

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Pow]=Power_Welch(EEG,bandHigh,bandlow,Band,Fs)

%%Method is Similar to Ferrillo et al. Calculate PSD using

%%Welch method.

%%Filter EEG

[b,a]=butter(4,[Band(1) Band(2)]./(Fs/2),’bandpass’);

EEG_filt=filtfilt(b,a,EEG);
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%%Calculate power spectra using the Welch method

%%Use 4 second segments, apply hamming window

%%Use 75% overlap

%%Sum power in each frequency band

window=4*Fs;

noverlap=.75*window;

nfft=2^(nextpow2(8*window));

[Sxx,f] = pwelch(EEG_filt,window,noverlap,nfft,Fs,’onesided’);

%%Calculate power in each frequency Band

for ii=1:length(bandHigh)

start=find(f>=bandlow(ii));

fin=find(f<bandHigh(ii));

Pow(ii)=sum(Sxx(start(1):fin(length(fin))));

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Calc REM Periods: This program is used to identify the start and end of

each REM period.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Function Calc_REM_Periods

%%%Code for calculating potential REM sleep periods as part of

%%%sleep stage classification algorithm

%%%

%%%Input: Stages-sleep stages

%%% inc_len-sliding increment used

%%%

%%%Output: start-start of each potential REM period

%%% fin-end of each potential REM period

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [start,fin]=Calc_REM_Periods(Stages,inc_len)

%%Find start and finish for each REM period

starti=[];

fini=[];

starti=0;

fini=0;

I=find(Stages==5);

starti(1)=I(1);

ink=1;

for kk=2:length(I);

durStage=length(find(Stages(I(kk-1):I(kk))<5));

%%definition need greater then 15 minutes

if durStage>15*floor(60/inc_len)%
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fini(ink)=I(kk-1);

ink=ink+1;

starti(ink)=I(kk);

end

end

%%Can happen if REM sleep period is at end of night

if length(starti)>length(fini)

fini(length(starti))=I(length(I));

end

%%Eliminate very brief REM sleep periods

start=[];

fin=[];

ink=1;

for kk=1:length(starti)

lenREM=length(find(Stages(starti(kk):fini(kk))==5));

if lenREM>=1*floor(60/inc_len) && fini(kk)-starti(kk)>=2.0*floor(60/inc_len)

start(ink)=starti(kk);

fin(ink)=fini(kk);

ink=ink+1;

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

Function Classify Stage: This program is used to automatically classify sleep stages.

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

%%%Classify_Stage

%%%Code for automatically classifying sleep stages

%%%

%%%Input: ART-artifact signal

%%% SWS-percent of epoch occupied by SWS

%%% EOG_Corr-correlation between left and right EOG channels

%%% EMG-RMS-root mean square of EMG activity

%%% Freq-AR-dominant frequency in the EEG signal

%%% Alpha-power in the alpha frequency band

%%% Delta-power in the delta frequency band

%%% Sigma-power in the sigma frequency band

%%% Theta-power in the theta frequency band

%%% Seg-Size-size of segment that sleep stages are being scored

%%% for

%%% inc_len-sliding increment used

%%%

%%%Output: Est_Stage-sleep stages for each time increment

%%% Per_Stage-probility of sleep stage

%%% Hyp-hypnogram for plotting

%%% Count_AR-percent of epoch dominated by each frequency
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%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%

function [Est_Stage,Per_Stage,Hyp,Count_AR]=Classify_Stage...

(ART,SWS,EOG_Corr,EMG_RMS,Freq_AR,Alpha,Delta,Sigma,Theta,Seg_Size,inc_len)

I=find(EMG_RMS>0);

a=sort(EMG_RMS(I));

per_85=a(round(.85*length(a)));%%Most EMG_RMS is below 85 percentile

Est_Stage=85.*ones(1,length(SWS));

ink=1;

Est_Stage(1)=2;

jj=1;

Count_AR=0;

for ii=2:length(Alpha)

bandHigh= [ 4.5 8 12 16 25 35 ];

bandlow= [ .5 4.5 8 12 16 25 ];

for jj=1:length(bandlow)

tempFreq_Ar=Freq_AR(ii:ii+floor(Seg_Size/inc_len)-1);

I=find(tempFreq_Ar>=bandlow(jj) & tempFreq_Ar< bandHigh(jj));

if length(I)~=0

Count_AR(ii,jj)=length(I)/Seg_Size;

else

Count_AR(ii,jj)=0;

end

end

Count_AR(ii,:)=Count_AR(ii,:)./sum(Count_AR(ii,:));

if ART(ii,1)>=5 || Count_AR(ii,3)>=.5

Est_Stage(ii)=0;

%%If there is not an artifact

else

if EOG_Corr(ii)>-.2 %%no eye movements

%%.15 is from 2 standard deviations for Stage 2 sleep

if (SWS(ii)>=.15 || Delta(ii)>=0.7 )

Est_Stage(ii)=3;

elseif (SWS(ii)>=.05 && SWS(ii)<.15 ) || (Count_AR(ii,4)>=1/Seg_Size )

if Est_Stage(ii-1)==3 && Delta(ii)>=0.65 ...

&& Count_AR(ii,4)<=1/Seg_Size && Sigma(ii)<=1/Seg_Size

Est_Stage(ii)=3;

else

Est_Stage(ii)=2;

end

else

if Alpha(ii)/Theta(ii) >=1.5

Est_Stage(ii)=0;

elseif Est_Stage(ii-1)==5

if EMG_RMS(ii)<=per_85 && SWS(ii)<=1/Seg_Size && Delta(ii)<0.45

Est_Stage(ii)=5;

else
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Est_Stage(ii)=0;

end

else

Est_Stage(ii)=2;

end

end

%%Eye Movement

elseif EOG_Corr(ii)<=-.2

if EMG_RMS(ii)<=per_85 && (Alpha(ii)/Theta(ii))< 1.5 && Delta(ii)<0.45

Est_Stage(ii)=5;

else

Est_Stage(ii)=0;

end

end

end

end

%%Get rid of brief eye movements (single eye movements

%%with no other activity around it)

for ii=floor(61/inc_len):length(Est_Stage)-floor(60/inc_len)

I=find(Est_Stage(ii-floor(60/inc_len):ii+floor(60/inc_len))==5);

if length(I)<floor(3/inc_len) && Est_Stage(ii)==5

Est_Stage(ii)=0;

end

end

%%Correction for rapid eye movements at the beginning of the

%%night

I=find(Est_Stage(1:30*floor(60/inc_len))==5);

for ii=1:length(I)

if Est_Stage(I(ii)-1)==0

Est_Stage(I(ii))=0;

else

Est_Stage(I(ii))=2;

end

end

%%Correct for Stage 2 sleep during REM periods

[start,fin]=Calc_REM_Periods(Est_Stage,inc_len);

ink=1;

for ii=1:length(start)

for jj=start(ii):fin(ii)

if Est_Stage(jj)==2 && SWS(jj)<2/30 && Count_AR(jj,4)<=.05

Est_Stage(jj)=5;

elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Alpha(ii)/Theta(ii) >=1.5

Est_Stage(jj)=0;

elseif Est_Stage(jj)==2 && Est_Stage(jj-1)==0 && Count_AR(jj,3)>Count_AR(jj,2)

Est_Stage(jj)=0;

end

end

end
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%%Get rid of eye movements not between end points

for ii=1:length(start)

if ii==1

I=find(Est_Stage(1:start(ii)-1)==5);

Est_Stage(I)=0;

elseif ii<=length(start)

I=find(Est_Stage(fin(ii-1)+1:start(ii)-1)==5);

Est_Stage(fin(ii-1)+I)=zeros(1,length(I));

end

end

if fin(length(fin))+1<length(Est_Stage)

I=find(Est_Stage(fin(length(fin))+1:length(Est_Stage))==5);

Est_Stage(fin(length(fin))+I)=0;

end

val=[0 2 3 5];

%%Calc_30 second sleep stages

for ii=1:length(Est_Stage)/floor(30/inc_len)

for jj=1:length(val)

Per_Stage(ii,jj)=...

length(find(Est_Stage((ii-1)*floor(30/inc_len)+1:ii*floor(30/inc_len))...

==val(jj)))/floor(30/inc_len);

end

maxval=max(Per_Stage(ii,:));

ind=find(Per_Stage(ii,:)==maxval);

if length(ind)>1

if ii~=1

Hyp(ii)=Hyp(ii-1);

else

Hyp(ii)=val(ind(1));

end

elseif length(ind)==1

Hyp(ii)=val(ind(1));

end

end

%%%----------------------------------------------------------------------%%

%%%----------------------------------------------------------------------%%
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